首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dermis isolated adult stem (DIAS) cells, a subpopulation of dermis cells capable of chondrogenic differentiation in the presence of cartilage extracellular matrix, are a promising source of autologous cells for tissue engineering. Hypoxia, through known mechanisms, has profound effects on in vitro chondrogenesis of mesenchymal stem cells and could be used to improve the expansion and differentiation processes for DIAS cells. The objective of this study was to build upon the mechanistic knowledge of hypoxia and translate it to tissue engineering applications to enhance chondrogenic differentiation of DIAS cells through exposure to hypoxic conditions (5% O2) during expansion and/or differentiation. DIAS cells were isolated and expanded in hypoxic (5% O2) or normoxic (20% O2) conditions, then differentiated for 2 weeks in micromass culture on chondroitin sulfate-coated surfaces in both environments. Monolayer cells were examined for proliferation rate and colony forming efficiency. Micromasses were assessed for cellular, biochemical, and histological properties. Differentiation in hypoxic conditions following normoxic expansion increased per cell production of collagen type II 2.3 fold and glycosaminoglycans 1.2 fold relative to continuous normoxic culture (p<0.0001). Groups expanded in hypoxia produced 51% more collagen and 23% more GAGs than those expanded in normoxia (p<0.0001). Hypoxia also limited cell proliferation in monolayer and in 3D culture. Collectively, these data show hypoxic differentiation following normoxic expansion significantly enhances chondrogenic differentiation of DIAS cells, improving the potential utility of these cells for cartilage engineering.  相似文献   

2.
目的:为了分离和鉴定人退变椎间盘软骨终板干细胞。方法:收集因腰椎间盘退变性疾病行腰椎间盘摘除术并植骨融合的标本。在解剖显微镜下清理软骨终板组织,并消化软骨终板,提取软骨终板细胞。获得的软骨终板细胞经过琼脂糖三维筛选系统培养后,选取细胞克隆团并进行体外扩增,扩增后的细胞行流式细胞术检测干细胞标志物证实退变软骨终板中存在干细胞。结果:共聚焦免疫荧光提示退变椎间盘软骨终板组织中存在干细胞标志物STRO1、CD105、CD73、CD90阳性的细胞。经琼脂糖三维培养基筛选的CESCs在免疫表型上符合干细胞标准。结论:在人退变椎间盘的软骨终板中存在具有多向分化潜能的干细胞。  相似文献   

3.
目的:为了分离和鉴定人退变椎间盘软骨终板干细胞。方法:收集因腰椎间盘退变性疾病行腰椎间盘摘除术并植骨融合的标本。在解剖显微镜下清理软骨终板组织,并消化软骨终板,提取软骨终板细胞。获得的软骨终板细胞经过琼脂糖三维筛选系统培养后,选取细胞克隆团并进行体外扩增,扩增后的细胞行流式细胞术检测干细胞标志物证实退变软骨终板中存在干细胞。结果:共聚焦免疫荧光提示退变椎间盘软骨终板组织中存在干细胞标志物STR01、CDl05、CD73、CD90阳性的细胞。经琼脂糖三维培养基筛选的CESCs在免疫表型上符合干细胞标准。结论:在人退变椎间盘的软骨终板中存在具有多向分化潜能的干细胞。  相似文献   

4.
5.
While human mesenchymal stem cells (hMSCs), either in the bone marrow or in tumour microenvironment could be targeted by radiotherapy, their response is poorly understood. The oxic effects on radiosensitivity, cell cycle progression are largely unknown, and the radiation effects on hMSCs differentiation capacities remained unexplored. Here we analysed hMSCs viability and cell cycle progression in 21% O2 and 3% O2 conditions after medical X-rays irradiation. Differentiation towards osteogenesis and chondrogenesis after irradiation was evaluated through an analysis of differentiation specific genes. Finally, a 3D culture model in hypoxia was used to evaluate chondrogenesis in conditions mimicking the natural hMSCs microenvironment. The hMSCs radiosensitivity was not affected by O2 tension. A decreased number of cells in S phase and an increase in G2/M were observed in both O2 tensions after 16 hours but hMSCs released from the G2/M arrest and proliferated at day 7. Osteogenesis was increased after irradiation with an enhancement of mRNA expression of specific osteogenic genes (alkaline phosphatase, osteopontin). Osteoblastic differentiation was altered since matrix deposition was impaired with a decreased expression of collagen I, probably through an increase of its degradation by MMP-3. After induction in monolayers, chondrogenesis was altered after irradiation with an increase in COL1A1 and a decrease in both SOX9 and ACAN mRNA expression. After induction in a 3D culture in hypoxia, chondrogenesis was altered after irradiation with a decrease in COL2A1, ACAN and SOX9 mRNA amounts associated with a RUNX2 increase. Together with collagens I and II proteins decrease, associated to a MMP-13 expression increase, these data show a radiation-induced impairment of chondrogenesis. Finally, a radiation-induced impairment of both osteogenesis and chondrogenesis was characterised by a matrix composition alteration, through inhibition of synthesis and/or increased degradation. Alteration of osteogenesis and chondrogenesis in hMSCs could potentially explain bone/joints defects observed after radiotherapy.  相似文献   

6.

Background

Chondrogenesis is the complex process that leads to the establishment of cartilage and bone formation. Due to their ability to differentiate in vitro and mimic development, embryonic stem cells (ESCs) show great potential for investigating developmental processes. In this study, we used chondrogenic differentiation of ESCs as a model to analyze morphogenetic events during chondrogenesis.

Methodology/Principal Findings

ESCs were differentiated into the chondrocyte lineage, forming small cartilaginous aggregates in suspension. Differentiated ESCs showed that chondrogenesis was typically characterized by five overlapping stages. During the first stage, cell condensation and aggregate formation was observed. The second stage was characterized by differentiation into chondrocytes and fibril scaffold formation within spherical aggregates. Deposition of cartilaginous extracellular matrix and cartilage formation were hallmarks of the third stage. Apoptosis of chondrocytes, hypertrophy and/or degradation of cartilage occurred during the fourth stage. Finally, during the fifth stage, bone replacement with membranous calcified tissues took place.

Conclusions/Significance

We demonstrate that ESCs show the chondrogenic differentiation pathway from the pluripotent stem cell to terminal skeletogenesis through these five stages in vitro. During each stage, morphological changes acquired in preceding stages played an important role in further development as a scaffold or template in subsequent stages. The study of chondrogenesis via ESC differentiation may be informative to our further understanding of skeletal growth and regeneration.  相似文献   

7.
高杰  韩建伟  关凯  杨彤涛  李放 《生物磁学》2013,(30):5855-5859
目的:研究miRNAs在人骨髓来源间充质干细胞软骨诱导分化过程中的表达情况。方法:以从骨髓中分离培养的MSCs及软骨诱导培养后的细胞为实验对象,利用基因芯片检测miRNAs的表达情况,由SAM分析得到MSCs较其诱导培养细胞中差异表达的miRNAs,再进行生物信息学分析。结果:①分离培养出的MSCs经软骨诱导培养21天后,已具有软骨细胞特性,经芯片检测并SAM分析,软骨诱导培养的细胞较MSCs高表达的miRNAs有6个:hsa-miR-572、hsa-miR-130b、hsa-miR-193b、hsa-miR-28、hsa-miR-152、hsa-miR-560;软骨诱导培养的细胞较MSCs低表达的miRNAs有2个:hsa-miR-424、hsa-miR-122a。②利用TargetScan预测其靶基因,并行生物信息学分析,其中hsa-miR-130b、hsa-miR-193b、hsa-miR-152及hsa-miR-424的预测靶基因中多为参与细胞分化、骨形成、软骨形成及干细胞表型相关的基因。结论:hsa-miR-130b、hsa-miR-193b、hsa-miR-152和hsa-miR-424等对人骨髓来源间充质干细胞的软骨分化起着重要调控作用。  相似文献   

8.
The field of regenerative medicine offers hope for the development of a cell-based therapy for the repair of articular cartilage (AC). Yet, the greatest challenge in the use of stem cells for tissue repair, is understanding how the cells respond to stimuli and using that knowledge to direct cell fate. Novel methods that utilize stem cells in cartilage regeneration will require specific spatio-temporal controls of the biochemical and biophysical signaling environments. Current chondrogenic differentiation research focuses on the roles of biochemical stimuli like growth factors, hormones, and small molecules, and the role of the physical environment and mechanical stimuli, such as compression and shear stress, which likely act through mechanical receptors. Numerous signals are associated with chondrogenic-like activity of cells in different systems, however many variables for a controlled method still need to be optimized; e.g., spatial and temporal application of the stimuli, and time of transplantation of an engineered construct. Understanding the necessary microenvironmental signals for cell differentiation will advance cell therapy for cartilage repair.  相似文献   

9.
10.
11.
目的:观察自体富血小板纤维蛋白(platelet-rich fibrin,PRF)对体外培养的兔骨髓间充质干细胞(Bonemarrowmesenchymalstemcells,BMSCs)成软骨分化的影响。方法:兔心脏采血制备PRF,电镜观察其超微结构;分离培养兔BMSCs,取第3代细胞用于实验.分为PIuF组、阳性对照组、空白对照组。诱导培养21d后,对三组细胞分别进行形态学观察,成软骨鉴定染色(甲苯胺蓝、Ⅱ型胶原免疫组化染色),软骨相关基因表达检测(Ⅱ型胶原、Aggrecan、SOX9)。结果:PRF组和阳性对照组中BMSCs经诱导后,细胞由长梭形变为三角形、多角形、圆形;甲苯胺蓝、Ⅱ型胶原免疫组化染色均为阳性;Ⅱ型胶原、Aggrecan、SOX9基因表达水平均较高,两组比较无统计学差异,空白对照组未见相关分化现象。结论:PRF在体外可促进兔BMSCs成软骨分化,可作为自体生物材料,在构建组织工程软骨中发挥更好的作用。  相似文献   

12.
13.
随着组织工程学的发展,利用间充质干细胞(mesenchymal stem cells,MSCs)定向分化为软骨细胞,用于治疗骨性关节炎、关节创伤等因素造成的软骨缺损的研究方兴未艾。透明质酸(hyaluronic acid,HA) 是一种酸性多糖类生物大分子,亦是软骨基质的主要成分之一。由于其优良的生物相容性、可降解等特性,HA已成为优良的天然生物材料,其作为支架材料应用于软骨缺损修复已有一段历史。近年来又发现,HA除作为载体支架材料外,还可作为调节因子应用于MSCs向软骨细胞分化。以下将对近年来利用HA应用于MSCs向软骨细胞分化的研究进行总结,旨在为以MSCs为基础的组织工程化软骨的临床应用奠定基础。  相似文献   

14.
Acid ceramidase is required to maintain the metabolic balance of several important bioactive lipids, including ceramide, sphingosine and sphingosine-1-phosphate. Here we show that addition of recombinant acid ceramidase (rAC) to primary chondrocyte culture media maintained low levels of ceramide and led to elevated sphingosine by 48 hours. Surprisingly, after three weeks of expansion the chondrogenic phenotype of these cells also was markedly improved, as assessed by a combination of histochemical staining (Alcian Blue and Safranin-O), western blotting (e.g., Sox9, aggrecan, collagen 2A1), and/or qPCR. The same effects were evident in rat, equine and human cells, and were observed in monolayer and 3-D cultures. rAC also reduced the number of apoptotic cells in some culture conditions, contributing to overall improved cell quality. In addition to these effects on primary chondrocytes, when rAC was added to freshly harvested rat, equine or feline bone marrow cultures an ∼2-fold enrichment of mesenchymal stem cells (MSCs) was observed by one week. rAC also improved the chondrogenic differentiation of MSCs, as revealed by histochemical and immunostaining. These latter effects were synergistic with TGF-beta1. Based on these results we propose that rAC could be used to improve the outcome of cell-based cartilage repair by maintaining the quality of the expanded cells, and also might be useful in vivo to induce endogenous cartilage repair in combination with other techniques. The results also suggest that short-term changes in sphingolipid metabolism may lead to longer-term effects on the chondrogenic phenotype.  相似文献   

15.
Relapse cases of cancers are more vigorous and difficult to control due to the preponderance of cancer stem cells (CSCs). Such CSCs that had been otherwise dormant during the first incidence of cancer gradually appear as radiochemoresistant cancer cells. Hence, cancer therapeutics aimed at CSCs would be an effective strategy for mitigating the cancers during relapse. Alternatively, CSC therapy can also be proposed as an adjuvant therapy, along‐with the conventional therapies. As regenerative stem cells (RSCs) are known for their trophic effects, anti‐tumorogenicity, and better migration toward an injury site, this review aims to address the use of adult stem cells such as dental pulp derived; cord blood derived pure populations of regenerative stem cells for targeting CSCs. Indeed, pro‐tumorogenicity of RSCs is of concern and hence has also been dealt with in relation to breast CSC therapeutics. Furthermore, as notch signaling pathways are upregulated in breast cancers, and anti‐notch antibody based and sh‐RNA based therapies are already in the market, this review focuses the possibilities of engineering RSCs to express notch inhibitory proteins for breast CSC therapeutics. Also, we have drawn a comparison among various possibilities of breast CSC therapeutics, about, notch1 inhibition. J. Cell. Biochem. 119: 141–149, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

16.
The aim of this study was to identify new microRNAs (miRNAs) that are modulated during the differentiation of mesenchymal stem cells (MSCs) toward chondrocytes. Using large scale miRNA arrays, we compared the expression of miRNAs in MSCs (day 0) and at early time points (day 0.5 and 3) after chondrogenesis induction. Transfection of premiRNA or antagomiRNA was performed on MSCs before chondrogenesis induction and expression of miRNAs and chondrocyte markers was evaluated at different time points during differentiation by RT-qPCR. Among miRNAs that were modulated during chondrogenesis, we identified miR-574-3p as an early up-regulated miRNA. We found that miR-574-3p up-regulation is mediated via direct binding of Sox9 to its promoter region and demonstrated by reporter assay that retinoid X receptor (RXR)α is one gene specifically targeted by the miRNA. In vitro transfection of MSCs with premiR-574-3p resulted in the inhibition of chondrogenesis demonstrating its role during the commitment of MSCs towards chondrocytes. In vivo, however, both up- and down-regulation of miR-574-3p expression inhibited differentiation toward cartilage and bone in a model of heterotopic ossification. In conclusion, we demonstrated that Sox9-dependent up-regulation of miR-574-3p results in RXRα down-regulation. Manipulating miR-574-3p levels both in vitro and in vivo inhibited chondrogenesis suggesting that miR-574-3p might be required for chondrocyte lineage maintenance but also that of MSC multipotency.  相似文献   

17.
18.
A differentiation method of human bone marrow mesenchymal stem cells (MSCs) to chondrocytes was developed for the construction of a three-dimensional (3D) cartilage tissue. The adhesive cells, which were isolated from a human bone marrow aspirate were embedded in type I collagen in a poly-l-lactate-glycolic acid copolymer (PLGA) mesh and cultivated for 4 week together with growth factors. The degree of cellular differentiation was estimated by quantitative RT-PCR of aggrecan and type II collagen mRNAs and by staining with Safranin O. The 3D culture showed a higher degree of differentiation even without growth factors than the conventional pellet culture with growth factors, namely, dexamethasone and transforming growth factor (TGF)-β 3. The 3D culture for 2 week with the combined addition of dexamethasone, TGF-β 3, and insulin-like growth factor (IGF)-I reached a 30% expression of aggrecan mRNA compared with that in primary human chondrocytes, while the aggrecan mRNA expression in the conventional pellet culture was less than 2%. The sequential two-step differentiation cultivation, during which the cells were cultivated in 3D for 1 week after the conventional two-dimensional (2D) culture for 1 week, could markedly accelerate the expression of aggrecan mRNA compared with the 3D cultivation for 2 week.  相似文献   

19.
The study aims to investigate the feasibility of repairing cartilaginous defects with chondrocytes induced from allogenic bone marrow mesenchymal stem cells (BMMSC) in rabbits’ ear. BMMSCs were isolated and purified from New Zealand rabbits, in vitro amplified, and cultured in chondrocyte induction medium in order to acquire chondrocytes. After 3 weeks of induction, their phenotypes were confirmed as chondrocytes, then they were implanted onto novel polymeric scaffolds made from Poly (dl-lactide-co-glycolide) (PLGA) embedded with chitosan nonwoven cloth. The experimental group was transplanted with tissue engineering cartilaginous grafts composed of chondrogenetic BMMSC/scaffolds; the scaffold group was treated with scaffolds without cells, while in the control group, nothing was implanted. Specimens were taken at 6, 12, and 18 weeks after implantation, and the healing condition was observed by hematoxylin-eosin staining and toluidine blue staining. The right and left ears with cartilage defects of eighteen rabbits were randomly divided into three groups. In the experimental group, after 18 weeks of transplantation, the gross observation indicated that the cartilaginous defects were completely repaired by chondrocytes with smooth surface and similar color with the surrounding tissue. Hematoxylin-eosin staining and toluidine blue staining suggested that the defective area was filled with mature cartilage cells with obvious lacunae but without obvious boundaries with the normal cartilage tissue, and that the new cartilage cells were evenly distributed with homogeneously dyed cytoplasm and smaller in size. The chondrocyte induced from allogenic BMMSC can be used to repair cartilage defects in rabbit’s ear.  相似文献   

20.
《Cell reports》2020,30(8):2791-2806.e5
  1. Download : Download high-res image (184KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号