首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure, variability, and molecular evolution of the trnL(UAA) intron in bryophytes (mosses and liverworts) is analyzed based on more than 1000 sequences representing all classes, including comparisons of lengths and GC-contents, sequence similarities, evolutionary rates and ti/tv ratios of the major lineages and selected genera. Secondary structure analyses of the more variable stem-loop regions facilitated recognition of sequence repeats and minute inversions that often occurred independently in non-related lineages, thus supporting alignment construction and homology assessment. The most length-variable stem-loop region P8 does not share a common evolutionary history across all major bryophyte lineages. Independent nucleotide additions such as internally repeated sequence segments resulted in non-homologous P8 sequences that cannot be folded into a common P8 secondary structure, neither for all bryophytes nor for liverworts or mosses. To address evolutionary patterns, separate analyses of P6/P8 and the remaining intron (core) have to be performed, as overall values of the complete intron are misleading. It is argued that a transition bias observed above the genus level in the core structure is caused by structural constraints, not by its higher GC-content in comparison to the more AT-rich P6 and P8. Compensating base pair changes detected in highly conserved elements are often characteristic of the major bryophyte lineages (classes). Sequence divergence and evolutionary rates are generally higher in liverworts than in mosses, resulting in ambiguous alignments of P6 and P8 even within classes. In mosses, trends towards length reduction of P8 and lower evolutionary rates of the intron are observed. Average intraspecific variation is less than 1%, corresponding to 2-3 mutations in the complete intron.  相似文献   

2.
Awareness of the complex structure and evolutionary dynamics of noncoding DNA has improved both noncoding sequence alignment and the use of microstructural changes as characters in phylogenetic analysis. The next step is to consider improvements in the use and selection of phylogenetic models for noncoding sequence data. Models of character evolution are central to phylogeny estimation, but the use of an inadequate model can mislead topology selection and branch length estimations. This is particularly likely when sequence divergence is either limited (nearly invariable, as in population-level or species-level studies) or extreme (nearly saturated, as in deep-level studies that focus on conserved secondary structures). Noncoding data sets are often at these extremes, and they can be particularly awkward for model definition and model selection. This paper introduces the goals of model use in phylogenetics and identifies ten issues that arise from the application of models to noncoding sequence data. It is concluded that most of these issues derive from small data set sizes, very low or very high sequence variability, limitations of current phylogenetic models, and possibly character definition and nonindependence. Recommendations are made that should help to improve alignment, character quality, model selection, and phylogeny estimation based on noncoding sequence data.  相似文献   

3.
Tandemly repeated DNA families appear to undergo concerted evolution, such that repeat units within a species have a higher degree of sequence similarity than repeat units from even closely related species. While intraspecies homogenization of repeat units can be explained satisfactorily by repeated rounds of genetic exchange processes such as unequal crossing over and/or gene conversion, the parameters controlling these processes remain largely unknown. Alpha satellite DNA is a noncoding tandemly repeated DNA family found at the centromeres of all human and primate chromosomes. We have used sequence analysis to investigate the molecular basis of 13 variant alpha satellite repeat units, allowing comparison of multiple independent recombination events in closely related DNA sequences. The distribution of these events within the 171-bp monomer is nonrandom and clusters in a distinct 20- to 25-bp region, suggesting possible effects of primary sequence and/or chromatin structure. The position of these recombination events may be associated with the location within the higher-order repeat unit of the binding site for the centromere-specific protein CENP-B. These studies have implications for the molecular nature of genetic recombination, mechanisms of concerted evolution, and higher-order structure of centromeric heterochromatin.  相似文献   

4.
Despite their ubiquity and functional importance, microsatellites have been largely ignored in comparative genomics, mostly due to the lack of genomic information. In the current study, microsatellite distribution was characterized and compared in the whole genomes and both the coding and non-coding DNA sequences of the sequenced Brassica, Arabidopsis and other angiosperm species to investigate their evolutionary dynamics in plants. The variation in the microsatellite frequencies of these angiosperm species was much smaller than those for their microsatellite numbers and genome sizes, suggesting that microsatellite frequency may be relatively stable in plants. The microsatellite frequencies of these angiosperm species were significantly negatively correlated with both their genome sizes and transposable elements contents. The pattern of microsatellite distribution may differ according to the different genomic regions (such as coding and non-coding sequences). The observed differences in many important microsatellite characteristics (especially the distribution with respect to motif length, type and repeat number) of these angiosperm species were generally accordant with their phylogenetic distance, which suggested that the evolutionary dynamics of microsatellite distribution may be generally consistent with plant divergence/evolution. Importantly, by comparing these microsatellite characteristics (especially the distribution with respect to motif type) the angiosperm species (aside from a few species) all clustered into two obviously different groups that were largely represented by monocots and dicots, suggesting a complex and generally dichotomous evolutionary pattern of microsatellite distribution in angiosperms. Polyploidy may lead to a slight increase in microsatellite frequency in the coding sequences and a significant decrease in microsatellite frequency in the whole genome/non-coding sequences, but have little effect on the microsatellite distribution with respect to motif length, type and repeat number. Interestingly, several microsatellite characteristics seemed to be constant in plant evolution, which can be well explained by the general biological rules.  相似文献   

5.
6.
HeT-A, a major component of Drosophila telomeres, is the first retrotransposon proposed to have a vital cellular function. Unlike most retrotransposons, more than half of its genome is noncoding. The 3'' end contains > 2.5 kb of noncoding sequence. Copies of HeT-A differ by insertions or deletions and multiple nucleotide changes, which initially led us to conclude that HeT-A noncoding sequences are very fluid. However, we can now report, on the basis of new sequences and further analyses, that most of these differences are due to the existence of a small number of conserved sequence subfamilies, not to extensive sequence change during each transposition event. The high level of sequence conservation within subfamilies suggests that they arise from a small number of replicatively active elements. All HeT-A subfamilies show preservation of two intriguing features. First, segments of extremely A-rich sequence form a distinctive pattern within the 3'' noncoding region. Second, there is a strong strand bias of nucleotide composition: The DNA strand running 5'' to 3'' toward the middle of the chromosome is unusually rich in adenine and unusually poor in guanine. Although not faced with the constraints of coding sequences, the HeT-A 3'' noncoding sequence appears to be under other evolutionary constraints, possibly reflecting its roles in the telomeres.  相似文献   

7.
Unique among primates, the colobine monkeys have adapted to a predominantly leaf-eating diet by evolving a foregut that utilizes bacterial fermentation to breakdown and absorb nutrients from such a food source. It has been hypothesized that pancreatic ribonuclease (pRNase) has been recruited to perform a role as a digestive enzyme in foregut fermenters, such as artiodactyl ruminants and the colobines. We present molecular analyses of 23 pRNase gene sequences generated from 8 primate taxa, including 2 African and 2 Asian colobine species. The pRNase gene is single copy in all noncolobine primate species assayed but has duplicated more than once in both the African and Asian colobine monkeys. Phylogenetic reconstructions show that the pRNase-coding and noncoding regions are under different evolutionary constraints, with high levels of concerted evolution among gene duplicates occurring predominantly in the noncoding regions. Our data suggest that 2 functionally distinct pRNases have been selected for in the colobine monkeys, with one group adapting to the role of a digestive enzyme by evolving at an increased rate with loss of positive charge, namely arginine residues. Conclusions relating our data to general hypotheses of evolution following gene duplication are discussed.  相似文献   

8.
Large scale changes in nuclear DNA amount accompany the evolution of species of higher plants. Much of the nuclear DNA accrued during the evolution of species does not encode genetic information and is selectively neutral. Nonetheless, the pattern of distribution of the excess DNA within and between chromosome complements suggests that there are rigid constraints underlying evolutionary changes in genome organisation. A five-fold increase in the amount of nuclear DNA has occurred in the evolution ofLathyrus species. Not withstanding this massive DNA variation, species show consistently similar patterns in base sequence proliferation, divergence and DNA distribution within and between chromosome complements. Within chromosome complements, the excess DNA is distributed evenly in all chromosomes irrespective of the large differences in chromosome size and, between complements, DNA distribution is discontinuous; species cluster into DNA groups with remarkably regular intervals. Similar constraints govern the frequency and distribution of chiasmata in the chromosome complements. Between species chiasma frequency and nuclear DNA amounts are not correlated but within complements it is positively correlated with the amount of DNA contained in each chromosome.  相似文献   

9.
The quest for evolutionary mechanisms providing separation between the coding (exons) and noncoding (introns) parts of genomic DNA remains an important focus of genetics. This work combines an analysis of the most recent achievements of genomics and fundamental concepts of random processes to provide a novel point of view on genome evolution. Exon sizes in sequenced genomes show a lognormal distribution typical of a random Kolmogoroff fractioning process. This implies that the process of intron incretion may be independent of exon size, and therefore could be dependent on intron-exon boundaries. All genomes examined have two distinctive classes of exons, each with different evolutionary histories. In the framework proposed in this article, these two classes of exons can be derived from a hypothetical ancestral genome by (spontaneous) symmetry breaking. We note that one of these exon classes comprises mostly alternatively spliced exons.  相似文献   

10.
 One of the critical requirements of data analysis involving large DNA sequences is an effective statistical summarization of those sequences. In this article DNA sequences have been analyzed based on word frequencies. Our analysis focuses on the detection of structural signature of a genome reflected in word frequencies and identification of phylogenetic relationships among different species reflected in the variation of word distributions in their DNA sequences. We have carried out a statistical study of the complete genome of baker's yeast, of various ribosomal RNA sequences from different prokaryotic and eukaryotic organisms and of the full genomes of some bacteriophages. Our exploratory analysis amply demonstrates the usefulness of DNA word frequencies in reducing the dimensionality of large sequences while retaining some of the structural information there that can have biological significance. Some conceptual issues that arise in course of our investigation have been addressed. A few interesting problems related to the statistics of DNA words have been pointed out with some indication of their possible solutions. The work has been partially motivated by the fact that sequence alignment and homology techniques that are quite popular for comparing and analyzing relatively smaller DNA sequences of nearly equal sizes are not applicable to data consisting of large sequences with widely varying sizes, which may contain segments with unknown or no biological functions, and consequently their comparison through functional homology is either impossible or extremely difficult. Received: 15 October 2000 / Revised version: 8 October 2002 Published online: 28 February 2003 Current address: CF186, Salt lake, Calcutta 700064, India Research presented here was supported in part by a grant from Indian Statistical Institute. Key words or phrases: Average linkage clustering – Chernoff's faces – Dendrograms – DNA words – F-ranks of words – F-ratios of words – l 1-distance – Phylogenetic relationships – Rank correlation – Single linkage clustering  相似文献   

11.
The Mlc1 gene of Drosophila melanogaster encodes two MLC1 isoforms via developmentally regulated alternative pre-mRNA splicing. In larval muscle and tubular and abdominal muscles of adults, all of the six exons are included in the spliced mRNA, whereas, in the fibrillar indirect flight muscle of adult, exon 5 is excluded from the mRNA. We show that this tissue-specific pattern of alternative splicing of the Mlc1 pre-mRNA is conserved in D. simulans, D. pseudoobscura, and D. virilis. Isolation and sequencing of the Mlc1 genes from these three other Drosophila species have revealed that the overall organization of the genes is identical and that the genes have maintained a very high level of sequence identity within the coding region. Pairwise amino acid identities are 94%-99%, and there are no charge changes among the proteins. Total nucleotide divergence within the coding region of the four genes supports the accepted genealogy of these species, but the data indicate a significantly higher rate of amino acid replacement in the branch leading to D. pseudoobscura. A comparison of nucleotide substitutions in the coding portions of exon 5 and exon 6, which encode the alternative carboxyl termini of the two MLC1 isoforms, suggests that exon 5 is subject to greater evolutionary constraints than is exon 6. In addition to the coding sequences, there is significant sequence conservation within the 5' and 3' noncoding DNA and two of the introns, including one that flanks exon 5. These regions are candidates for cis- regulatory elements. Our results suggest that evolutionary constraints are acting on both the coding and noncoding sequences of the Mlc1 gene to maintain proper expression and function of the two MLC1 polypeptides.   相似文献   

12.
13.
The evolutionary origin of complex organs challenges empirical study because most organs evolved hundreds of millions of years ago. The placenta of live-bearing fish in the family Poeciliidae represents a unique opportunity to study the evolutionary origin of complex organs, because in this family a placenta evolved at least nine times independently. It is currently unknown whether this repeated evolution is accompanied by similar, repeated, genomic changes in placental species. Here, we compare whole genomes of 26 poeciliid species representing six out of nine independent origins of placentation. Evolutionary rate analysis revealed that the evolution of the placenta coincides with convergent shifts in the evolutionary rate of 78 protein-coding genes, mainly observed in transporter- and vesicle-located genes. Furthermore, differences in sequence conservation showed that placental evolution coincided with similar changes in 76 noncoding regulatory elements, occurring primarily around genes that regulate development. The unexpected high occurrence of GATA simple repeats in the regulatory elements suggests an important function for GATA repeats in developmental gene regulation. The distinction in molecular evolution observed, with protein-coding parallel changes more often found in metabolic and structural pathways, compared with regulatory change more frequently found in developmental pathways, offers a compelling model for complex trait evolution in general: changing the regulation of otherwise highly conserved developmental genes may allow for the evolution of complex traits.  相似文献   

14.
Summary Though most birds and insects are capable of flight (volant) some species are flightless. In this paper I test the hypothesis that phylogenetic constraints have played a role in the evolution of flightlessness. If speciation occurred after the evolutionary transition to flightlessness, inferences concerning the importance of particular aspects of the environment on the probability of the evolution of flightlessness may be statistically spurious because of the inflation of the sample size. Among birds, ratites and penguins illustrate the phenomenon of considerable speciation subsequent to the transition to the evolution of flightlessness. In contrast, the rails represent a group in which each flightless species probably represents a separate evolutionary transition. There are many more flightless insect species than bird species and several orders are monomorphically flightless, the sometimes enormous speciation within the order following and possibly being a consequence of the evolution of flightlessness. While it can be shown in insects that flightlessness has evolved independently many times, there are at least as many cases in which the question cannot be resolved. Therefore, in both birds and insects phylogenetic effects should not be ignored, for the number of evolutionary transitions may be much less than the number of species. The effect of incorporating phylogenetic (or at least taxonomic) constraints into the analysis of habitat factors associated with flightlessness is considered.  相似文献   

15.
Kolesnikov NN  Elisafenko EA 《Genetika》2010,46(10):1379-1385
The Xist gene belongs to the class of long noncoding regulatory RNA genes which play a key role in the process of inactivation of one of the X chromosomes in females of placental mammals. Based on interspecific comparative sequence analysis performed using a set ofbioinformatic programs and approaches, the exon-intron gene structure was first described in two species, elephant and armadillo, belonging to the most primitive placental mammal groups, Afrotheria and Xenarthra. Using multiple sequence alignment of the species representing all main groups of placental mammals (12 species), consensus sequence of the ancestral gene was reconstructed. In the gene structure four evolutionary conserved regions with the identity level of 90% and the sizes of more than 100 bp were identified. Substantial contribution of transposable elements to the gene origin, as well as mosaic evolution of certain elements of the Xist locus was demonstrated. It is likely that the ancestral gene consisted often exons and was formed before the radiation of placental mammals, in the period from 140 to 105 Myr ago.  相似文献   

16.
Codon Usage Bias and Base Composition of Nuclear Genes in Drosophila   总被引:16,自引:8,他引:8       下载免费PDF全文
E. N. Moriyama  D. L. Hartl 《Genetics》1993,134(3):847-858
The nuclear genes of Drosophila evolve at various rates. This variation seems to correlate with codon-usage bias. In order to elucidate the determining factors of the various evolutionary rates and codon-usage bias in the Drosophila nuclear genome, we compared patterns of codon-usage bias with base compositions of exons and introns. Our results clearly show the existence of selective constraints at the translational level for synonymous (silent) sites and, on the other hand, the neutrality or near neutrality of long stretches of nucleotide sequence within noncoding regions. These features were found for comparisons among nuclear genes in a particular species (Drosophila melanogaster, Drosophila pseudoobscura and Drosophila virilis) as well as in a particular gene (alcohol dehydrogenase) among different species in the genus Drosophila. The patterns of evolution of synonymous sites in Drosophila are more similar to those in the prokaryotes than they are to those in mammals. If a difference in the level of expression of each gene is a main reason for the difference in the degree of selective constraint, the evolution of synonymous sites of Drosophila genes would be sensitive to the level of expression among genes and would change as the level of expression becomes altered in different species. Our analysis verifies these predictions and also identifies additional selective constraints at the translational level in Drosophila.  相似文献   

17.
18.
I introduce a Markov probabilistic model of transitions among discrete morphological states as a method for describing and testing nonrandom patterns of evolutionary change. The Markov model assumes one-generational dependency, i.e., that the future direction of evolutionary change depends on the current morphology of a species, not on any history of changes. This model is very flexible, allowing for any number of discrete states to describe morphology, yet permit rigorous testing of even complex evolutionary hypotheses. I apply this model to changes in seed dispersal mechanisms within 571 genera of Neotropical plants, using cladistic methods to infer the ancestral and derived states within each genus. I then test a series of progressively more complex hypotheses about the constraints that might shape the patterns of observed evolutionary transitions: 1) no transition constraints; 2) all dispersal mechanisms are equally labile evolutionarily; 3) the probability of particular evolutionary transitions among dispersal mechanisms depends on the descendant state but not on the ancestral state; 4) transition probabilities differ among pairs of dispersal mechanisms, but are reciprocal within such pairs. More complex hypotheses matched the data significantly better than did simpler hypotheses. However, only one of the hypotheses (reciprocal transitions) fit the observed data and then only for the most cautious interpretation of the frequencies of transitions within genera. These results suggest that evolutionary transitions among major adaptive syndromes are indeed ordered, and the observed patterns of transitions suggest possible reasons for such macroevolutionary structure.  相似文献   

19.
We have determined the nucleotide sequence of a 1,200-base pair (bp) genomic fragment that includes the kappa-chain constant-region gene (C kappa) from two species of native Australian rodents, Rattus leucopus cooktownensis and Rattus colletti. Comparison of these sequences with each other and with other rodent C kappa genes shows three surprising features. First, the coding regions are diverging at a rate severalfold higher than that of the nearby noncoding regions. Second, replacement changes within the coding region are accumulating at a rate at least as great as that of silent changes. Third, most of the amino acid replacements are localized in one region of the C kappa domain--namely, the carboxy-terminal "bends" in the alpha-carbon backbone. These three features have previously been described from comparisons of the two allelic forms of C kappa genes in R. norvegicus. These data imply the existence of considerable evolutionary constraints on the noncoding regions (based on as yet undetermined functions) or powerful positive selection to diversify a portion of the constant-region domain (whose physiological significance is not known). These surprising features of C kappa evolution appear to be characteristic only of closely related C kappa genes, since comparison of rodent with human sequences shows the expected greater conservation of coding regions, as well as a predominance of silent nucleotide substitutions within the coding regions.   相似文献   

20.
Patterns of word use both reflect and influence a myriad of human activities and interactions. Like other entities that are reproduced and evolve, words rise or decline depending upon a complex interplay between their intrinsic properties and the environments in which they function. Using Internet discussion communities as model systems, we define the concept of a word niche as the relationship between the word and the characteristic features of the environments in which it is used. We develop a method to quantify two important aspects of the size of the word niche: the range of individuals using the word and the range of topics it is used to discuss. Controlling for word frequency, we show that these aspects of the word niche are strong determinants of changes in word frequency. Previous studies have already indicated that word frequency itself is a correlate of word success at historical time scales. Our analysis of changes in word frequencies over time reveals that the relative sizes of word niches are far more important than word frequencies in the dynamics of the entire vocabulary at shorter time scales, as the language adapts to new concepts and social groupings. We also distinguish endogenous versus exogenous factors as additional contributors to the fates of words, and demonstrate the force of this distinction in the rise of novel words. Our results indicate that short-term nonstationarity in word statistics is strongly driven by individual proclivities, including inclinations to provide novel information and to project a distinctive social identity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号