首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Codon usage and gene expression.   总被引:36,自引:16,他引:20       下载免费PDF全文
L Holm 《Nucleic acids research》1986,14(7):3075-3087
The hypothesis that codon usage regulates gene expression at the level of translation is tested. Codon usage of Escherichia coli and phage lambda is compared by correspondence analysis, and the basis of this hypothesis is examined by connecting codon and tRNA distributions to polypeptide elongation kinetics. Both approaches indicate that if codon usage was random tRNA limitation would only affect the rarest tRNA species. General discrimination against their cognate codons indicates that polypeptide elongation rates are maintained constant. Thus, differences in expression of E. coli genes are not a consequence of their variable codon usage. The preference of codons recognized by the most abundant tRNAs in E. coli genes encoding abundant proteins is explained by a constraint on the cost of proof-reading.  相似文献   

2.
Summary Patterns of codon usage in certain coliphages are adapted to expression inEscherichia coli. Bacteriophage T4 may be an exception to test the rule, as it produces eight tRNAs with specificities that are otherwise rare inE. coli. A database of all known T4 DNA sequences has been compiled, comprising 174 genes and a total of 115 kb (approximately 70% of the T4 genome). Codon usage has been examined in all T4 genes; some of these are known to be expressed before, and some after, the production of phage tRNAs. The results show two different patterns of codon usage: by comparison with the early genes, the late genes exhibit a shift in preference toward those codons recognized by the phage-encoded tRNAs. The T4 tRNAs translate A-ending codons, and it is possible that the phage acquired the tRNA genes because the mutation bias of the T4 DNA polymerase forces the T4 genome toward A+T-richness.Presented at the NATO Advanced Workshop on Genome Organization and Evolution, held in Spetses, Greece, September 1990  相似文献   

3.
The relative quantities of 26 known transfer RNAs of Escherichia coli have been measured previously (Ikemura, 1981). Based on this relative abundance, the usage of cognate codons in E. coli genes as well as in transposon and coliphage genes was examined. A strong positive correlation between tRNA content and the occurrence of respective codons was found for most E. coli genes that had been sequenced, although the correlation was less significant for transposon and phage genes. The dependence of the usage of isoaccepting tRNA, in E. coli genes encoding abundant proteins, on tRNA content was especially noticeable and was greater than that expected from the proportional relationship between the two variables, i.e. these genes selectively use codons corresponding to major tRNAs but almost completely avoid using codons of minor tRNAs. Therefore, codon choice in E. coli genes was considered to be largely constrained by tRNA availability and possibly by translational efficiency. Based on the content of isoaccepting tRNA and the nature of codon-anticodon interaction, it was then possible to predict for most amino acids the order of preference among synonymous codons. The synonymous codon predicted in this way to be the most preferred codon was thought to be optimized for the E. coli translational system and designated as the “Optimal codon”. E. coli genes encoding abundant protein species use the optimal codons selectively, and other E. coli genes, such as amino acid synthesizing genes, use optimal and “non-optimal” codons to a roughly equal degree. The finding that the frequency of usage of optimal codons is closely correlated with the production levels of individual genes was discussed from an evolutionary viewpoint.  相似文献   

4.
5.
H Grosjean  W Fiers 《Gene》1982,18(3):199-209
By considering the nucleotide sequence of several highly expressed coding regions in bacteriophage MS2 and mRNAs from Escherichia coli, it is possible to deduce some rules which govern the selection of the most appropriate synonymous codons NNU or NNC read by tRNAs having GNN, QNN or INN as anticodon. The rules fit with the general hypothesis that an efficient in-phase translation is facilitated by proper choice of degenerate codewords promoting a codon-anticodon interaction with intermediate strength (optimal energy) over those with very strong or very weak interaction energy. Moreover, codons corresponding to minor tRNAs are clearly avoided in these efficiently expressed genes. These correlations are clearcut in the normal reading frame but not in the corresponding frameshift sequences +1 and +2. We hypothesize that both the optimization of codon-anticodon interaction energy and the adaptation of the population to codon frequency or vice versa in highly expressed mRNAs of E. coli are part of a strategy that optimizes the efficiency of translation. Conversely, codon usage in weakly expressed genes such as repressor genes follows exactly the opposite rules. It may be concluded that, in addition to the need for coding an amino acid sequence, the energetic consideration for codon-anticodon pairing, as well as the adaptation of codons to the tRNA population, may have been important evolutionary constraints on the selection of the optimal nucleotide sequence.  相似文献   

6.
7.
Kamatani T  Yamamoto T 《Bio Systems》2007,90(2):362-370
To gain insight into the nature of the mitochondrial genomes (mtDNA) of different Candida species, the synonymous codon usage bias of mitochondrial protein coding genes and the tRNAs in C. albicans, C. parapsilosis, C. stellata, C. glabrata and the closely related yeast Saccharomyces cerevisiae were analyzed. Common features of the mtDNA in Candida species are a strong A+T pressure on protein coding genes, and insufficient mitochondrial tRNA species are encoded to perform protein synthesis. The wobble site of the anticodon is always U for the NNR (NNA and NNG) codon families, which are dominated by A-ending codons, and always G for the NNY (NNC and NNU) codon families, which is dominated by U-ending codons, and always U for the NNN (NNA, NNU, NNC and NNG) codon families, which are dominated by A-ending codons and U-ending codons. Patterns of synonymous codon usage of Candida species can be classified into three groups: (1) optimal codon-anticodon usage, Glu, Lys, Leu (translated by anti-codon UAA), Gln, Arg (translated by anti-codon UCU) and Trp are containing NNR codons. NNA, whose corresponding tRNA is encoded in the mtDNA, is used preferentially. (2) Non-optimal codon-anticodon usage, Cys, Asp, Phe, His, Asn, Ser (translated by anti-codon GCU) and Tyr are containing NNY codons. The NNU codon, whose corresponding tRNA is not encoded in the mtDNA, is used preferentially. (3) Combined codon-anticodon usage, Ala, Gly, Leu (translated by anti-codon UAG), Pro, Ser (translated by anti-codon UGA), Thr and Val are containing NNN codons. NNA (tRNA encoded in the mtDNA) and NNU (tRNA not encoded in the mtDNA) are used preferentially. In conclusion, we propose that in Candida species, codons containing A or U at third position are used preferentially, regardless of whether corresponding tRNAs are encoded in the mtDNA. These results might be useful in understanding the common features of the mtDNA in Candida species and patterns of synonymous codon usage.  相似文献   

8.
9.
To reveal how the AT-rich genome of bacteriophage PhiKZ has been shaped in order to carryout its growth in the GC-rich host Pseudomonas aeruginosa,synonymous codon and amino acid usage bias ofPhiKZ was investigated and the data were compared with that of P.aeruginosa.It was found that synonymouscodon and amino acid usage of PhiKZ was distinct from that of P.aeruginosa.In contrast to P.aeruginosa,the third codon position of the synonymous codons of PhiKZ carries mostly A or T base;codon usage biasin PhiKZ is dictated mainly by mutational bias and,to a lesser extent,by translational selection.A clusteranalysis of the relative synonymous codon usage values of 16 myoviruses including PhiKZ shows that PhiKZis evolutionary much closer to Escherickia coli phage T4.Further analysis reveals that the three factors ofmean molecular weight,aromaticity and cysteine content are mostly responsible for the variation of aminoacid usage in PhiKZ proteins,whereas amino acid usage of P.aeruginosa proteins is mainly governed bygrand average of hydropathicity,aromaticity and cysteine content.Based on these observations,we suggestthat codons of the phage-like PhiKZ have evolved to preferentially incorporate the smaller amino acid residuesinto their proteins during translation,thereby economizing the cost of its development in GC-rich P.aeruginosa.  相似文献   

10.
Insects, the most biodiverse taxonomic group, have high AT content in their mitochondrial genomes. Although codon usage tends to be AT-rich, base composition and codon usage of mitochondrial genomes may vary among taxa. Thus, we compare base composition and codon usage patterns of 49 insect mitochondrial genomes. For protein coding genes, AT content is as high as 80% in the Hymenoptera and Lepidoptera and as low as 72% in the Orthopotera. The AT content is high at positions 1 and 3, but A content is low at position 2. A close correlation occurs between codon usage and tRNA abundance in nuclear genomes. Optimal codons can pair well with the antr codons of the most abundant tRNAs. One tRNA gene translates a synonymous codon family in vertebrate mitochondrial genomes and these tRNA anticodons can pair with optimal codons. However, optimal codons cannot pair with anticodons in mtDNA ofCochiiomyia hominivorax (Dipteral: CaLliphoridae). Ten optimal codons cannot pair with tRNA anticodons in all 49 insect mitochondrial genomes; non-optimal codon-anticodon usage is common and codon usage is not influenced by tRNA abundance.  相似文献   

11.
Codon usage and tRNA content in unicellular and multicellular organisms   总被引:129,自引:17,他引:112  
Choices of synonymous codons in unicellular organisms are here reviewed, and differences in synonymous codon usages between Escherichia coli and the yeast Saccharomyces cerevisiae are attributed to differences in the actual populations of isoaccepting tRNAs. There exists a strong positive correlation between codon usage and tRNA content in both organisms, and the extent of this correlation relates to the protein production levels of individual genes. Codon-choice patterns are believed to have been well conserved during the course of evolution. Examination of silent substitutions and tRNA populations in Enterobacteriaceae revealed that the evolutionary constraint imposed by tRNA content on codon usage decelerated rather than accelerated the silent-substitution rate, at least insofar as pairs of taxonomically related organisms were examined. Codon-choice patterns of multicellular organisms are briefly reviewed, and diversity in G+C percentage at the third position of codons in vertebrate genes--as well as a possible causative factor in the production of this diversity--is discussed.   相似文献   

12.
M Amitsur  R Levitz    G Kaufmann 《The EMBO journal》1987,6(8):2499-2503
Host tRNAs cleaved near the anticodon occur specifically in T4-infected Escherichia coli prr strains which restrict polynucleotide kinase (pnk) or RNA ligase (rli) phage mutants. The cleavage products are transient with wt but accumulate in pnk- or rli- infections, implicating the affected enzymes in repair of the damaged tRNAs. Their roles in the pathway were elucidated by comparing the mutant infection intermediates with intact tRNA counterparts before or late in wt infection. Thus, the T4-induced anticodon nuclease cleaves lysine tRNA 5' to the wobble position, yielding 2':3'-P greater than and 5'-OH termini. Polynucleotide kinase converts them into a 3'-OH and 5' P pair joined in turn by RNA ligase. Presumably, lysine tRNA depletion, in the absence of polynucleotide kinase and RNA ligase mediated repair, underlies prr restriction. However, the nuclease, kinase and ligase may benefit T4 directly, by adapting levels or decoding specificities of host tRNAs to T4 codon usage.  相似文献   

13.
Effective translation of the viral genome during the infection cycle most likely enhances its fitness. In this study, we reveal two different strategies employed by cyanophages, viruses infecting cyanobacteria, to enhance their translation efficiency. Cyanophages of the T7-like Podoviridae family adjust their GC content and codon usage to those of their hosts. In contrast, cyanophages of the T4-like Myoviridae family maintain genomes with low GC content, thus sometimes differing from that of their hosts. By introducing their own specific set of tRNAs, they appear to modulate the tRNA pools of hosts with tRNAs that fit the viral low GC preferred codons. We assessed the possible effects of those viral tRNAs on cyanophages and cyanobacterial genomes using the tRNA adaptation index, which measures the extent to which a given pool of tRNAs translates efficiently particular genes. We found a strong selective pressure to gain and maintain tRNAs that will boost translation of myoviral genes when infecting a high GC host, contrasted by a negligible effect on the host genes. Thus, myoviral tRNAs may represent an adaptive strategy to enhance fitness when infecting high GC hosts, thereby potentially broadening the spectrum of hosts while alleviating the need to adjust global parameters such as GC content for each specific host.  相似文献   

14.
In this study, the relative synonymous codon and amino acid usage biases of the broad-host range phage, KVP40, were investigated in an attempt to understand the structure and function of its proteins/protein-coding genes, as well as the role of its tRNAs. Synonymous codons in KVP40 were determined to be ATrich at the third codon positions, and their variations are dictated principally by both mutational bias and translational selection. Further analysis revealed that the RSCU of KVP40 is distinct from that of its Vibrio hosts, V. cholerae and V. parahaemolyticus. Interestingly, the expression of the putative highly expressed genes of KVP40 appear to be preferentially influenced by the abundant host tRNA species, whereas the tRNAs expressed by KVP40 may be required for the efficient synthesis of all its proteins in a diverse array of hosts. The data generated in this study also revealed that KVP40 proteins are rich in low molecular weight amino acid residues, and that these variations are influenced primarily by hydropathy, mean molecular weight, aromaticity, and cysteine content.  相似文献   

15.
Plant chloroplast genes have a codon use that reflects the genome compositional bias of a high A+T content with the single exception of the highly translatedpsbA gene which codes for the photosystem II D1 protein. The codon usage of plantpsbA corresponds more closely to the limited tRNA population of the chloroplast and is very similar to the codon use observed in the chloroplast genes of the green algaChlamydomonas reinhardtii. This pattern of codon use may be an adaptation for increased translation efficiency. A correspondence between codon use of plantpsbA andChlamydomonas chloroplast genes and the tRNAs coded by the chloroplast genome, however, is not observed in all synonymous codon groups. It is shown here that the degree of correspondence between codon use and tRNA population in different synonymous groups is correlated with the second codon position composition. Synonymous groups with an A or T at the second codon position have a high representation of codons for which a complementary tRNA is coded by the chloroplast genome. Those with a G or C at the second position have an increased representation of codons that bind a chloroplast tRNA by wobble. It is proposed that the difference between synonymous groups in terms of codon adaptation to the tRNA population in plantpsbA andChlamydomonas chloroplast genes may be the result of differences in second position composition.  相似文献   

16.
Codon Usage Bias and tRNA Abundance in Drosophila   总被引:5,自引:0,他引:5  
Codon usage bias of 1,117 Drosophila melanogaster genes, as well as fewer D. pseudoobscura and D. virilis genes, was examined from the perspective of relative abundance of isoaccepting tRNAs and their changes during development. We found that each amino acid contributes about equally and highly significantly to overall codon usage bias, with the exception of Asp which had very low contribution to overall bias. Asp was also the only amino acid that did not show a clear preference for one of its synonymous codons. Synonymous codon usage in Drosophila was consistent with ``optimal' codons deduced from the isoaccepting tRNA availability. Interestingly, amino acids whose major isoaccepting tRNAs change during development did not show as strong bias as those with developmentally unchanged tRNA pools. Asp is the only amino acid for which the major isoaccepting tRNAs change between larval and adult stages. We conclude that synonymous codon usage in Drosophila is well explained by tRNA availability and is probably influenced by developmental changes in relative abundance. Received: 5 December 1996 / Accepted: 14 June 1997  相似文献   

17.
18.
To reveal the relative synonymous codon usage and base composition variation in bacteriophages, six mycobacteriophages were used as a model system here and both parameters in these phages and their host bacteria, Mycobacterium tuberculosis, have been determined and compared. As expected for GC-rich genomes, there are predominantly G and C ending codons in all 6 phages. Both N_{c} plot and correspondence analysis on relative synonymous codon usage indicate that mutation bias and translation selection influences codon usage variation in the 6 phages. Further analysis indicates that among 6 Mycobacterium phages Che9c, Bxz1 and TM4 may be extremely virulent in nature as most of their genes have high translation efficiency. Based on our data we suggest that the genes of above three phages are expressed rapidly by host's translation machinery. The information might be used to select the extremely virulent Mycobacterium tuberculosis phages suitable for phage therapy.  相似文献   

19.
X Xia 《Genetics》1998,149(1):37-44
The optimization of the translational machinery in cells requires the mutual adaptation of codon usage and tRNA concentration, and the adaptation of tRNA concentration to amino acid usage. Two predictions were derived based on a simple deterministic model of translation which assumes that elongation of the peptide chain is rate-limiting. The highest translational efficiency is achieved when the codon recognized by the most abundant tRNA reaches the maximum frequency. For each codon family, the tRNA concentration is optimally adapted to codon usage when the concentration of different tRNA species matches the square-root of the frequency of their corresponding synonymous codons. When tRNA concentration and codon usage are well adapted to each other, the optimal content of all tRNA species carrying the same amino acid should match the square-root of the frequency of the amino acid. These predictions are examined against empirical data from Escherichia coli, Salmonella typhimurium, and Saccharomyces cerevisiae.  相似文献   

20.
Modulation of lambda integrase synthesis by rare arginine tRNA   总被引:6,自引:1,他引:5  
Lambda's int gene contains an anomalously high frequency of the rare arginine codons AGA and AGG when compared to genes of Escherichia coli or to the rest of phage lambda. These are the least frequent codons in genes of E. coli and are recognized by the rarest tRNAs. The presence of these codons reduces the translation rate and, depending on the context, this can strongly modulate translational efficiency by a variety of mechanisms. In this study, we show that expression of the natural int gene may also be modulated by rare arginine codon usage, and we explore this mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号