首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Stromal interaction molecule 1 (STIM1) is an endo/sarcoplasmic reticulum (ER/SR) calcium (Ca2+) sensing protein that regulates store-operated calcium entry (SOCE). In SOCE, STIM1 activates Orai1-composed Ca2+ channels in the plasma membrane (PM) after ER stored Ca2+ depletion. S-Glutathionylation of STIM1 at Cys56 evokes constitutive SOCE in DT40 cells; however, the structural and biophysical mechanisms underlying the regulation of STIM1 by this modification are poorly defined. By establishing a protocol for site-specific STIM1 S-glutathionylation using reduced glutathione and diamide, we have revealed that modification of STIM1 at either Cys49 or Cys56 induces thermodynamic destabilization and conformational changes that result in increased solvent-exposed hydrophobicity. Further, S-glutathionylation or point-mutation of Cys56 reduces Ca2+ binding affinity, as measured by intrinsic fluorescence and far-UV circular dichroism spectroscopies. Solution NMR showed S-glutathionylated-induced perturbations in STIM1 are localized to the α1 helix of the canonical EF-hand, the α3 and α4 helices of the non-canonical EF-hand and α6 and α8 helices of the SAM domain. Finally, we designed an S-glutathiomimetic mutation that strongly recapitulates the structural, biophysical and functional effects within the STIM1 luminal domain and we envision to be another tool for understanding the effects of protein S-glutathionylation in vitro, in cellulo and in vivo.  相似文献   

3.
4.
5.
6.
The Human Immunodeficiency Virus type 1 protease enzyme (HIV-1 PR) is one of the most important targets of antiretroviral therapy used in the treatment of AIDS patients. The success of protease-inhibitors (PIs), however, is often limited by the emergence of protease mutations that can confer resistance to a specific drug, or even to multiple PIs. In the present study, we used bioinformatics tools to evaluate the impact of the unusual mutations D30V and V32E over the dynamics of the PR-Nelfinavir complex, considering that codons involved in these mutations were previously related to major drug resistance to Nelfinavir. Both studied mutations presented structural features that indicate resistance to Nelfinavir, each one with a different impact over the interaction with the drug. The D30V mutation triggered a subtle change in the PR structure, which was also observed for the well-known Nelfinavir resistance mutation D30N, while the V32E exchange presented a much more dramatic impact over the PR flap dynamics. Moreover, our in silico approach was also able to describe different binding modes of the drug when bound to different proteases, identifying specific features of HIV-1 subtype B and subtype C proteases.  相似文献   

7.
8.
Late in adenovirus assembly, the viral protease (AVP) becomes activated and cleaves multiple copies of three capsid and three core proteins. Proteolytic maturation is an absolute requirement to render the viral particle infectious. We show here that the L1 52/55k protein, which is present in empty capsids but not in mature virions and is required for genome packaging, is the seventh substrate for AVP. A new estimate on its copy number indicates that there are about 50 molecules of the L1 52/55k protein in the immature virus particle. Using a quasi-in vivo situation, i.e., the addition of recombinant AVP to mildly disrupted immature virus particles, we show that cleavage of L1 52/55k is DNA dependent, as is the cleavage of the other viral precursor proteins, and occurs at multiple sites, many not conforming to AVP consensus cleavage sites. Proteolytic processing of L1 52/55k disrupts its interactions with other capsid and core proteins, providing a mechanism for its removal during viral maturation. Our results support a model in which the role of L1 52/55k protein during assembly consists in tethering the viral core to the icosahedral shell and in which maturation proceeds simultaneously with packaging, before the viral particle is sealed.  相似文献   

9.
Currently, deficit of amyloid β-peptide (Aβ) clearance from the brain is considered as one of the possible causes of amyloid accumulation and neuronal death in the sporadic form of Alzheimer’s disease (AD). Aβ clearance can involve either specific proteases present in the brain or Aβ-binding/transport proteins. Among amyloid-degrading enzymes the most intensively studied are neprilysin (NEP) and insulin-degrading enzyme (IDE). Since ageing and development of brain pathologies is often accompanied by a deficit in the levels of expression and activity of these enzymes in the brain, there is an urgent need to understand the mechanisms involved in their regulation. We have recently reported that NEP and also an Aβ-transport protein, transthyretin are epigenetically co-regulated by the APP intracellular domain (AICD) and this regulation depends on the cell type and APP695 isoform expression in a process that can be regulated by the tyrosine kinase inhibitor, Gleevec. We have now extended our work and shown that, unlike NEP, another amyloid-degrading enzyme, IDE, is not related to over-expression of APP695 in neuroblastoma SH-SY5Y cells but is up-regulated by APP751 and APP770 isoforms independently of AICD but correlating with reduced HDAC1 binding to its promoter. Studying the effect of the nuclear retinoid X receptor agonist, bexarotene, on NEP and IDE expression, we have found that both enzymes can be up-regulated by this compound but this mechanism is not APP-isoform specific and does not involve AICD but, on the contrary, affects HDAC1 occupancy on the NEP gene promoter. These new insights into the mechanisms of NEP and IDE regulation suggest possible pharmacological targets in developing AD therapies.  相似文献   

10.
11.
12.
Apical membrane antigen 1 (AMA1) of the human malaria parasite Plasmodium falciparum has been implicated in invasion of the host erythrocyte. It interacts with malarial rhoptry neck (RON) proteins in the moving junction that forms between the host cell and the invading parasite. Agents that block this interaction inhibit invasion and may serve as promising leads for anti-malarial drug development. The invasion-inhibitory peptide R1 binds to a hydrophobic cleft on AMA1, which is an attractive target site for small molecules that block parasite invasion. In this work, truncation and mutational analyses show that Phe5-Phe9, Phe12 and Arg15 in R1 are the most important residues for high affinity binding to AMA1. These residues interact with two well-defined binding hot spots on AMA1. Computational solvent mapping reveals that one of these hot spots is suitable for small molecule targeting. We also confirm that R1 in solution binds to AMA1 with 1∶1 stoichiometry and adopts a secondary structure consistent with the major form of R1 observed in the crystal structure of the complex. Our results provide a basis for designing high affinity inhibitors of the AMA1-RON2 interaction.  相似文献   

13.
The merging of knowledge from genomics, cellular signal transduction and molecular evolution is producing new paradigms of cancer analysis. Protein kinases have long been understood to initiate and promote malignant cell growth and targeting kinases to fight cancer has been a major strategy within the pharmaceutical industry for over two decades. Despite the initial success of kinase inhibitors (KIs), the ability of cancer to evolve resistance and reprogram oncogenic signaling networks has reduced the efficacy of kinase targeting. The molecular chaperone HSP90 physically supports global kinase function while also acting as an evolutionary capacitor. The Cancer Genome Atlas (TCGA) has compiled a trove of data indicating that a large percentage of tumors overexpress or possess mutant kinases that depend on the HSP90 molecular chaperone complex. Moreover, the overexpression or mutation of parallel activators of kinase activity (PAKA) increases the number of components that promote malignancy and indirectly associate with HSP90. Therefore, targeting HSP90 is predicted to complement kinase inhibitors by inhibiting oncogenic reprogramming and cancer evolution. Based on this hypothesis, consideration should be given by both the research and clinical communities towards combining kinase inhibitors and HSP90 inhibitors (H90Ins) in combating cancer. The purpose of this perspective is to reflect on the current understanding of HSP90 and kinase biology as well as promote the exploration of potential synergistic molecular therapy combinations through the utilization of The Cancer Genome Atlas.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-015-0604-1) contains supplementary material, which is available to authorized users.  相似文献   

14.
分蘖(或分枝)是作物产量的一个主要决定因素,受植物激素、自身生长发育和环境等因素的调控。近年报道的单子叶植物新的分蘖(或分枝)基因和调控机制深化了对植物分蘖的认知。对以禾本科植物为代表的单子叶植物的分蘖(或分枝)相关基因和调控机制进行了综述,从激素、基因、转录等几方面比较了单子叶植物分蘖和双子叶植物分枝调控机制的异同,为植物产量形成、适应环境及提高生存竞争能力的研究提供理论依据。  相似文献   

15.
16.
17.
18.
Hypoxia-inducible factor (HIF) alpha subunits are induced under hypoxic conditions, when limited oxygen supply prevents prolyl hydroxylation-dependent binding of the ubiquitin ligase pVHL and subsequent proteasomal degradation. A short normoxic half-life of HIF-alpha and a very rapid hypoxic protein stabilization are crucial to the cellular adaptation to changing oxygen supply. However, the molecular requirements for the unusually rapid mechanisms of protein synthesis, folding and nuclear translocation are not well understood. We and others previously found that the chaperone heat-shock protein 90 (HSP90) can interact with HIF-1alpha in vitro. Here we show that HSP90 also interacts with HIF-2alpha and HIF-3alpha, suggesting a general involvement of HSP90 in HIF-alpha stabilization. The PAS B domain, common to all three alpha subunits, was required for HSP90 interaction. ARNT competed with HSP90 for binding to the PAS B domain since an excess of either component inhibited the activity of the other. HSP90 as well as the heterocomplex members HSP70 and p23, but not HSP40, were detected in immunoprecipitations of endogenous cellular HIF-1alpha. While HSP90 and HSP70 bound to HIF-1alpha predominantly under normoxic conditions, ARNT bound to HIF-1alpha primarily under hypoxic conditions, suggesting that ARNT displaced HSP90 from HIF-1alpha following nuclear translocation. Hypoxic accumulation of HIF-1alpha was delayed in a novel cell model deficient for HSP90beta as well as after treatment of wild-type cells with the HSP90 inhibitor geldanamycin, suggesting that HSP90 activity is involved in the rapid HIF-1alpha protein induction.  相似文献   

19.
20.
The fact that HSP90 proteins and their chaperonin partners play an important role in epsilon RNA binding of duck HBV Pol protein during duck HBV replication has been reported. To elucidate the molecular basis of HBV Pol/HSP90 interaction, we have characterized the HSP90 interaction to HBV Pol. We found that human HBV Pol protein upon synthesis in rabbit reticulocyte lysate formed a complex with HSP90 in vitro as duck HBV Pol did. In addition, HSP90 protein was copurified with MBP/POL protein expressed in HepG2 cells, suggesting that human HBV Pol protein is associated with HSP90 in vivo. To localize the HSP90 interaction site region, several deletion mutants of HBV Pol translated in vitro were immunoprecipitated with anti-HSP90 antibody. The result indicates that C-terminal regions of the TP and RT domains interact with HSP90 independently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号