首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of organic carbon sources on cell growth and exopolysaccharide (EPS) production of dissociated Nostoc flagelliforme cells under mixotrophic batch culture were investigated. After 7?days of cultivation, glycerol, acetate, sucrose, and glucose increased the final cell density and final EPS concentrations, and mixotrophic growth achieved higher biomass concentrations. The increase in cell growth was particularly high when glucose was added as the sole carbon source. On the other hand, EPS production per dry cell weight was significantly enhanced by adding acetate. For more effective EPS production, the effects of the mixture of glucose and acetate were investigated. Increasing the ratio of glucose to acetate resulted in higher growth rate with BG-11 medium and higher EPS productivity with BG-110 medium (without NaNO3). When the medium was supplemented with a mixture of glucose (4.0?g?L?1) and acetate (2.0?g?L?1), 1.79?g?L?1 biomass with BG-11 medium and 879.6?mg?L?1 of EPS production with BG-110 medium were achieved. Adopting this optimal ratio of glucose to acetate established in flask culture, the culture was also conducted in a 20-L photobioreactor with BG-11 medium for 7?days. A maximum biomass of 2.32?g?L?1 was achieved, and the EPS production was 634.6?mg?L?1.  相似文献   

2.
Summary Lipid production of the oleaginous yeastApiotrichum curvatum was studied in wheypermeate to determine optimum operation conditions in this medium. Studies on the influence of the carbon to nitrogen ratio (C/N-ratio) of the growth medium on lipid production in continuous cultures demonstrated that cellular lipid content in wheypermeate remained constant at 22% of the cell dry weight up to a C/N-ratio of about 25. The maximal dilution rate at which all lactose is consumed in wheypermeate with excess nitrogen was found to be 0.073 h-1. At C/N-ratios higher than 25–30 lipid content gradually increased to nearly 50% at C/N=70 and the maximal obtainable dilution rate decreased to 0.02 h-1 at C/N=70. From these studies it could be derived that maximal lipid production rates can be obtained at C/N-ratios of 30–35 in wheypermeate. Since the C/N-ratio of wheypermeate normally has a value between 70 and 101, some additional nitrogen is required to optimize the lipid production rate. Lipid production rates ofA. curvatum in wheypermeate were compared in four different culture modes: batch, fed-batch, continuous and partial recycling cultures. Highest lipid production rates were achieved in culture modes with high cell densities. A lipid production rate of nearly 1 g/l/h was reached in a partial recycling culture. It was calculated that by using this cultivation technique lipid production rates of even 2.9 g/l/h may be reached when the supply of oxygen can be optimized.Nomenclature C/N-ratio carbon to nitrogen ratio of the growth medium (g/g) - C/Ncrit C/N-ratio at which there is just enough nitrogen to allow all carbon source to be converted to biomass - D dilution rate=volume of incoming medium per unit time/volume of medium in the culture vessel (h-1) - Dmax maximum dilution rate (h-1) - DW cell dry weight - L lipid yield (g storage lipid/g carbon source) - specific growth rate (h-1) - max maximum specific growth rate (h-1) - QL lipid production rate (g/l/h) - Yi molecular fraction of carbon substrate that is converted to storage carbohydrate (C-mol/C-mol) - Yls maximal amount of storage lipid that can be produced per mol carbon source (C-mol/C-mol)  相似文献   

3.

In the present study, the effects of four different culture media on the growth, astaxanthin production and morphology of Haematococcus pluvialis LUGU were studied under two-step cultivation. The interactions between astaxanthin synthesis and secondary messengers, reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPK) were also investigated. In the first green vegetative cell stage, maximal biomass productivity (86.54 mg L−1 day−1) was obtained in BBM medium. In the induction stage, the highest astaxanthin content (21.5 mg g−1) occurred in BG-11 medium, which was higher than in any other media. The expressions of MAPK and astaxanthin biosynthetic genes in BG-11 were higher than in any other media, whereas the ROS content was lower. Biochemical and physiological analyses suggested that the ROS, MAPK and astaxanthin biosynthetic gene expression was involved in astaxanthin biosynthesis in H. pluvialis under different culture media conditions. This study proposes a two-step cultivation strategy to efficiently produce astaxanthin using microalgae.

  相似文献   

4.
Aiming at the reutilizing wastewater for algal growth and biomass production, a saline water rejected from reverse osmosis (RO) facility (salinity 67.59 g L−1) was used to cultivate the pre-adapted green microalga Chlorella vulgaris. The inoculum was prepared by growing cells in modified BG-11 medium, and adaptation was performed by applying a gradual increase in salinity (56.0 g L−1 NaCl and 125 ppm FeSO4·7H2O) to the culture in 200 L photobioreactor. Experiments using the adapted alga were performed using original-rejected water (ORW) and treated rejected water (TRW) comparing with the recommended growth medium (BG-11). The initial salinity of ORW was chemically reduced to 39.1 g L−1 to obtain TRW. Vertical photobioreactors (15 L) was used for indoor growth experiments. Growth in BG-11 resulted in 1.23 g L−1, while the next adaptation growth reached 2.14 g L−1 of dry biomass. The dry weights of re-cultivated Chlorella after adaptation were 1.49 and 2.19 g L−1 from ORW and TRW; respectively. The cellular oil content was only 12% when cells grown under control conditions verses to 14.3 and 15.42% with original and treated water, respectively. Induction of stress affected the fatty acid methyl esters (FAMEs) profile and the properties of the resulting biodiesel. The present results indicated that induction of stress by high salinity improves the quality of FAMEs that can be used as a promising biodiesel fuel.  相似文献   

5.
Photoautotrophic cultivation of Chlorococcum humicola was performed in batch and continuous modes in different cultivating system arrangements to compare biomass and carotenoids’ concentration and their productivities. Batch result from stirred tank and airlift photobioreactors indicated the positive effect of increasing light intensity on growth and carotenoid production, whereas the finding from continuous cultivation indicated that carotenoid enhancement preferred high light intensity and nitrogen-deficient environment. The highest biomass (1.31?±?0.04?g?L?1) and carotenoid (4.59?±?0.06?mg?L?1) concentration as well as the highest productivities, 0.46?g?L?1 d?1 for biomass and 1.61?mg?L?1 d?1 for carotenoids, were obtained when maintaining high light intensity of 10 klx, BG-11 medium and 2% (v/v) CO2 simultaneously, while the highest carotenoid content (4.84?mg?g?1) was associated with high light intensity and nitrogen-deficient environment, which was induced by feed-modified BG-11 growth medium containing nitrate 20 folds lower than the original medium. Finally, the cultivating system arranged into smaller stirred tank photobioreactors in series yielded approximately 2.5 folds increase in both biomass and carotenoid productivities relative to using single airlift photobioreactor with equivalent working volume and similar operating condition.  相似文献   

6.
Aims: To investigate the effect of organic nitrogen on lipogenesis during growth of Cunninghamella echinulata on tomato waste hydrolysate (TWH) media. Methods and Results: Cunninghamella echinulata grown on a TWH medium rapidly took up glucose and produced large amounts of lipids. However, when some quantities of the organic nitrogen were removed from TWH (by acid followed by alkaline precipitation of proteins) the uptake of glucose was dramatically reduced and large quantities of fungal biomass having low lipid content were produced. Nevertheless, when glycerol was used as carbon source instead of glucose, the uptake rate as well as the biomass production and the lipid accumulation processes were unaffected by the TWH organic nitrogen removal. Finally, when the fungus was grown on a glucose supplemented TWH medium that contained no assimilable organic nitrogen (after further precipitation of proteins with methanol), the produced biomass contained non-negligible quantities of lipids, although glucose uptake remained low. Lipid analysis showed that the produced lipids comprised mainly of neutral lipids, which were preferentially consumed during lipid turnover. Lipid production on the original TWH medium having glucose as carbon source was 0·48 g of lipid per gram of dry biomass, corresponding to 8·7 g of lipid per litre of growth medium. The produced lipids contained 11·7%γ-linolenic acid (GLA), hence the GLA yield was more than 1 g l−1. Conclusions: Organic nitrogen compounds found in TWH favour glucose (but not glycerol) uptake and lipid accumulation in C. echinulata. Significance and Impact of the Study: Agro-industrial wastes containing organic nitrogen, such as tomato waste, are produced in vast amounts causing severe environmental problems. These wastes could be used as fermentation feedstock to produce microbial lipids.  相似文献   

7.
Synechocystis sp. PCC 6803, a cyanobacterium widely used for basic research, is often cultivated in a synthetic medium, BG-11, in the presence of 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid (HEPES) or 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid buffer. Owing to the high cost of HEPES buffer (96.9% of the total cost of BG-11 medium), the biotechnological application of BG-11 is limited. In this study, we cultured Synechocystis sp. PCC 6803 cells in BG-11 medium without HEPES buffer and examined the effects on the primary metabolism. Synechocystis sp. PCC 6803 cells could grow in BG-11 medium without HEPES buffer after adjusting for nitrogen sources and light intensity; the production rate reached 0.54 g cell dry weight·L−1·day−1, exceeding that of commercial cyanobacteria and Synechocystis sp. PCC 6803 cells cultivated under other conditions. The exclusion of HEPES buffer markedly altered the metabolites in the central carbon metabolism; particularly, the levels of compatible solutes, such as sucrose, glucosylglycerol, and glutamate were increased. Although the accumulation of sucrose and glucosylglycerol under high salt conditions is antagonistic to each other, these metabolites accumulated simultaneously in cells grown in the cost-effective medium. Because these metabolites are used in industrial feedstocks, our results reveal the importance of medium composition for the production of metabolites using cyanobacteria.  相似文献   

8.
Lipid synthesis has been studied in the dimorphic fungus Candida albicans. 14C-acetate incorporation into lipid material was used to measure new lipid synthesis in two cultures in which either yeast or mycelial growth was initiated from stationary phase yeast cells. When resuspended in fresh medium at 37 °C, cells resume growth and change morphology while at 30 °C cells resume budding growth. When resuspended at the appropriate temperature, both yeast and germ tube cultures immediately incorporated 14C-acetate into lipid material. The labeled lipid was more or less evenly divided between neutral and phospholipid. Phosphatidyl choline was the major phospholipid fraction and along with phosphatidyl ethanolamine accounted for 60–65 % of the total phospholipid. Lipid synthesis during growth initiation of either morphology showed a similar pattern, with no significant differences observed in neutral or phospholipid or phospholipid components between yeast and mycelial forms.  相似文献   

9.
We have evaluated process optimization and the interactive effects of a number of variables using a Box–Behnken design of response surface methodology (RSM). The process variables nitrate, phosphate, glucose and pH were optimized to enhance the cell growth rate, lipid accumulation and other biochemical parameters of Chlorella spp. The most significant increase in lipid production (dry cell weight basis) occurred at limited concentrations of nitrate and phosphate, 1 % glucose and pH 7.5. The addition of nitrates during the mid-lag and mid-exponential phases produced the maximum inhibitory effect on lipid accumulation and the presence of yeast extract led to a further enhancement of lipid accumulation. Of all the media tested, BG-11 was the best suited medium for algal biomass production and chlorophyll content. A significant increase in algal biomass was observed in BG-11 supplemented with bicarbonate and glucose (1 %). The maximum specific growth rate observed was on 9th day of culturing. Results of optimization of process variables through response surface methodology and optimization of various other conditions reflect cutting edge research directed towards increasing algal biomass and lipid content for biodiesel production using an efficient economical technological approach.  相似文献   

10.
NPK‐10:26:26 complex fertilizer based culture medium was studied for the mass production of Spirulina platensis using different light emitting diodes (LEDs). First, cultivation was carried out under white LED to formulate the optimum fertilizer loading for which Spirulina growth was maximized. Optimum composition for newly formulated fertilizer medium was NPK fertilizer ?0.76 g L?1 and sodium bicarbonate ?10.0 g L?1 and corresponding biomass productivity was found to be 76.67 mg L?1 day?1. The effect of different LEDs (for example, blue, white, red, green and yellow) on Spirulina growth kinetics and the accumulation of chlorophyll, protein and lipid content was determined using the optimum NPK fertilizer medium. Kinetic parameters (i.e., biomass productivity, maximum specific growth rate, maximum biomass concentration, nitrogen‐to‐biomass conversion factor and phosphorus‐to‐biomass conversion factor) and chlorophyll accumulation were affected by the use of different LEDs and follow the following trend: blue > white > red > green > yellow, whereas protein and lipid accumulation was almost independent of LEDs used. Elemental C, N, P and K concentrations were measured to find the effects of nutrients for the growth of Spirulina platensis. Physicochemical parameters (pH and conductivity) were also monitored during biomass growth under different LEDs. Finally, biomass growth using NPK‐10:26:26 fertilizer under different LEDs was compared with standard Zarrouk medium and better growth results were obtained using optimally formulated NPK‐10:26:26 fertilizer medium.  相似文献   

11.
[目的] 研究核桃壳提取液(walnut shell extracts,WSE)对单针藻Monoraphidium sp.QLZ-3生长和油脂积累的影响。[方法] 向BG-11培养基中添加不同量的WSE(培养基中保留有BG-11中全部营养成分)。[结果] 结果显示,当BG-11培养基中的WSE含量为40%时,单针藻的生物量产率及油脂产率达到(534.70±4.07)mg/(L·d)和(296.35±15.36)mg/(L·d),相比对照组分别提高了的14.82%和33.50%,蛋白质和碳水化合物含量分别有不同程度的上调和下调。与对照组相比,微藻中谷胱甘肽(glutathione,GSH)和超氧化物歧化酶(superoxide dismutase,SOD)含量与活性均上调。此外,WSE作用下,微藻对多酚的移除达到84.37%,同时上调了核酮糖1,5-二磷酸羧化酶基因(ribulose 1,5-bisphosphate carboxylase/oxygenase,rbcL)和乙酰辅酶A羧化酶(acetyl coenzyme A carboxylase,accD)基因的表达量。[结论] 研究表明,WSE联合BG-11可以提高微藻的生物量产率和油脂产率,降低微藻培养的原料成本,为核桃壳的资源化利用及微藻的工业化生产提供了一定的技术支撑。  相似文献   

12.
Three phycocyanin-rich strains of Synechococcus-like picoplanktic cyanobacteria, isolated from the plankton of Czech oligotrophic to eutrophic freshwater reservoirs, were investigated in crossed gradients of light and temperature and in combination with two different culture media (BG-11 and WC). The strains exhibited similar growth and reproduction patterns and displayed overlapping ranges of cell size (1.5 × 0.8 μm) under standardized laboratory conditions (18 μmol m−2 s−1; 20°C). However, strains behavior differed in the crossed gradients. All strains preferred BG-11 medium, where also remarkable size changes could be observed. Length, width, cell abundance and growth rate of two strains were positively correlated with temperature and nutrients, whereas the impact of light intensity was insignificant. Maximum cell elongation (involution cells up to 19 μm) occurred in two strains only in BG-11 medium at highest temperature (28°C) and highest irradiance (53 μmol m−2 s−1). Cell dimensions in WC medium were constant under most conditions given. The third strain was influenced by all three factors, from which light and nutrients played pivotal role. The length of the lag-phase for all strains appeared to be temperature dependent (negative correlation). Despite the fact that the cell volume in all strains increased more than five times under the lowest light and low temperature (6 μmol m−2 s−1, <15°C) in both media, the length/width ratio remained unchanged. The strains differed in the degree of cell enlargement and cell division symmetry as well as in optimum temperature and light dependence. Based on this experimental work two strains could be identified as Synechococcus sp. and one as Cyanobium sp., which can be used as a support for the following genetical analyses.  相似文献   

13.
In order to study the effects of different nitrogen source and concentrationon the growth rate and fatty acid composition, a marine microalga Ellipsoidion sp. with a high content of eicosapentaenoic acid (EPA) wascultured in media with different nitrogen sources and concentrations.During the pre-logarithmic phase, the alga grew faster with ammoniumas N source than with nitrate, but the reverse applied during thepost-logarithmic phase. The alga grew poorly in N-free mediumor medium with urea as the sole N source. In the same growth phase,ammonium medium resulted in higher yield of total lipid, but the EPA yielddid not differ significantly different from that using nitrate medium. Themaximum growth rate occurred in medium containing 1.28 mmolL-1 sodium nitrate, while maximum EPA and total lipid contents werereached at 1.92 mmol L-1, when EPA accounted for 27.9% totalfatty acids. The growth rate kept stable when NH4Cl ranged from0.64 to 2.56 mmol L-1, and the maximum content of total lipidand EPA occurred in the medium with 2.56 mmol L-1NH4Cl. The EPA content was higher in the pre- thanpost-logarithmic phase, though the total lipid content was lower. Thehighest EPA content expressed as percent total fatty acid was 27.9% innitrate medium and and 39.0% in ammonium medium.  相似文献   

14.
Sikora  L. J.  Enkiri  N. K. 《Plant and Soil》2001,235(1):65-73
Composts are considered low analysis fertilizers because their nitrogen and phosphorus content are around 1% and the organic nitrogen mineralization rate is near 10%. If compost is added to agricultural land at the N requirement of grain crops (40 – 100 kg N ha–1), application rates approach 40–100 mg ha–1. Much lower rates may be advisable to avoid rapid accumulation of growth limiting constituents such as heavy metals found in some composts. Combining low amendment rates of composts with sufficient fertilizer to meet crop requirements is an appealing alternative which (a) utilizes composts at lower rates than those needed to supply all the crop N requirement, (b) reduces the amount of inorganic fertilizer applied to soils, and (c) reduces the accumulation of non-nutrient compost constituents in soils. A study was conducted to compare the effects of blends of biosolids compost (C) with 15N urea(U) or 15NH4 15NO3 (N) fertilizers to fertilizer alone on tall fescue (Festuca arundinacea L.) growth and N uptake. Blends which provided 0, 20, 40 or 60 mg N kg–1 application rate as compost N and 120, 100, 80 or 60 mg N kg–1 as fertilizer N, respectively, were added to Sassafras soil (Typic Hapludults). Fescue was grown on the blends in a growth chamber for 98 days. Fescue yields recorded by clippings taken at 23, 46 and 98 days and roots harvested after the 98-day clipping increased with increasing fertilizer level for both NH4NO3 and urea and with or without compost. Nitrogen uptake by fescue responded similarly to yield with increases recorded with increasing fertilizer levels with or without compost. Paired comparisons based on cumulative 98-day clippings data showed that yields from blends were equal to yields from fertilizer treatments containing the same percentage of fertilizer as the blends. These data indicated that compost did not provide sufficient plant-available N to increase yields or N uptake. None of the blends equaled 120 mg N kg–1 fertilizer rate except for 100 mg NH4NO3-or urea-N kg–1 –20 mg compost-N kg–1blends. The data suggest that biosolids compost blended with fertilizer at a rate of 2–6 mg ha –1 did not supply sufficient additional available N to increase yields or N uptake over those of fertilizer alone.  相似文献   

15.
We investigated the effects of osmotic downshift induced by the transfer of Nannochloropsis oceanica CCALA 804 from artificial seawater medium (27 g L?1 NaCl) to the same medium without NaCl or freshwater modified BG-11 medium (mBG-11) as a function of photosynthetically active radiation (170, 350, or 700 μmol photon m–2 s–1). Alterations in growth, total fatty acid (FA) content and FA composition of individual lipid classes, and in relative contents of metabolites relevant to osmotic adjustments were studied. Cells displayed remarkable tolerance to the osmotic downshift apart from some swelling, with no substantial lag or decline in cell division rate. Biomass accumulation and chlorophyll a content were enhanced upon downshifting, especially under the highest irradiance. The highest chlorophyll a and eicosapentaenoic acid (EPA) biomass and culture contents were determined in the cultures grown in mBG-11. Two days after transfer to 0 g L-1 NaCl, the proportion in total acyl lipids of the major chloroplast galactolipid monogalactosyldiacylglycerol, a major depot of EPA, increased twofold, along with a modest change in the proportion of digalactosyldiacylglycerol (DGDG). EPA percentage decreased in DGDG and increased in the extraplastidial lipid phosphatidylethanolamine. Metabolite profiling by GC–MS analysis revealed a sharp decrease in metabolites potentially involved in osmoregulation, such as mannitol and proline, while proline-cycle intermediates and some free sugars increased. The stress-induced polyamine spermidine decreased ca. one order of magnitude, while its catabolic product—the non-protein amino acid γ-amino butyric acid—increased twofold, as did the stress-related sugars trehalose and talose. Biochemical mechanisms governing osmotic plasticity and implications for optimization of EPA production by N. oceanica CCALA 804 under variable cultivation conditions are discussed.  相似文献   

16.
The soil nitrogen cycle was investigated in a pre‐established Lolium perenne sward on a loamy soil and exposed to ambient and elevated atmospheric CO2 concentrations (350 and 700 μL L?1) and, at elevated [CO2], to a 3 °C temperature increase. At two levels of mineral nitrogen supply, N– (150 kgN ha?1 y?1) and N+ (533 kgN ha?1 y?1), 15N‐labelled ammonium nitrate was supplied in split applications over a 2.5‐y period. The recovery of the labelled fertilizer N was measured in the harvests, in the stubble and roots, in the macro‐organic matter fractions above 200 μm in size (MOM) and in the aggregated organic matter below 200 μM (AOM). Elevated [CO2] reduced the total amount of N harvested in the clipped parts of the sward. The harvested N derived from soil was reduced to a greater extent than that derived from fertilizer. At both N supplies, elevated [CO2] modified the allocation of the fertilizer N in the sward, in favour of the stubble and roots and significantly increased the recovery of fertilizer N in the soil macro‐organic matter fractions. The increase of fertilizer N immobilization in the MOM was associated with a decline of fertilizer N uptake by the grass sward, which supported the hypothesis of a negative feedback of elevated [CO2] on the sward N yield and uptake. Similar and even more pronounced effects were observed for the native N mineralized in the soil. At N–, a greater part of the fertilizer N organized in the root phytomass resulted in an underestimation of N immobilized in dead roots and, in turn, an underestimation of N immobilization in the MOM. The 3 °C temperature increase alleviated the [CO2] effect throughout much of the N cycle, increasing soil N mineralization, N derived from soil in the harvests, and the partitioning of the assimilated fertilizer N to shoots. In conclusion, at ambient temperature, the N cycle was slowed down under elevated [CO2], which restricted the increase in the aboveground production of the grass sward, and apparently contributed to the sequestration of carbon belowground. In contrast, a temperature increase under elevated [CO2] stimulated the soil nitrogen cycle, improved the N nutrition of the sward and restricted the magnitude of the soil C sequestration.  相似文献   

17.
Global maize production alters an enormous soil organic C (SOC) stock, ultimately affecting greenhouse gas concentrations and the capacity of agroecosystems to buffer climate variability. Inorganic N fertilizer is perhaps the most important factor affecting SOC within maize‐based systems due to its effects on crop residue production and SOC mineralization. Using a continuous maize cropping system with a 13 year N fertilizer gradient (0–269 kg N ha?1 yr?1) that created a large range in crop residue inputs (3.60–9.94 Mg dry matter ha?1 yr?1), we provide the first agronomic assessment of long‐term N fertilizer effects on SOC with direct reference to N rates that are empirically determined to be insufficient, optimum, and excessive. Across the N fertilizer gradient, SOC in physico‐chemically protected pools was not affected by N fertilizer rate or residue inputs. However, unprotected particulate organic matter (POM) fractions increased with residue inputs. Although N fertilizer was negatively linearly correlated with POM C/N ratios, the slope of this relationship decreased from the least decomposed POM pools (coarse POM) to the most decomposed POM pools (fine intra‐aggregate POM). Moreover, C/N ratios of protected pools did not vary across N rates, suggesting little effect of N fertilizer on soil organic matter (SOM) after decomposition of POM. Comparing a N rate within 4% of agronomic optimum (208 kg N ha?1 yr?1) and an excessive N rate (269 kg N ha?1 yr?1), there were no differences between SOC amount, SOM C/N ratios, or microbial biomass and composition. These data suggest that excessive N fertilizer had little effect on SOM and they complement agronomic assessments of environmental N losses, that demonstrate N2O and NO3 emissions exponentially increase when agronomic optimum N is surpassed.  相似文献   

18.

Background

Inorganic fertilizer is one of the most important anthropogenic inputs which influences soil nutrient turnover in agricultural ecosystems. However, as the key process involved in the maintenance, transformation and stability of soil nitrogen (N), the incorporation and allocation of fertilizer N between different soil organic N (SON) fractions in a growing season remains largely unknown.

Methods

In this study, a field experiment was conducted in triplicate of micro-plots and a total of 200 kg N ha?1 (15?N-labeled (NH4)2SO4, 98 atom %) was applied as a basal dressing and two top dressings, at jointing and filling stages, respectively, to a maize crop during one growing season. The distribution and seasonal dynamics of fertilizer N in different SON fractions (i.e., amino acids, amino sugars, hydrolyzable ammonium N and acid insoluble-N) were measured by liquid/gas chromatography–mass spectrometry (LC/GC-MS) and element analysis-combustion-isotope ratio mass spectrometry (EA-C-IRMS) techniques. Path analysis was used to evaluate the transformation processes between organic N fractions derived from fertilizer and N supply strategy in soil-plant system.

Results

The accumulation of fertilizer-derived N in different organic fractions was season-specific. At jointing stage, preferential enrichment of 15?N was found in soil amino acids plus amino sugars, indicating the active biological immobilization of basal dressing fertilizer N. Nevertheless, there is still a small proportion of fertilizer N stabilized in the acid insoluble fraction. The accumulation of the residual fertilizer N in hydrolyzable ammonium N reached a maximum at filling stage and then declined significantly, implying the rapid release of the fertilizer N remained in mineral forms. The contents of amino acids changed slightly, but they played a very important role in mediating SON transformation.

Conclusion

The hydrolyzable ammonium N was a temporary pool for rapid fertilizer N retention and simultaneously was apt to release N for crop uptake in the current season. In contrast, the amino acids could serve as a transitional pool of available N in the soil-crop system, while the acid insoluble fraction was as a stable pool of fertilizer N. Importantly, there is an interim shift among different pools to maintain soil N turnover; hence N in the amino acid fraction mediates N supply and the depolymerization of SON constituents controls the proceeding of fertilizer N cycling in the soil-plant system.  相似文献   

19.
Lipid synthesis of three marine diatoms was studied with a 14CO2 incorporation technique in silicate limited batch cultures. Growth rates were independent of the silicate concentration but the cellular yields were proportional to the initial amount of silicate. At the beginning of the stationary growth phase, lipid synthesis rates per unit culture volume increased by 1.7 times for Chaetoceros gracilis, 3.1 times for Hantzschia sp., and 2.8 times for Cyclotella sp., respectively compared to those during the exponential growth phase. Lipid carbon accounted for as much as 57% of the carbon in C. gracilis, 71% in Hantzschia sp., and 65% in Cyclotella sp., respectively. Additional enrichment with silicate during stationary growth phase allowed the cultures to grow further. Lipid synthesis rates were reduced during the subsequent growth phase, and the growth rates themselves were dependent on the level of biomass achieved during the previous stationary phase. However, the cellular yields were similar and probably controlled by light.  相似文献   

20.
Microalgae are a promising feedstock for biofuel production. Lipid content in microalgae could be enhanced under nutrient depletion. This work investigated the effect of the nutrient on lipid accumulation in Ankistrodesmus sp. culture. Batch cultures were carried out using fresh BG11 medium, and after the harvest, the medium was reused for the next culture; this method was repeated two times. The maximum lipid productivity of 29.75 mg L?1 day?1 was obtained from the culture with the second reuse medium. In continuous cultures, Ankistrodesmus sp. was cultured in both fresh and modified BG11 mediums. The modified BG11 medium was adjusted to resemble the content of the first reuse medium. As a comparison between batch and continuous cultures, it was proven that the productivity in the continuous culture was better than in the batch, where the achievable maximum biomass and lipid were 188.30 and 38.32 mg L?1 day?1. The maximum lipid content of 34.22% was obtained from the continuous culture at a dilution rate of 0.08 day?1, whereas the maximum saturated and unsaturated fatty acid productivities of 79.96 and 104.54 mg L?1 day?1 were obtained at a dilution rate of 0.16 day?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号