首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DNMT2 enzyme methylates tRNA-Asp at position C38. Because there is no tRNA-Dnmt2 cocrystal structure available, we have mapped the tRNA binding site of DNMT2 by systematically mutating surface-exposed lysine and arginine residues to alanine and studying the tRNA methylation activity and binding of the corresponding variants. After mutating 20 lysine and arginine residues, we identified eight of them that caused large (>4-fold) decreases in catalytic activity. These residues cluster within and next to a surface cleft in the protein, which is large enough to accommodate the tRNA anticodon loop and stem. This cleft is located next to the binding pocket for the cofactor S-adenosyl-l-methionine, and the catalytic residues of DNMT2 are positioned at its walls or bottom. Many of the variants with strongly reduced catalytic activity showed only a weak loss of tRNA binding or even bound better to tRNA than wild-type DNMT2, which suggests that the enzyme induces some conformational changes in the tRNA in the transition state of the methyl group transfer reaction. Manual placement of tRNA into the structure suggests that DNMT2 mainly interacts with the anticodon stem and loop.  相似文献   

2.
A protein affinity labeling derivative of E. coli tRNAfMet has been prepared which carries an average of one reactive side chain per molecule, distributed over four structural regions. Each side chain contains a disulfide bond capable of reaction with cysteine residues and an N-hydroxysuccinimide ester group capable of coupling to lysine epsilon-amino groups in proteins. Reaction of the modified tRNA with E. coli methionyl-tRNA synthetase leads to crosslinking only by reaction with lysine residues in the protein. Examination of the tRNA present in the crosslinked complex reveals that the enzyme is coupled to side chains attached to the 5' terminal nucleotide, the dihydrouridine loop, the anticodon and the CCA sequence. Digestion of the crosslinked enzyme with trypsin followed by peptide mapping reveals that the major crosslinking reactions occur at four specific lysine residues, with minor reaction at two additional sites. Native methionyl-tRNA synthetase contains 90 lysine residues, 45 in unique sequences of the dimeric alpha 2 enzyme. Crosslinking of the protein to different regions in tRNAfMet thus occurs with the high degree of selectivity necessary for use in determining the peptide sequences which are near specific nucleotide sequences of tRNA bound to the protein.  相似文献   

3.
4.
We have been interested in whether three proteins that share a five-stranded beta-barrel "OB-fold" structural motif but no detectable sequence homology fold by similar mechanisms. Here we describe native-state hydrogen exchange experiments as a function of urea for SN (staphylococcal nuclease), a protein with an OB-fold motif and additional nonconserved elements of structure. The regions of structure with the largest stability and unfolding cooperativity are contained within the conserved OB-fold portion of SN, consistent with previous results for CspA (cold shock protein A) and LysN (anticodon binding domain of lysyl tRNA synthetase). The OB-fold also has the subset of residues with the slowest unfolding rates in the three proteins, as determined by hydrogen exchange experiments in the EX1 limit. Although the protein folding hierarchy is maintained at the level of supersecondary structure, it is not evident for individual residues as might be expected if folding depended on obligatory nucleation sites. Rather, the site-specific stability profiles appear to be linked to sequence hydrophobicity and to the density of long-range contacts at each site in the three-dimensional structures of the proteins. We discuss the implications of the correlation between stability to unfolding and conservation of structure for mechanisms of protein structure evolution.  相似文献   

5.
6.
Methionyl-adenylate, the mixed carboxylic-phosphoric acid anhydride synthesized by methionyl-tRNA synthetase (MetRS) is capable of reacting with this synthetase or other proteins, by forming an isopeptide bond with the epsilon-NH2 group of lysyl residues. It is proposed that the mechanism for the in vitro methionylation of MetRS might be accounted for by the in situ covalent reaction of methionyl-adenylate with lysine side chains surrounding the active center of the enzyme, as well as by exchange of the label between donor and acceptor proteins. Following the incorporation of 7.0 +/- 0.5 mol of methionine per mol of a monomeric truncated methionyl-tRNA synthetase species, the enzymic activities of [32P]PPi-ATP isotopic exchange and tRNA(Met) aminoacylation were lowered by 75% and more than 90%, respectively. The addition of tRNA(Met) protected the enzyme against inactivation and methionine incorporation. Matrix-assisted laser desorption-ionization mass spectrometry designated lysines-114, -132, -142 (or -147), -270, -282, -335, -362, -402, -439, -465, and -547 of truncated methionyl-tRNA synthetase as the target residues for covalent binding of methionine. These lysyl residues are distributed at the surface of the enzyme between three regions [114-150], [270-362], and [402-465], all of which were previously shown to be involved in catalysis or to be located in the binding sites of the three substrates, methionine, ATP, and tRNA.  相似文献   

7.
8.
Here, we report the first crystal structure of a photosynthetic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) complexed with NADP. The enzyme, purified from spinach chloroplasts, is constituted of a single type of subunit (A) arranged in homotetramers. It shows non-regulated NADP-dependent and NAD-dependent activities, with a preference for NADP. The structure has been solved to 3.0 A resolution by molecular replacement. The crystals belong to space group C222 with three monomers in the asymmetric unit. One of the three monomers generates a tetramer using the space group 222 point symmetry and a very similar tetramer is generated by the other two monomers, related by a non-crystallographic symmetry, using a crystallographic 2-fold axis.The protein reveals a large structural homology with known GAPDHs both in the cofactor-binding domain and in regions of the catalytic domain. Like all other GAPDHs investigated so far, the A(4)-GAPDH belongs to the Rossmann fold family of dehydrogenases. However, unlike most dehydrogenases of this family, the adenosine 2'-phosphate group of NADP does not form a salt-bridge with any positively charged residue in its surroundings, being instead set in place by hydrogen bonds with a threonine residue belonging to the Rossmann fold and a serine residue located in the S-loop of a symmetry-related monomer. While increasing our knowledge of an important photosynthetic enzyme, these results contribute to a general understanding of NADP versus NAD recognition in pyridine nucleotide-dependent enzymes.Although the overall structure of A(4)-GAPDH is similar to that of the cytosolic GAPDH from bacteria and eukaryotes, the chloroplast tetramer is peculiar, in that it can actually be considered a dimer of dimers, since monomers are bound in pairs by a disulphide bridge formed across Cys200 residues. This bridge is not found in other cytosolic or chloroplast GAPDHs from animals, bacteria, or plants other than spinach.  相似文献   

9.
Trbp111 is a 111 amino acid Aquifex aeolicus structure-specific tRNA-binding protein that has homologous counterparts distributed throughout evolution. A dimer is the functional unit for binding a single tRNA. Here we report the 3D structures of the A.aeolicus protein and its Escherichia coli homolog at resolutions of 2.50 and 1.87 A, respectively. The structure shows a symmetrical dimer of two core domains and a central dimerization domain where the N- and C-terminal regions of Trbp111 form an extensive dimer interface. The core of the monomer is a classical oligonucleotide/oligosaccharide-binding (OB) fold with a five-stranded ss-barrel and a small capping helix. This structure is similar to that seen in the anticodon-binding domain of three class II tRNA synthetases and several other proteins. Mutational analysis identified sites important for interactions with tRNA. These residues line the inner surfaces of two clefts formed between the ss-barrel of each monomer and the dimer interface. The results are consistent with a proposed model for asymmetrical docking of the convex side of tRNA to the dimer.  相似文献   

10.
Evilia C  Hou YM 《Biochemistry》2006,45(22):6835-6845
Enzymes of halophilic organisms contain unusual peptide motifs that are absent from their mesophilic counterparts. The functions of these halophile-specific peptides are largely unknown. Here we have identified an unusual peptide that is unique to several halophile archaeal cysteinyl-tRNA synthetases (CysRS), which catalyze attachment of cysteine to tRNA(Cys) to generate the essential cysteinyl-tRNA(Cys) required for protein synthesis. This peptide is located near the active site in the catalytic domain and is highly enriched with acidic residues. In the CysRS of the extreme halophile Halobacterium species NRC-1, deletion of the peptide reduces the catalytic efficiency of aminoacylation by a factor of 100 that largely results from a defect in kcat, rather than the Km for tRNA(Cys). In contrast, maintaining the peptide length but substituting acidic residues in the peptide with neutral or basic residues has no major deleterious effect, suggesting that the acidity of the peptide is not important for the kcat of tRNA aminoacylation. Analysis of general protein structure under physiological high salt concentrations, by circular dichroism and by fluorescence titration of tRNA binding, indicates little change due to deletion of the peptide. However, the presence of the peptide confers tolerance to lower salt levels, and fluorescence analysis in 30% sucrose reveals instability of the enzyme without the peptide. We suggest that the stability associated with the peptide can be used to promote proper enzyme conformation transitions in various stages of tRNA aminoacylation that are associated with catalysis. The acquisition of the peptide by the halophilic CysRS suggests an enzyme adaptation to high salinity.  相似文献   

11.
Peptidyl-tRNA hydrolase cleaves the ester bond between tRNA and the attached peptide in peptidyl-tRNA in order to avoid the toxicity resulting from its accumulation and to free the tRNA available for further rounds in protein synthesis. The structure of the enzyme from Mycobacterium tuberculosis has been determined in three crystal forms. This structure and the structure of the enzyme from Escherichia coli in its crystal differ substantially on account of the binding of the C terminus of the E. coli enzyme to the peptide-binding site of a neighboring molecule in the crystal. A detailed examination of this difference led to an elucidation of the plasticity of the binding site of the enzyme. The peptide-binding site of the enzyme is a cleft between the body of the molecule and a polypeptide stretch involving a loop and a helix. This stretch is in the open conformation when the enzyme is in the free state as in the crystals of M. tuberculosis peptidyl-tRNA hydrolase. Furthermore, there is no physical continuity between the tRNA and the peptide-binding sites. The molecule in the E. coli crystal mimics the peptide-bound enzyme molecule. The peptide stretch referred to earlier now closes on the bound peptide. Concurrently, a channel connecting the tRNA and the peptide-binding site opens primarily through the concerted movement of two residues. Thus, the crystal structure of M. tuberculosis peptidyl-tRNA hydrolase when compared with the crystal structure of the E. coli enzyme, leads to a model of structural changes associated with enzyme action on the basis of the plasticity of the molecule.  相似文献   

12.
Delta-crystallin, the major soluble protein component of avian and reptilian eye lenses, is highly homologous to the urea cycle enzyme, argininosuccinate lyase (ASL). In duck lenses, there are two highly homologous delta crystallins, delta I and delta II, that are 94% identical in amino acid sequence. While delta II crystallin has been shown to exhibit ASL activity in vitro, delta I is enzymatically inactive. The X-ray structure of a His to Asn mutant of duck delta II crystallin (H162N) with bound argininosuccinate has been determined to 2.3 A resolution using the molecular replacement technique. The overall fold of the protein is similar to other members of the superfamily to which this protein belongs, with the active site located in a cleft formed by three different monomers in the tetramer. The active site of the H162N mutant structure reveals that the side chain of Glu 296 has a different orientation relative to the homologous residue in the H91N mutant structure [Abu-Abed et al. (1997) Biochemistry 36, 14012-14022]. This shift results in the loss of the hydrogen bond between His 162 and Glu 296 seen in the H91N and turkey delta I crystallin structures; this H-bond is believed to be crucial for the catalytic mechanism of ASL/delta II crystallin. Argininosuccinate was found to be bound to residues in each of the three monomers that form the active site. The fumarate moiety is oriented toward active site residues His 162 and Glu 296 and other residues that are part of two of the three highly conserved regions of amino acid sequence in the superfamily, while the arginine moiety of the substrate is oriented toward residues which belong to either domain 1 or domain 2. The analysis of the structure reveals that significant conformational changes occur on substrate binding. The comparison of this structure with the inactive turkey delta I crystallin reveals that the conformation of domain 1 is crucial for substrate affinity and that the delta I protein is almost certainly inactive because it can no longer bind the substrate.  相似文献   

13.
14.
The extent of tRNA recognition at the level of binding by Thermus thermophilus phenylalanyl-tRNA synthetase (PheRS), one of the most complex class II synthetases, has been studied by independent measurements of the enzyme association with wild-type and mutant tRNA(Phe)s as well as with non-cognate tRNAs. The data obtained, combined with kinetic data on aminoacylation, clearly show that PheRS exhibits more tRNA selectivity at the level of binding than at the level of catalysis. The anticodon nucleotides involved in base-specific interactions with the enzyme prevail both in the initial binding recognition and in favouring aminoacylation catalysis. Tertiary nucleotides of base pair G19-C56 and base triple U45-G10-C25 contribute primarily to stabilization of the correctly folded tRNA(Phe) structure, which is important for binding. Other nucleotides of the central core (U20, U16 and of the A26-G44 tertiary base pair) are involved in conformational adjustment of the tRNA upon its interaction with the enzyme. The specificity of nucleotide A73, mutation of which slightly reduces the catalytic rate of aminoacylation, is not displayed at the binding step. A few backbone-mediated contacts of PheRS with the acceptor and anticodon stems revealed in the crystal structure do not contribute to tRNA(Phe) discrimination, their role being limited to stabilization of the complex. The highest affinity of T. thermophilus PheRS for cognate tRNA, observed for synthetase-tRNA complexes, results in 100-3000-fold binding discrimination against non-cognate tRNAs.  相似文献   

15.
Goto-Ito S  Ito T  Ishii R  Muto Y  Bessho Y  Yokoyama S 《Proteins》2008,72(4):1274-1289
Methylation of the N1 atom of guanosine at position 37 in tRNA, the position 3'-adjacent to the anticodon, generates the modified nucleoside m(1)G37. In archaea and eukaryotes, m(1)G37 synthesis is catalyzed by tRNA(m(1)G37)methyltransferase (archaeal or eukaryotic Trm5, a/eTrm5). Here we report the crystal structure of archaeal Trm5 (aTrm5) from Methanocaldococcus jannaschii (formerly known as Methanococcus jannaschii) in complex with the methyl donor analogue at 2.2 A resolution. The crystal structure revealed that the entire protein is composed of three structural domains, D1, D2, and D3. In the a/eTrm5 primary structures, D2 and D3 are highly conserved, while D1 is not conserved. The D3 structure is the Rossmann fold, which is the hallmark of the canonical class-I methyltransferases. The a/eTrm5-defining domain, D2, exhibits structural similarity to some class-I methyltransferases. In contrast, a DALI search with the D1 structure yielded no structural homologues. In the crystal structure, D3 contacts both D1 and D2. The residues involved in the D1:D3 interactions are not conserved, while those participating in the D2:D3 interactions are well conserved. D1 and D2 do not contact each other, and the linker between them is disordered. aTrm5 fragments corresponding to the D1 and D2-D3 regions were prepared in a soluble form. The NMR analysis of the D1 fragment revealed that D1 is well folded by itself, and it did not interact with either the D2-D3 fragment or the tRNA. The NMR analysis of the D2-D3 fragment revealed that it is well folded, independently of D1, and that it interacts with tRNA. Furthermore, the D2-D3 fragment was as active as the full-length enzyme for tRNA methylation. The positive charges on the surface of D2-D3 may be involved in tRNA binding. Therefore, these findings suggest that the interaction between D1 and D3 is not persistent, and that the D2-D3 region plays the major role in tRNA methylation.  相似文献   

16.
Pyrrolysyl-tRNA synthetase (PylRS) is an atypical enzyme responsible for charging tRNA(Pyl) with pyrrolysine, despite lacking precise tRNA anticodon recognition. This dimeric protein exhibits allosteric regulation of function, like any other tRNA synthetases. In this study we examine the paths of allosteric communication at the atomic level, through energy-weighted networks of Desulfitobacterium hafniense PylRS (DhPylRS) and its complexes with tRNA(Pyl) and activated pyrrolysine. We performed molecular dynamics simulations of the structures of these complexes to obtain an ensemble conformation-population perspective. Weighted graph parameters relevant to identifying key players and ties in the context of social networks such as edge/node betweenness, closeness index, and the concept of funneling are explored in identifying key residues and interactions leading to shortest paths of communication in the structure networks of DhPylRS. Further, the changes in the status of important residues and connections and the costs of communication due to ligand induced perturbations are evaluated. The optimal, suboptimal, and preexisting paths are also investigated. Many of these parameters have exhibited an enhanced asymmetry between the two subunits of the dimeric protein, especially in the pretransfer complex, leading us to conclude that encoding of function goes beyond the sequence/structure of proteins. The local and global perturbations mediated by appropriate ligands and their influence on the equilibrium ensemble of conformations also have a significant role to play in the functioning of proteins. Taking a comprehensive view of these observations, we propose that the origin of many functional aspects (allostery and half-sites reactivity in the case of DhPylRS) lies in subtle rearrangements of interactions and dynamics at a global level.  相似文献   

17.
Yeast methionyl-tRNA synthetase has a long N-terminal extension fused to the mononucleotide binding fold that occurs at the N-terminal end of the homologous E coli enzyme. We examined the contribution of this polypeptide region to the activity of the enzyme by creating several internal deletions in MESI which preserve the correct reading frame. The results show that 185 amino acids are dispensable for activity and stability. Removal of the next 5 residues affects the activity of the enzyme. The effect is more pronounced on the tRNA amino-acylation steps than on the adenylate formation step. The Km for ATP and methionine are unaltered, indicating that the global structure of the enzyme is maintained. The Km for tRNA increased slightly by a factor of 3, which indicates that the positioning of the tRNA on the surface of the molecule is not affected. There is, however, a great effect on the Vmax of the enzyme. Examination of the 3-D structure of the homologous E coli methionyl-tRNA synthetase indicates that the amino acid region preceding the mononucleotide binding fold does not participate directly in the catalytic cleft. It could, however, act at a distance by propagating a mutational alteration of the catalytic residues. The tRNA(Met) anticodon binding region of the E coli enzyme has recently been characterized. By mutagenesis of the topologically equivalent region in the yeast enzyme, we could identify residues that alter specifically the aminoacylation of the tRNA. Leu 658 provides a van der Waals contact that is critical for the recognition of the yeast tRNA.  相似文献   

18.
The catalytic subunit of aspartate transcarbamoylase from Escherichia coli reacts readily with 2,4,6-trinitrobenzenesulfonate, resulting in the loss of enzymatic activity. Substrates and substrate analogs protect the enzyme in a competitive manner, indicating that the loss of activity is due to modification of active-site residues. This conclusion was confirmed by fractionating tryptic digests of the modified protein followed by the identification of active-site lysines 83 and 84 as the modified residues. When three trinitrophenyl groups are incorporated per catalytic trimer, 70% of the activity is lost. The modified protein retains the sedimentation velocity and electrophoretic properties of the native catalytic subunit and can associate with regulatory subunit to form a holoenzyme-like molecule. The trinitrophenylated catalytic trimers have two strong absorption bands at 345 and 420 nm which serve as sensitive spectral probes in difference-spectroscopy experiments. Results from such experiments show that 1) the modified trimeric enzyme binds active-site ligands; 2) dissociation of the trimer into compact, highly structured monomers gives a spectral response distinguishable from that observed when the chains are completely unfolded; and 3) even though dissociation of the trimers to folded monomers causes the complete loss of enzyme activity, the resulting monomers still retain the ability to bind the bisubstrate analog N-(phosphonacetyl)-L-aspartate. These results indicate that the active site must be at least partially formed in the absence of any quaternary structure.  相似文献   

19.
Bacterial tyrosyl-tRNA synthetases occur in two large subfamilies, TyrRS and TyrRZ, that possess about 25% amino acid identity. Their amino-terminal region, the active site domain, is more conserved (>36% identity). The carboxy-terminal segment of these enzymes includes the tRNA binding domain and contains only few conserved residues. Replacement of three of these residues in Acidithiobacillus ferrooxidans TyrRZ revealed that S356 and K395 play roles in tRNA binding, while H306, a residue at the junction of the catalytic and tRNA binding domains, stabilizes the Tyr-AMP:TyrRZ complex. The replacement data suggest that conserved amino acids in A. ferrooxidans TyrRZ and Bacillus stearothermophilus TyrRS play equivalent roles in enzyme function.  相似文献   

20.
This paper describes the nucleotide sequences of three spontaneous mutations in a suppressor gene of phage T4 tRNA(Ser). They are duplications of the anticodon and variable arms of the tRNA(Ser) molecule. One is a 34-nucleotide direct repeat of the wild-type sequence. The remaining two have reciprocal structures, with each containing 35-nucleotide inverted and direct repeats of the wild-type sequence. One of the latter mutations is frequent and was present in multiple isolates. All three duplications are unstable, and several revertants of each were sequenced. Most of the revertants had the wild-type nucleotide sequence; however, one had imprecisely removed the duplicated residues, leaving four new nucleotides compared to the wild-type sequence. These mutations represent significant genetic events with regard to their high rates and their gross structural alterations. As to their origin, the mutations can be described as the end-products of endonuclease cleavage of DNA at regions of potential secondary structure and subsequent DNA synthesis. The secondary structure contains four base-paired stems that emerge from duplex DNA. These stems encode the anticodon and variable arm regions of the tRNA(Ser) molecule. The cleavage sites mimic the known substrate of T4 endonuclease VII, an enzyme previously noted for its ability to resolve Holliday-like DNA intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号