首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Translation efficiency contributes several orders of magnitude difference in the overall yield of exogenous gene expression in bacteria. In diverse bacteria, the translation initiation site, whose sequence is the primary determinant of the translation performance, is comprised of the start codon and the Shine–Dalgarno box located upstream. Here, we have examined how the sequence of a spacer between these main components of the translation initiation site contributes to the yield of synthesized protein. We have created a library of reporter constructs with the randomized spacer region, performed fluorescently activated cell sorting and applied next-generation sequencing analysis (the FlowSeq protocol). As a result, we have identified sequence motifs for the spacer region between the Shine–Dalgarno box and AUG start codon that may modulate the translation efficiency in a 100-fold range.  相似文献   

3.
The adenovirus type 5 origin sequence starts with 3' GTAGTA. Initiation of replication occurs by a protein priming mechanism in which the viral precursor terminal protein (pTP) is covalently linked to the first nucleotide of the nascent chain, a dCMP residue. This suggests that a pTP-dCMP (pTP-C) complex functions as an initiation intermediate. Employing a reconstituted replication system and both synthetic oligonucleotides and the natural TP-DNA as templates, we show that pTP-CAT rather than pTP-C is an intermediate in initiation. By replicating oligonucleotide templates mutated at different positions and analyzing the product lengths, we observed that the GTA at positions 4-6, rather than 1-3, are used as a template for pTP-CAT formation. Moreover, deletions of one or two nucleotides at the molecular ends were regenerated upon in vitro replication. Our results support a model in which the pTP-CAT intermediate, synthesized opposite to positions 4-6, jumps back to position 1 of the template to start elongation. In order to permit elongation, some base pairing between pTP-CAT and template residues 1-3 is required. This jumping-back mechanism ensures the integrity of terminal sequences during replication of the linear genome.  相似文献   

4.
The L1 retrotransposon codes for a unique bicistronic mRNA, which serves as a transposition intermediate and as a template for the synthesis of two proteins. According to preliminary data, the translation of both cistrons is initiated by a noncanonical mechanism. The L1 mRNA was translated in rabbit reticulocyte lysate (RRL), a standard system widely used to study the eukaryotic mechanisms of protein synthesis. Translation yielded not only the expected products, but also several products of aberrant translation initiation on internal AUG codons. Such products are not generated during in vivo translation of the L1 mRNA. When RRL was supplemented with a cytoplasmic extract of HeLa cells, the aberrant products were not synthesized, while the first cistron was translated with the same efficiency. The efficiency of translation of the second cistron became substantially lower, corresponding to the situation in vivo. These and other experiments clearly demonstrated that the new combined system RRL + HeLa is far more adequate for studying the mechanisms of translation initiation than the standard RRL system.  相似文献   

5.
The formation of ribosomal 48S initiation complexes at the start codon of the mRNA leader sequence that encodes obelin has been studied using the method of primer extension inhibition (toeprinting). Experiments have been performed in a system composed of purified individual components required to initiate translation. The influence of the dominant negative mutant of factor eIF4A (R362Q) on translation initiation has been studied. It has been shown that the presence of the mutant in reaction mixture has no effect on efficiency of formation of the 48S complexes at start codon of the template studied.  相似文献   

6.
In-vivo studies have demonstrated that adenovirus type 2 and adenovirus type 4 have different DNA sequence requirements for the initiation of DNA replication. To investigate the basis of these differences an in-vitro system has been developed which will faithfully initiate adenovirus type 4 DNA replication. A plasmid containing 140 base-pairs of the right terminus of adenovirus type 4 supported initiation of DNA replication in vitro, provided that the plasmid was linearized in such a way as to locate the viral terminal sequences at the molecular ends of the DNA. Initiation by adenovirus type 4-infected cell extracts was also supported by a plasmid containing the complete adenovirus type 2 inverted terminal repeat (ITR). Deletion analysis of both adenovirus types 2 and 4 ITRs revealed that only the terminal 18 base-pairs of the genomes (perfectly conserved between the 2 viruses) were required for initiation in vitro. Thus, initiation was not enhanced by the presence of either the NFI site, the NFIII site or both sites together. Fractionation of a HeLa cell nuclear extract, by ion-exchange chromatography, identified a nuclear factor that stimulated the initiation reaction four- to fivefold. The stimulatory factor did not correspond to either of the cellular proteins NFI or NFIII which stimulate adenovirus type 2 DNA replication in vitro. Initiation in vitro was also supported by single-stranded DNA templates, albeit at a lower efficiency. Studies with synthetic oligonucleotides indicated a surprising specificity for initiation: whereas the strand used as template during initiation in vivo was active as a template for initiation in vitro, the complementary strand was inactive.  相似文献   

7.
Leaderless mRNAs beginning with a 5'-terminal start codon occur in all biological systems. In this work, we have studied the comparative translational efficiency of leaderless and leadered mRNAs as a function of temperature by in vitro translation competition assays with Escherichia coli extracts. At low temperature (25 degrees C) leaderless mRNAs were found to be translated comparatively better than mRNAs containing an internal canonical ribosome binding site, whereas at high temperature (42 degrees C) the translational efficiency of canonical mRNAs is by far superior to that of leaderless mRNA. The inverse correlation between temperature and translational efficiency characteristic for the two mRNA classes was attributed to structural features of the mRNA(s) and to the reduced stability of the translation initiation complex formed at a 5'-terminal start codon at elevated temperature.  相似文献   

8.
Retrotransposon L1 codes for a unique dicistronic mRNA which serves both a transposition intermediate and a template for the synthesis of two proteins of this mobile element. According to preliminary data, the translation initiation of both cistrons of L1 occurs by non-canonical mechanisms. When translating the L1 mRNA in rabbit reticulocyte lysate (RRL), a standard system routinely used by many researchers to study mechanisms of translation initiation in eukaryotes, we observed along with expected products a number of polypeptides resulted from aberrant initiation at internal AUG codons. Such products are absent on translation of L1 mRNA in vivo. Addition to the system of a cytoplasmic extract from HeLa cells resulted in disappearance of these abberant products whereas the efficiency of translation of the first cistron remained unchanged. The level of translation of the second cistron became significantly lower. This also made the picture closer to that observed in vivo. These and other experiments allowed us to clearly demonstrate that the new combined cell-free system is much more adequate to study mechanisms of translation initiation than a regular RRL.  相似文献   

9.
General RNA binding proteins render translation cap dependent.   总被引:17,自引:2,他引:15       下载免费PDF全文
Translation in rabbit reticulocyte lysate is relatively independent of the presence of the mRNA m7G cap structure and the cap binding protein, eIF-4E. In addition, initiation occurs frequently at spurious internal sites. Here we show that a critical parameter which contributes to cap-dependent translation is the amount of general RNA binding proteins in the extract. Addition of several general RNA binding proteins, such as hnRNP A1, La autoantigen, pyrimidine tract binding protein (hnRNP I/PTB) and the major core protein of cytoplasmic mRNP (p50), rendered translation in a rabbit reticulocyte lysate cap dependent. These proteins drastically inhibited the translation of an uncapped mRNA, but had no effect on translation of a capped mRNA. Based on these and other results, we suggest that one function of general mRNA binding proteins in the cytoplasm is to promote ribosome binding by a 5' end, cap-mediated mechanism, and prevent spurious initiations at aberrant translation start sites.  相似文献   

10.
Sequence determinants and structural features of the RNA govern mRNA-ribosome interaction in bacteria. However, ribosomal recruitment to leaderless mRNAs, which start directly with the AUG start codon and do not bear a Shine-Dalgarno sequence like canonical mRNAs, does not appear to rely on 16S rRNA-mRNA interactions. Here, we have studied the effects of translation initiation factors IF2 and IF3 on 30S initiation at a 5'-terminal AUG and at a competing downstream canonical ribosome binding site. We show that IF2 affects the forward kinetics of 30S initiation complex formation at the 5'-terminal AUG as well as the stability of these complexes. Moreover, the IF2:IF3 molar ratio was found to play a decisive role in translation initiation of a leaderless mRNA both in vitro and in vivo indicating that the translational efficiency of an mRNA is not only intrinsically determined but can be altered depending on the availability of components of the translational machinery.  相似文献   

11.
The selection of the site for initiation of translation for the Saccharomyces cerevisiae NFS1 gene was examined using mutated AUG1, AUG2 and AUG3 codons. When AUG1 of the yeast NFS1 gene was mutated to UUG and the resulting mRNA was translated in vitro using a reticulocyte system, initiation from the mutated codon was abolished and occurred instead at downstream codons at increased rates. When the same mRNA was translated using a yeast extract, translation initiated at the mutated codon, albeit at a reduced rate, and there was no increased translation at downstream AUG codons. The NFS1 gene in which AUG1 was replaced by UUG was also able to substitute for the wild-type gene in vivo in yeast. Western blots confirmed that the encoded protein was the same size as that encoded by the wild-type gene and that both the wild-type and mutated proteins localized to mitochondria. This is apparently the first example of a yeast protein where mutagenesis of AUG1 does not lead to alternate use of a downstream AUG.  相似文献   

12.
In a genetic selection designed to isolate Escherichia coli mutations that increase expression of the IS 10 transposase gene ( tnp ), we unexpectedly obtained viable mutants defective in translation initiation factor 3 (IF3). Several lines of evidence led us to conclude that transposase expression, per se , was not increased. Rather, these mutations appear to increase expression of the tnp'–'lacZ gene fusions used in this screen, by increasing translation initiation at downstream, atypical initiation codons. To test this hypothesis we undertook a systematic analysis of start codon requirements and measured the effects of IF3 mutations on initiation from various start codons. Beginning with an efficient translation initiation site, we varied the AUG start codon to all possible codons that differed from AUG by one nucleotide. These potential start codons fall into distinct classes with regard to translation efficiency in vivo : Class I codons (AUG, GUG, and UUG) support efficient translation; Class IIA codons (CUG, AUU, AUC, AUA, and ACG) support translation at levels only 1–3% that of AUG; and Class IIB codons (AGG and AAG) permit levels of translation too low for reliable quantification. Importantly, the IF3 mutations had no effect on translation from Class I codons, but they increased translation from Class II codons 3–5-fold, and this same effect was seen in other gene contexts. Therefore, IF3 is generally able to discriminate between efficient and inefficient codons in vivo , consistent with earlier in vitro observations. We discuss these observations as they relate to IF3 autoregulation and the mechanism of IF3 function.  相似文献   

13.
14.
To identify protein–protein interactions and phosphorylated amino acid sites in eukaryotic mRNA translation, replicate TAP‐MudPIT and control experiments are performed targeting Saccharomyces cerevisiae genes previously implicated in eukaryotic mRNA translation by their genetic and/or functional roles in translation initiation, elongation, termination, or interactions with ribosomal complexes. Replicate tandem affinity purifications of each targeted yeast TAP‐tagged mRNA translation protein coupled with multidimensional liquid chromatography and tandem mass spectrometry analysis are used to identify and quantify copurifying proteins. To improve sensitivity and minimize spurious, nonspecific interactions, a novel cross‐validation approach is employed to identify the most statistically significant protein–protein interactions. Using experimental and computational strategies discussed herein, the previously described protein composition of the canonical eukaryotic mRNA translation initiation, elongation, and termination complexes is calculated. In addition, statistically significant unpublished protein interactions and phosphorylation sites for S. cerevisiae’s mRNA translation proteins and complexes are identified.  相似文献   

15.
Programmed ribosomal frameshifting allows one mRNA to encode regulate expression of, multiple open reading frames (ORFs). The polymerase encoded by ORF 2 of Barley yellow dwarf virus (BYDV) is expressed via minus one (-1) frameshifting from the overlapping ORF 1. Previously, this appeared to be mediated by a 116 nt RNA sequence that contains canonical -1 frameshift signals including a shifty heptanucleotide followed by a highly structured region. However, unlike known -1 frameshift signals, the reporter system required the zero frame stop codon and did not require a consensus shifty site for expression of the -1 ORF. In contrast, full-length viral RNA required a functional shifty site for frameshifting in wheat germ extract, while the stop codon was not required. Increasing translation initiation efficiency by addition of a 5' cap on the naturally uncapped viral RNA, decreased the frameshift rate. Unlike any other known RNA, a region four kilobases downstream of the frameshift site was required for frameshifting. This included an essential 55 base tract followed by a 179 base tract that contributed to full frameshifting. The effects of most mutations on frameshifting correlated with the ability of viral RNA to replicate in oat protoplasts, indicating that the wheat germ extract accurately reflected control of BYDV RNA translation in the infected cell. However, the overall frameshift rate appeared to be higher in infected cells, based on immunodetection of viral proteins. These findings show that use of short recoding sequences out of context in reporter constructs may overlook distant signals. Most importantly, the remarkably long-distance interaction reported here suggests the presence of a novel structure that can facilitate ribosomal frameshifting.  相似文献   

16.
Adenovirus (Ad) virions contain a 55-kDa terminal protein covalently linked to both 5'-ends of the linear duplex DNA genome. The origin of DNA replication is contained within the terminal 50 base pair of the inverted terminal repeats. In the accompanying paper (Kenny, M. K., Balogh, L. A., and Hurwitz, J. (1988) J. Biol. Chem. 263, 9801-9808), it was demonstrated that synthetic oligonucleotide templates which contain the Ad origin, but lack the 55-kDa terminal protein, can serve as templates for the initiation of Ad DNA replication. Partially duplex oligonucleotides that lacked up to 14 nucleotides from the 5'-end of the nontemplate (displaced) strand supported initiation as much as 20-fold more efficiently than fully duplex oligonucleotides. The removal of 18 nucleotides or more from the 5'-end of the displaced strand resulted in a sharp decrease in the ability of the DNA templates to support initiation. The poor template efficiency of certain DNAs could be explained by their inability to bind nuclear factor I. The initiation efficiency observed with other DNAs correlated with their ability to bind the preterminal protein-Ad DNA polymerase complex. At low concentrations of the Ad DNA-binding protein, protein-primed initiation was also observed on single-stranded DNAs. The single-stranded template strand of the Ad origin was at least 5-20-fold better at supporting initiation than other single-stranded DNAs. These findings suggest a model in which the 3'-end of the template strand is rendered single-stranded as a prerequisite for initiation of Ad DNA replication.  相似文献   

17.
《Journal of molecular biology》2019,431(7):1460-1467
Kgd4 is a novel subunit of the mitochondrial α-ketoglutarate dehydrogenase complex (KGDH). In yeast, the protein is present in two forms of unknown origin, as there is only one open reading frame and no alternative splicing. Here, we show that the two forms of Kgd4 derive from one mRNA that is translated by employing two alternative start sites. The standard, annotated AUG codon gives rise to the short form of the protein, while an upstream UUG codon is utilized to generate the larger form. However, both forms can be efficiently imported into mitochondria and stably incorporate into KGDH to support its activity. Translation of the long variant depends on sequences directly upstream of the alternative initiation site, demonstrating that translation initiation and its efficiency are dictated by the sequence context surrounding a specific codon. In summary, the two forms of Kgd4 follow a very unusual biogenesis pathway, supporting the notion that translation initiation in yeast is more flexible than it is widely recognized.  相似文献   

18.
Translation initiation of Coxsackievirus B3 (CVB3) RNA is directed by an internal ribosome entry site (IRES) within the 5′ untranslated region. Host cell factors involved in this process include some canonical translation factors and additional RNA-binding proteins. We have, previously, described that the Sabin3-like mutation (U475 → C) introduced in CVB3 genome led to a defective mutant with a serious reduction in translation efficiency. With the aim to identify proteins interacting with CVB3 wild-type and Sabin3-like IRESes and to study interactions between HeLa cell or BHK-21 protein extracts and CVB3 RNAs, UV-cross-linking assays were performed. We have observed a number of proteins that specifically interact with both RNAs. In particular, molecular weights of five of these proteins resemble to those of the eukaryotic translation initiation factors 4G, 3b, 4B, and PTB. According to cross-linking patterns obtained, we have demonstrated a better affinity of CVB3 RNA binding to BHK-21 proteins and a reduced interaction of the mutant RNA with almost cellular polypeptides compared to the wild-type IRES. On the basis of phylogeny of some initiation factors and on the knowledge of the initiation of translation process, we focused on the interaction of both IRESes with eIF3, p100 (eIF4G), and 40S ribosomal subunit by filter-binding assays. We have demonstrated a better affinity of binding to the wild-type CVB3 IRES. Thus, the reduction efficiency of the mutant RNA to bind to cellular proteins involved in the translation initiation could be the reason behind inefficient IRES function.  相似文献   

19.
The chloroplast infA gene with a functional UUG initiation codon   总被引:2,自引:0,他引:2  
All chloroplast genes reported so far possess ATG start codons and sometimes GTGs as an exception. Sequence alignments suggested that the chloroplast infA gene encoding initiation factor 1 in the green alga Chlorella vulgaris has TTG as a putative initiation codon. This gene was shown to be transcribed by RT-PCR analysis. The infA mRNA was translated accurately from the UUG codon in a tobacco chloroplast in vitro translation system. Mutation of the UUG codon to AUG increased translation efficiency approximately 300-fold. These results indicate that the UUG is functional for accurate translation initiation of Chlorella infA mRNA but it is an inefficient initiation codon.  相似文献   

20.
Nuclear extracts from adenovirus type 5 (Ad5) infected HeLa cells were used to study the template requirements for adenovirus DNA replication in vitro. When XbaI digested Ad5 DNA, containing the parental terminal protein (TP), was used as a template preferential synthesis of the terminal fragments was observed. The newly synthesized DNA was covalently bound to the 82 kD preterminal protein (pTP). Plasmid DNAs containing the Ad2 origin sequence or the Ad12 origin sequence with small deletions were analyzed for their capacity to support pTP-primed DNA replication. Circular plasmid DNAs were inactive. When plasmids were linearized to expose the adenovirus origin, both Ad2 and Ad12 TP-free fragments could support initiation and elongation similarly as Ad5 DNA-TP, although with lower efficiency. These observations indicate that the parental terminal protein is dispensable for initiation in vitro. The presence of 29 nucleotides ahead of the molecular end or a deletion of 14 base pairs extending into the conserved sequence (9-22) destroyed the template activity. DNA with a large deletion within the first 8 base pairs could still support replication while a small deletion could not. The results suggest that only G residues at a distance of 4-8 nucleotides from the start of the conserved sequence can be used as template during initiation of DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号