首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目的 :通过重建端粒酶活性延长胎儿肌肉源间充质干细胞寿命 ,并对其成神经潜能进行研究 ,为组织工程神经修复提供种子细胞。方法 :将人端粒酶催化亚基 (hTERT)基因通过脂质体转染法导入胎儿肌肉源间充质干细胞 ,RT PCR检测hTERTmRNA的表达 ,TRAP PCR检测细胞端粒酶活性。用bFGF诱导已重建端粒酶活性的肌肉源间充质干细胞向神经细胞分化 ,免疫荧光及免疫印迹法检测分化情况。结果 :转染hTERT的胎儿肌肉源间充质干细胞能稳定表达端粒酶活性。转染后传 75代的细胞经bFGF诱导仍维持着自我更新及向神经细胞分化的潜能 ,且无恶性转化倾向。结论 :重建端粒酶活性可延长胎儿肌肉源间充质干细胞寿命并维持自我更新及成神经潜能 ,为建立组织工程标准细胞系提供了新的实验手段  相似文献   

2.
3.
4.
5.
6.
7.
重建端粒酶活性延长人成纤维细胞寿命的研究   总被引:9,自引:1,他引:8  
汪铮  易静 《实验生物学报》2000,33(2):129-140
  相似文献   

8.
9.
10.
11.
Most human somatic cells contain no or very low levels of telomerase. The over-expression of the catalytic subunit (hTERT) of human telomerase is a common method to generate cells with a greatly prolonged lifespan. These cells serve as models for cells that are either difficult to cultivate or have a limited lifespan in vitro. In addition, hTERT over-expressing cells are thought to be a useful resource for tissue engineering and regenerative medicine.While tumour suppressors and cell cycle checkpoints are maintained for an extended period in most hTERT over-expressing cells we found that there is a gradual change in gene expression over a range of 130 population doublings (PD) for the majority of genes analysed. Seven genes were significantly down-regulated with increasing population doublings (PDs), while only two were up-regulated. One gene, stanniocalcin 2, was highly expressed in parental fibroblasts but completely diminished as a consequence of hTERT transgene expression.These data demonstrate that in hTERT over-expressing cells two different types of expression changes occur: one can be directly associated with hTERT transgene expression itself, while others might occur more gradual and with varying kinetics. These changes should be taken into account when these cells are used as functional models or for regenerative purposes.  相似文献   

12.
13.
A major obstacle to the immortalization of primary human cells and the establishment of human cell lines is telomere-controlled senescence. Telomere-controlled senescence is caused by the shortening of telomeres that occurs each time somatic human cells divide. The enzyme telomerase can prevent the erosion of telomeres and block the onset of telomere-controlled senescence, but its expression is restricted to the early stages of embryonic development, and in the adult, to rare cells of the blood, skin and digestive track. However, we and others have shown that the transfer of an exogenous hTERT cDNA, encoding the catalytic subunit of human telomerase, can be used to prevent telomere shortening, overcome telomere-controlled senescence, and immortalize primary human cells. Most importantly, hTERT alone can immortalize cells without causing cancer-associated changes or altering phenotypic properties. Primary human cells that have so far been established by the forced expression of hTERT alone include fibroblasts, retinal pigmented epithelial cells, endothelial cells, oesophageal squamous cells, mammary epithelial cells, keratinocytes, osteoblasts, and Nestin-positive cells of the pancreas. In this article, we discuss the use of hTERT to immortalize of human cells, the properties of hTERT-immortalized cells, and their applications to cancer research and tissue engineering.  相似文献   

14.
15.
16.
17.
18.
19.
The need for standardized experimental conditions to gain relevant and reproducible results has increased the demand for well characterized continuously growing cell lines that exhibit the characteristics of their normal counterparts. Immortalization of normal human cells by ectopic expression of the catalytic subunit of human telomerase (hTERT) has shown to result in highly differentiated cell lines. However, the influence of the increased telomerase activity on the protein expression profile was not investigated so far. Therefore, we have immortalized human umbilical vein endothelial cells (HUVECs) by hTERT overexpression and compared them to their normal early passage and senescent counterparts. This study, including a proteomic approach, shows that ectopic hTERT expression leads to a stable growing cell line. Although these cells are highly differentiated, the protein expression profile of the cell line is different to that of normal early passage and senescent cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号