首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《FEBS letters》1999,442(2-3):167-172
The thermogenic activity of brown adipose tissue (BAT) is heavily dependent on high perfusion, through its dense vascular system. Angiogenesis must go hand-in-hand with BAT functions, but little is known about the factors controlling it. In the present study we demonstrate that: (a) vascular endothelial growth factor (VEGF) is synthesised and released in brown adipocytes in culture; (b) VEGF mRNA isoforms and protein appear in dispersed mature brown adipocytes and whole tissue; (c) VEGF expression is increased in BAT from cold-exposed rats, and in cultured brown adipocytes exposed to noradrenaline and the β3-adrenoceptor agonists; (e) BAT from genetically obese (fa/fa) rats exhibits reduced expression of VEGF as well as a change in the ratio of mRNA isoforms. It is concluded that sympathetic control of VEGF expression via noradrenaline acting on β3-adrenoceptors plays a major role in developmental and adaptive angiogenesis, and defects in this contribute to the reduced thermogenic capacity of BAT in genetic obesity.  相似文献   

3.
4.
5.
6.
Brown adipose tissue (BAT) has long been thought to be absent or very scarce in human adults so that its contribution to energy expenditure was not considered as relevant. The recent discovery of thermogenic BAT in human adults opened the field for innovative strategies to combat overweight/obesity and associated diseases. This energy-dissipating function of BAT is responsible for adaptive thermogenesis in response to cold stimulation. In this context, adipocytes can be converted, within white adipose tissue (WAT), into multilocular adipocytes expressing UCP1, a mitochondrial protein that plays a key role in heat production by uncoupling the activity of the respiratory chain from ATP synthesis. These adipocytes have been named “brite” or “beige” adipocytes. Whereas BAT has been studied for a long time in murine models both in vivo and in vitro, there is now a strong demand for human cellular models to validate and/or identify critical factors involved in the induction of a thermogenic program within adipocytes. In this review we will discuss the different human cellular models described in the literature and what is known regarding the regulation of their differentiation and/or activation process. In addition, the role of microRNAs as novel regulators of brown/“brite” adipocyte differentiation and conversion will be depicted. Finally, investigation of both the conversion and the metabolism of white-to-brown converted adipocytes is required for the development of therapeutic strategies targeting overweight/obesity and associated diseases. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.  相似文献   

7.
Most physiologically induced examples of recruitment of brown adipose tissue (BAT) occur as a consequence of chronic sympathetic stimulation (norepinephrine release within the tissue). However, in some physiological contexts (e.g., prenatal and prehibernation recruitment), this pathway is functionally contraindicated. Thus a nonsympathetically mediated mechanism of BAT recruitment must exist. Here we have tested whether a PPARgamma activation pathway could competently recruit BAT, independently of sympathetic stimulation. We continuously treated primary cultures of mouse brown (pre)adipocytes with the potent peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist rosiglitazone. In rosiglitazone-treated cultures, morphological signs of adipose differentiation and expression levels of the general adipogenic marker aP2 were manifested much earlier than in control cultures. Importantly, in the presence of the PPARgamma agonist the brown adipocyte phenotype was significantly enhanced: UCP1 was expressed even in the absence of norepinephrine, and PPARalpha expression and norepinephrine-induced PGC-1alpha mRNA levels were significantly increased. However, the augmented levels of PPARalpha could not explain the brown-fat promoting effect of rosiglitazone, as this effect was still evident in PPARalpha-null cells. In continuously rosiglitazone-treated brown adipocytes, mitochondriogenesis, an essential part of BAT recruitment, was significantly enhanced. Most importantly, these mitochondria were capable of thermogenesis, as rosiglitazone-treated brown adipocytes responded to the addition of norepinephrine with a large increase in oxygen consumption. This thermogenic response was not observable in rosiglitazone-treated brown adipocytes originating from UCP1-ablated mice; hence, it was UCP1 dependent. Thus the PPARgamma pathway represents an alternative, potent, and fully competent mechanism for BAT recruitment, which may be the cellular explanation for the enigmatic recruitment in prehibernation and prenatal states.  相似文献   

8.
Brown adipose tissue (BAT), a major site for mammalian non‐shivering thermogenesis, could be a target for prevention and treatment of human obesity. Transient receptor potential vanilloid 2 (TRPV2), a Ca2+‐permeable non‐selective cation channel, plays vital roles in the regulation of various cellular functions. Here, we show that TRPV2 is expressed in brown adipocytes and that mRNA levels of thermogenic genes are reduced in both cultured brown adipocytes and BAT from TRPV2 knockout (TRPV2KO) mice. The induction of thermogenic genes in response to β‐adrenergic receptor stimulation is also decreased in TRPV2KO brown adipocytes and suppressed by reduced intracellular Ca2+ concentrations in wild‐type brown adipocytes. In addition, TRPV2KO mice have more white adipose tissue and larger brown adipocytes and show cold intolerance, and lower BAT temperature increases in response to β‐adrenergic receptor stimulation. Furthermore, TRPV2KO mice have increased body weight and fat upon high‐fat‐diet treatment. Based on these findings, we conclude that TRPV2 has a role in BAT thermogenesis and could be a target for human obesity therapy.  相似文献   

9.
Brown adipose tissue (BAT) has received enormous scientific and lay attention in the recent past as its thermogenic, energy‐consuming capacities represent prime candidates for therapeutic interventions toward obesity, glucose intolerance, and diabetes even in humans. The overall positive effects of BAT activation and recruitment on systemic energy homeostasis have been largely attributed to the inherent ability of brown adipocytes to combust fatty acid and glucose energy substrates through mitochondrial uncoupling, driven by the unique expression of uncoupling protein 1 (UCP1). Two recent reports by Boutant et al and Mahdaviani et al now identify the GTPase mitofusin (Mfn) 2 as a key determinant of BAT thermogenic function that is largely independent of its previously described role in mitochondrial fusion [1,2].  相似文献   

10.
11.
Active brown adipose tissue (BAT) has, since it rediscovery in adult humans in 2009, received much attention for its ability to increase energy expenditure when activated. By means of mitochondrial uncoupling activity BAT's main function is to produce heat instead of storing energy such as in white adipose tissue (WAT). Therefore, BAT is considered a new potential target to treat obesity and the metabolic syndrome. However, the contribution of this thermogenic tissue is still a matter of debate among researchers.The aim of this review is to give an overview of the differences between classical brown adipocytes and inducible beige adipocytes in humans, and the potential activators of BAT in humans. Furthermore newly described genetic markers for identification of these two types of brown adipocytes are examined. Finally, the potential of the current measurement techniques, and the contribution of BAT activity to whole body energy expenditure are discussed.  相似文献   

12.
Brown adipose tissue (BAT) plays a key role in energy expenditure through its specialized thermogenic function. Therefore, BAT activation may help prevent and/or treat obesity. Interestingly, subcutaneous white adipose tissue (WAT) also has the ability to differentiate into brown-like adipocytes and may potentially contribute to increased thermogenesis. We have previously reported that eicosapentaenoic acid (EPA) reduces high-fat (HF)-diet-induced obesity and insulin resistance in mice. Whether BAT mediates some of these beneficial effects of EPA has not been determined. We hypothesized that EPA activates BAT thermogenic program, contributing to its antiobesity effects. BAT and WAT were harvested from B6 male mice fed HF diets supplemented with or without EPA. HIB 1B clonal brown adipocytes treated with or without EPA were also used. Gene and protein expressions were measured in adipose tissues and H1B 1B cells by quantitative polymerase chain reaction and immunoblotting, respectively. Our results show that BAT from EPA-supplemented mice expressed significantly higher levels of thermogenic genes such as PRDM16 and PGC1α and higher levels of uncoupling protein 1 compared to HF-fed mice. By contrast, both WATs (subcutaneous and visceral) had undetectable levels of these markers with no up regulation by EPA. HIB 1B cells treated with EPA showed significantly higher mRNA expression of PGC1α and SIRT2. EPA treatment significantly increased maximum oxidative and peak glycolytic metabolism in H1B 1B cells. Our results demonstrate a novel and promising role for EPA in preventing obesity via activation of BAT, adding to its known beneficial anti-inflammatory effects.  相似文献   

13.
In this study, we report that lipocalin 2 (Lcn2), a recently characterized adipokine/cytokine, is a novel regulator of brown adipose tissue (BAT) activation by modulating the adrenergic independent p38 MAPK-PGC-1α-UCP1 pathway. Global Lcn2 knock-out (Lcn2−/−) mice have defective BAT thermogenic activation caused by cold stimulation and decreased BAT activity under high fat diet-induced obesity. Nevertheless, Lcn2−/− mice maintain normal sympathetic nervous system activation as evidenced by normal catecholamine release and lipolytic activity in response to cold stimulation. Further studies showed that Lcn2 deficiency impairs peroxisomal and mitochondrial oxidation of lipids and attenuates cold-induced Pgc1a and Ucp1 expression and p38 MAPK phosphorylation in BAT. Moreover, in vitro studies showed that Lcn2 deficiency reduces the thermogenic activity of brown adipocytes. Lcn2−/− differentiated brown adipocytes have significantly decreased expression levels of brown fat markers, decreased p38 MAPK phosphorylation, and decreased mitochondrial oxidation capacity. However, Lcn2−/− brown adipocytes have normal norepinephrine-stimulated p38 MAPK and hormone-sensitive lipase phosphorylation and Pgc1a and Ucp1 expression, suggesting an intact β-adrenergic signaling activation. More intriguingly, recombinant Lcn2 was able to significantly stimulate p38 MAPK phosphorylation in brown adipocytes. Activating peroxisome proliferator-activated receptor γ, a downstream effector of PGC-1α, by thiazolidinedione administration fully reverses the BAT function of Lcn2−/− mice. Our findings provide evidence for the novel role Lcn2 plays in oxidative metabolism and BAT activation via an adrenergic independent mechanism.  相似文献   

14.
15.
The discovery of metabolically active brown adipose tissue (BAT) in adult humans has fuelled the research of diverse aspects of this previously neglected tissue. BAT is solely present in mammals and its clearest physiological role is non‐shivering thermogenesis, owing to the capacity of brown adipocytes to dissipate metabolic energy as heat. Recently, a number of other possible functions have been proposed, including direct regulation of glucose and lipid homeostasis and the secretion of a number of factors with diverse regulatory actions. Herein, we review recent advances in general biological knowledge of BAT and discuss the possible implications of this tissue in human metabolic health. In particular, we confront the claimed thermogenic potential of BAT for human energy balance and body mass regulation, mostly based on animal studies, with the most recent quantifications of human BAT.  相似文献   

16.
17.

Background

The lactogenic hormones prolactin (PRL) and placental lactogens (PL) play central roles in reproduction and mammary development. Their actions are mediated via binding to PRL receptor (PRLR), highly expressed in brown adipose tissue (BAT), yet their impact on adipocyte function and metabolism remains unclear.

Methodology/Principal Findings

PRLR knockout (KO) newborn mice were phenotypically characterized in terms of thermoregulation and their BAT differentiation assayed for gene expression studies. Derived brown preadipocyte cell lines were established to evaluate the molecular mechanisms involved in PRL signaling on BAT function. Here, we report that newborn mice lacking PRLR have hypotrophic BAT depots that express low levels of adipocyte nuclear receptor PPARγ2, its coactivator PGC-1α, uncoupling protein 1 (UCP1) and the β3 adrenoceptor, reducing mouse viability during cold challenge. Immortalized PRLR KO preadipocytes fail to undergo differentiation into mature adipocytes, a defect reversed by reintroduction of PRLR. That the effects of the lactogens in BAT are at least partly mediated by Insulin-like Growth Factor-2 (IGF-2) is supported by: i) a striking reduction in BAT IGF-2 expression in PRLR KO mice and in PRLR-deficient preadipocytes; ii) induction of cellular IGF-2 expression by PRL through JAK2/STAT5 pathway activation; and iii) reversal of defective differentiation in PRLR KO cells by exogenous IGF-2.

Conclusions

Our findings demonstrate that the lactogens act in concert with IGF-2 to control brown adipocyte differentiation and growth. Given the prominent role of brown adipose tissue during the perinatal period, our results identified prolactin receptor signaling as a major player and a potential therapeutic target in protecting newborn mammals against hypothermia.  相似文献   

18.
Differentiation and biogenesis of mitochondria in brown adipose tissue (BAT) was studied in situ and in cell culture by Western blotting, enzyme activity measurements, [35S]methionine incorporation and immunofluorescence microscopy. In different rodent species the perinatal development of BAT thermogenic function resulted from the formation of thermogenic mitochondria which replaced the preexisting nonthermogenic mitochondria. Their biogenesis was characterized by the sudden appearance and rapid increase of the uncoupling protein (UCP), increase of cytochrome oxidase (COX) and decrease of H(+)-ATPase. In primary cell culture, differentiation of precursor cells from mouse BAT to typical multilocular adipocytes was accompanied by increasing content of COX and H(+)-ATPase. A selective synthesis of UCP was induced by activation of beta-adrenergic receptors or by elevated levels of cellular cAMP. UCP was quantitatively incorporated into mitochondria and within 24 h after stimulation reached near physiological concentration. Both in situ and in cell culture, the conditions enabling the expression of UCP gene were accompanied by activation of intracellular thyroxine 5'-deiodinase.  相似文献   

19.
20.
We investigated the effect of the specific beta(3)-adrenergic receptor agonist CL 316,243 (CL) on proliferation and functional differentiation of the Siberian hamster (Phodopus sungorus) white and brown preadipocytes in primary cell culture. Proliferation of both white and brown preadipocytes was stimulated by a general beta-adrenergic agonist (isoproterenol) but not by CL. Lipolysis of differentiated white and brown adipocytes was stimulated similarly by CL with maximum effect at 10 nM. Thermogenic properties of cells were assessed by immunodetection of UCP-1, the brown adipocyte specific uncoupling protein, and measurement of cytochrome c oxidase (COx) activity as an index of mitochondrial capacity. UCP-1 content was largely increased by CL in BAT but not in WAT cultures. Basal UCP-2 mRNA levels were similar in WAT and BAT cultures and increased by both CL and isoproterenol. COx activity of BAT cultures was twice as high as that of WAT cultures but in neither cell culture system could it be increased by beta-adrenergic stimulation. We suggest (i) that white and brown preadipocyte proliferation is increased in vitro via beta1 or beta(2), but not beta(3)-adrenergic pathways, (ii) that white and brown preadipocytes represent different cell types, and (iii) that in vitro beta-adrenergic stimulation it is not sufficient to induce complete thermogenic adaptation of brown adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号