首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eukaryotic cells represent an intricate collaboration between multiple genomes, even down to the level of multi‐subunit complexes in mitochondria and plastids. One such complex in plants is the caseinolytic protease (Clp), which plays an essential role in plastid protein turnover. The proteolytic core of Clp comprises subunits from one plastid‐encoded gene ( clpP1 ) and multiple nuclear genes. The clpP1 gene is highly conserved across most green plants, but it is by far the fastest evolving plastid‐encoded gene in some angiosperms. To better understand these extreme and mysterious patterns of divergence, we investigated the history of clpP1 molecular evolution across green plants by extracting sequences from 988 published plastid genomes. We find that clpP1 has undergone remarkably frequent bouts of accelerated sequence evolution and architectural changes (e.g. a loss of introns and RNA ‐editing sites) within seed plants. Although clpP1 is often assumed to be a pseudogene in such cases, multiple lines of evidence suggest that this is rarely true. We applied comparative native gel electrophoresis of chloroplast protein complexes followed by protein mass spectrometry in two species within the angiosperm genus Silene , which has highly elevated and heterogeneous rates of clpP1 evolution. We confirmed that clpP1 is expressed as a stable protein and forms oligomeric complexes with the nuclear‐encoded Clp subunits, even in one of the most divergent Silene species. Additionally, there is a tight correlation between amino acid substitution rates in clpP1 and the nuclear‐encoded Clp subunits across a broad sampling of angiosperms, suggesting continuing selection on interactions within this complex.  相似文献   

2.
Plastid genomes contain a conserved set of genes encoding components of the translational apparatus. While knockout of plastid translation is lethal in tobacco (Nicotiana tabacum), it is not known whether each individual component of the plastid ribosome is essential. Here, we used reverse genetics to test whether several plastid genome–encoded ribosomal proteins are essential. We found that, while ribosomal proteins Rps2, Rps4, and Rpl20 are essential for cell survival, knockout of the gene encoding ribosomal protein Rpl33 did not affect plant viability and growth under standard conditions. However, when plants were exposed to low temperature stress, recovery of Rpl33 knockout plants was severely compromised, indicating that Rpl33 is required for sustaining sufficient plastid translation capacity in the cold. These findings uncover an important role for plastid translation in plant tolerance to chilling stress.  相似文献   

3.
Angiosperm plastid genomes typically encode approximately 80 polypeptides, mainly specifying plastid-localized functions such as photosynthesis and gene expression. Plastid protein synthesis and expression of the plastid clpP1 gene are essential for development in tobacco, indicating the presence of one or more plastid genes whose influence extends beyond the plastid compartment. The plastid accD gene encodes the beta-carboxyl transferase subunit of acetyl-CoA carboxylase and is present in the plastids of most flowering plants, including non-photosynthetic parasitic plants. We replaced the wild-type accD gene with an aadA-disrupted mutant allele using homologous recombination. Persistent heteroplasmy in the presence of antibiotics indicated that the wild-type accD allele was essential. The phenotype of the accD knockout was revealed in plastid transformants grown in the absence of antibiotics. Leaves contained pale green sectors and lacked part or all of the leaf lamina due to arrested division or loss of cells. Abnormal structures were present in plastids found in mutant plants, indicating that accD might be required to maintain the plastid compartment. Loss of the plastid compartment would be expected to be lethal. These results provide genetic evidence showing the essential role of plastid ACCase in the pathway leading to the synthesis of products required for the extra-plastidic processes needed for leaf development.  相似文献   

4.
ClpP is a proteolytic subunit of the ATP-dependent Clp protease, which is found in chloroplasts in higher plants. Proteolytic subunits are encoded both by the chloroplast gene, clpP, and a nuclear multi gene family. We insertionally disrupted clpP by chloroplast transformation in tobacco. However, complete segregation was impossible, indicating that the chloroplast-encoded clpP gene has an indispensable function for cell survival. In the heteroplasmic clpP disruptant, the leaf surface was rough by clumping, and the lateral leaf expansion was irregularly arrested, which led to an asymmetric, slender leaf shape. Chloroplasts consisted of two populations: chloroplasts that were similar to the wild type, and small chloroplasts that emitted high chl fluorescence. Ultrastructural analysis of chloroplast development suggested that clpP disruption also induced swelling of the thylakoid lumen in the meristem plastids and inhibition of etioplast development in the dark. In mature leaves, thylakoid membranes of the smaller chloroplast population consisted exclusively of large stacks of tightly appressed membranes. These results indicate that chloroplast-encoded ClpP is involved in multiple processes of chloroplast development, including a housekeeping function that is indispensable for cell survival.  相似文献   

5.
Tobacco plastid ribosomal protein S18 is essential for cell survival   总被引:7,自引:0,他引:7  
Plastid genomes contain a conserved set of genes most of which are involved in either photosynthesis or gene expression. Among the ribosomal protein genes present in higher plant plastid genomes, rps18 is special in that it is absent from the plastid genomes of several non-green unicellular organisms, including Euglena longa and Toxoplasma gondii. Here we have tested whether the ribosomal protein S18 is required for translation by deleting the rps18 gene from the tobacco plastid genome. We report that, while deletion of the rps18 gene was readily obtained, no homoplasmic Δrps18 plants or leaf sectors could be isolated. Instead, segregation into homoplasmy led to severe defects in leaf development suggesting that the knockout of rps18 is lethal and the S18 protein is required for cell survival. Our data demonstrate that S18 is indispensable for plastid ribosome function in tobacco and support an essential role for plastid translation in plant development. Moreover, we demonstrate the occurrence of flip-flop recombination on short inverted repeat sequences which generates different isoforms of the transformed plastid genome that differ in the orientation a 70 kb segment in the large single-copy region. However, infrequent occurrence of flip-flop recombination and random segregation of plastid genomes result in the predominant presence of only one of the isoforms in many tissue samples. Implications for the interpretation of chloroplast transformation experiments and vector design are discussed.  相似文献   

6.
7.
8.
DNA polymerases play a central role in the process of DNA replication. Yet, the proteins in charge of the replication of plant organelle DNA have not been unambiguously identified. There are however many indications that a family of proteins homologous to bacterial DNA polymerase I (PolI) is implicated in organelle DNA replication. Here, we have isolated mutant lines of the PolIA and PolIB genes of Arabidopsis (Arabidopsis thaliana) to test this hypothesis. We find that mutation of both genes is lethal, thus confirming an essential and redundant role for these two proteins. However, the mutation of a single gene is sufficient to cause a reduction in the levels of DNA in both mitochondria and plastids. We also demonstrate that polIb, but not polIa mutant lines, are hypersensitive to ciprofloxacin, a small molecule that specifically induces DNA double-strand breaks in plant organelles, suggesting a function for PolIB in DNA repair. In agreement with this result, a cross between polIb and a plastid Whirly mutant line yielded plants with high levels of DNA rearrangements and severe growth defects, indicating impairments in plastid DNA repair pathways. Taken together, this work provides further evidences for the involvement of the plant PolI-like genes in organelle DNA replication and suggests an additional role for PolIB in DNA repair.  相似文献   

9.
Mitochondrial-plastid interdependence within the plant cell is presumed to be essential, but measurable demonstration of this intimate interaction is difficult. At the level of cellular metabolism, several biosynthetic pathways involve both mitochondrial- and plastid-localized steps. However, at an environmental response level, it is not clear how the two organelles intersect in programmed cellular responses. Here, we provide evidence, using genetic perturbation of the MutS Homolog1 (MSH1) nuclear gene in five plant species, that MSH1 functions within the mitochondrion and plastid to influence organellar genome behavior and plant growth patterns. The mitochondrial form of the protein participates in DNA recombination surveillance, with disruption of the gene resulting in enhanced mitochondrial genome recombination at numerous repeated sequences. The plastid-localized form of the protein interacts with the plastid genome and influences genome stability and plastid development, with its disruption leading to variegation of the plant. These developmental changes include altered patterns of nuclear gene expression. Consistency of plastid and mitochondrial response across both monocot and dicot species indicate that the dual-functioning nature of MSH1 is well conserved. Variegated tissues show changes in redox status together with enhanced plant survival and reproduction under photooxidative light conditions, evidence that the plastid changes triggered in this study comprise an adaptive response to naturally occurring light stress.  相似文献   

10.
Erixon P  Oxelman B 《PloS one》2008,3(1):e1386

Background

Synonymous DNA substitution rates in the plant chloroplast genome are generally relatively slow and lineage dependent. Non-synonymous rates are usually even slower due to purifying selection acting on the genes. Positive selection is expected to speed up non-synonymous substitution rates, whereas synonymous rates are expected to be unaffected. Until recently, positive selection has seldom been observed in chloroplast genes, and large-scale structural rearrangements leading to gene duplications are hitherto supposed to be rare.

Methodology/Principle Findings

We found high substitution rates in the exons of the plastid clpP1 gene in Oenothera (the Evening Primrose family) and three separate lineages in the tribe Sileneae (Caryophyllaceae, the Carnation family). Introns have been lost in some of the lineages, but where present, the intron sequences have substitution rates similar to those found in other introns of their genomes. The elevated substitution rates of clpP1 are associated with statistically significant whole-gene positive selection in three branches of the phylogeny. In two of the lineages we found multiple copies of the gene. Neighboring genes present in the duplicated fragments do not show signs of elevated substitution rates or positive selection. Although non-synonymous substitutions account for most of the increase in substitution rates, synonymous rates are also markedly elevated in some lineages. Whereas plant clpP1 genes experiencing negative (purifying) selection are characterized by having very conserved lengths, genes under positive selection often have large insertions of more or less repetitive amino acid sequence motifs.

Conclusions/Significance

We found positive selection of the clpP1 gene in various plant lineages to correlated with repeated duplication of the clpP1 gene and surrounding regions, repetitive amino acid sequences, and increase in synonymous substitution rates. The present study sheds light on the controversial issue of whether negative or positive selection is to be expected after gene duplications by providing evidence for the latter alternative. The observed increase in synonymous substitution rates in some of the lineages indicates that the detection of positive selection may be obscured under such circumstances. Future studies are required to explore the functional significance of the large inserted repeated amino acid motifs, as well as the possibility that synonymous substitution rates may be affected by positive selection.  相似文献   

11.
In contrast with the model Escherichia coli Clp protease, the ATP-dependent Clp protease in higher plants has a remarkably diverse proteolytic core consisting of multiple ClpP and ClpR paralogs, presumably arranged within a dual heptameric ring structure. Using antisense lines for the nucleus-encoded ClpP subunit, ClpP6, we show that the Arabidopsis thaliana Clp protease is vital for chloroplast development and function. Repression of ClpP6 produced a proportional decrease in the Clp proteolytic core, causing a chlorotic phenotype in young leaves that lessened upon maturity. Structural analysis of the proteolytic core revealed two distinct subcomplexes that likely correspond to single heptameric rings, one containing the ClpP1 and ClpR1-4 proteins, the other containing ClpP3-6. Proteomic analysis revealed several stromal proteins more abundant in clpP6 antisense lines, suggesting that some are substrates for the Clp protease. A proteolytic assay developed for intact chloroplasts identified potential substrates for the stromal Clp protease in higher plants, most of which were more abundant in young Arabidopsis leaves, consistent with the severity of the chlorotic phenotype observed in the clpP6 antisense lines. The identified substrates all function in more general housekeeping roles such as plastid protein synthesis, folding, and quality control, rather than in metabolic activities such as photosynthesis.  相似文献   

12.
13.
14.
15.
The chloroplast genomes of most higher plants contain two giant open reading frames designated ycf1 and ycf2. In tobacco, ycf1 potentially specifies a protein of 1901 amino acids. The putative gene product of the ycf2 reading frame is a protein of 2280 amino acids. In an attempt to determine the functions of ycf1 and ycf2, we have constructed several mutant alleles for targeted disruption and/or deletion of these two reading frames. The mutant alleles were introduced into the tobacco plastid genome by biolistic chloroplast transformation to replace the corresponding wild-type alleles by homologous recombination. Chloroplast transformants were obtained for all constructs and tested for their homoplastomic state. We report here that all transformed lines remained heteroplastomic even after repeated cycles of regeneration under high selective pressure. A balanced selection was observed in the presence of the antibiotic spectinomycin, resulting in maintenance of a fairly constant ratio of wild-type versus transformed genome copies. Upon removal of the antibiotic and therewith release of the selective pressure, sorting out towards the wild-type plastid genome occurred in all transplastomic lines. These findings suggest that ycf1 and ycf2 are functional genes and encode products that are essential for cell survival. The two reading frames are thus the first higher plant chloroplast genes identified as being indispensable.  相似文献   

16.
17.
Plastids are a diverse group of essential organelles in plants that include chloroplasts. The biogenesis and maintenance of these organelles relies on the import of thousands of nucleus-encoded proteins. The complexity of plastid structure has resulted in the evolution of at least four general import pathways that target proteins into and across the double membrane of the plastid envelope. Several of these pathways can be further divided into specialty pathways that mediate and regulate the import of specific classes of proteins. The co-ordination of import by these specialized pathways with changes in gene expression is critical for plastid and plant development. Moreover, protein import is acutely regulated in response to physiological and metabolic changes within the cell. In the present review we summarize the current knowledge of the mechanism of import via these pathways and highlight the regulatory mechanisms that integrate the plastid protein-trafficking pathways with the developmental and metabolic state of the plant.  相似文献   

18.
Five clpP genes have been identified in Streptomyces coelicolor. The clpP1 and clpP2 genes form one operon, the clpP3 and clpP4 genes form another, and clpP5 is monocistronic. Previous studies in Streptomyces lividans have shown that the first operon (clpP1 clpP2) is required for a normal cell cycle. Expression of the second operon (clpP3 clpP4) is activated by PopR if the first operon is nonfunctional. We show here that PopR degradation is primarily dependent on ClpP1 and ClpP2, but can also be achieved by ClpP3 and ClpP4. The carboxy-terminus of PopR plays an essential part in the degradation process. Indeed, replacement of the last two alanine residues by aspartate residues greatly increased PopR stability. These substitutions did not impair PopR activity and, as expected, accumulation of the mutant form of PopR led to very strong expression of the clpP3 clpP4 operon. Increased PopR levels led to delayed sporulation. The results obtained in this study support the notion of cross-processing between ClpP1 and ClpP2.  相似文献   

19.
20.
Retrograde signaling coordinates the expression of nuclear genes encoding organellar proteins with the metabolic and developmental state of the organelle. These plastid signals are essential not only for coordinating photosynthetic gene expression in both the nucleus and in the chloroplasts but also for mediating plant stress responses. The chloroplasts therefore act as sensors of environmental changes and complex networks of plastid signals coordinate cellular activities and assist the cell during plant stress responses. Recent work suggests that information from both cytosolic-signaling and plastid-signaling networks must be integrated for the plant cell to respond optimally to environmental stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号