首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly enantioselective carbonyl reductase produced by a new yeast strain Candida viswanathii MTCC 5158, which was isolated using an acetophenone enriched medium, has been purified and characterized. The enzyme has been purified to near homogeneity using ammonium sulfate precipitation, ion exchange and gel filtration chromatography. The molecular properties of the carbonyl reductase suggested the native enzyme to be tetrameric, with an apparent molecular weight of 120 kDa, the monomer being about 29 kDa. Acetyl aryl ketones were found to be the preferred substrates for the enzyme and the best reaction was the enantioselective reduction of acetophenone. The enzyme yielded (S)-alcohol in preference to (R)-alcohol and utilized NADH, but not NADPH as the cofactor. The purified enzyme exhibited maximum enzyme activity at pH 7.0 and 60 °C. The enzyme retained about 80% of its activity after 7 h incubation at 25 °C in sodium phosphate buffer (50 mM, pH 7.0). The addition of reducing agents like dithiothreitol and β-mercaptoethanol enhanced the enzyme activity while organic solvents, detergents and chaotropic agents had deleterious effect on enzyme activity. Metal chelating agents like hydroxyquinoline and o-phenanthroline have significant effect on enzyme activity suggesting that the carbonyl reductase required the presence of a tightly bound metal ion for activity or stability. The maximum reaction rate (Vmax) and apparent Michaelis–Menten constant (Km) for acetophenone and NADH were 59.21 μmol/(min mg) protein and 0.153 mM and 82.64 μmol/(min mg) protein and 0.157 mM at a concentration range of 0.2–2 mM acetophenone (NADH fixed at 0.5 mM) and 0.1–0.5 mM NADH (acetophenone fixed at 2 mM), respectively.  相似文献   

2.
An extracellular polygalacturonase (PGase) from Mucor rouxii NRRL 1894 was purified to homogeneity by two chromatographic steps using CM-Sepharose and Superdex 75. The purified enzyme was a monomer with a molecular weight of 43100 Da and a pI of 6. The PGase was optimally active at 35 °C and at pH 4.5. It was stable up to 30 °C and stability of PGase decrease rapidly above 60 °C. The extent of hydrolysis of different pectins was decreased with increasing of degrees of esterification. Except Mn2+, all the examined metal cations showed inhibitory effects on the enzyme activity. The apparent Km and Vmax values for hydrolyze of polygalacturonic acid (PGA) were 1.88 mg/ml and 0.045 μmol/ml/min, respectively. The enzyme released a series of oligogalacturonates from polygalacturonic acid indicating that it had an endo-action. Its N-terminal sequence showed homologies with the endopolygalacturonase from the psychrophilic fungus Mucor flavus.  相似文献   

3.
Organotins are known to induce imposex (pseudohermaphroditism) in marine neogastropods and are suggested to act as specific endocrine disruptors, inhibiting the enzyme-mediated conversion of steroid hormones. Therefore, we investigated the in vitro effects of triphenyltin (TPT) on human 5-reductase type 2 (5-Re 2), cytochrome P450 aromatase (P450arom), 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD 3), 3β-HSD type 2 and 17β-HSD type 1 activity. First, the present study demonstrates that significant amounts of TPT occurred in the blood of eight human volunteers (0.17–0.67 μg organotin cation/l, i.e. 0.49–1.92 nmol cation/l). Second, TPT showed variable inhibitory effects on all the enzymes investigated. The mean IC50 values were 0.95 μM for 5-Re 2 (mean of n=4 experiments), 1.5 μM for P450arom (n=5), 4.0 μM for 3β-HSD 2 (n=1), 4.2 μM for 17β-HSD 3 (n=3) and 10.5 μM for 17β-HSD 1 (n=3). To exclude the possibility that the impacts of TPT are mediated by oxidizing essential thiol residues of the enzymes, the putative compensatory effects of the reducing agent dithioerythritol (DTE) were investigated. Co-incubation with DTE (n=3) resulted in dose-response prevention of the inhibitory effects of 100 μM deleterious TPT concentrations on 17β-HSD 3 (EC50 value of 12.9 mM; mean of n=3 experiments), 3β-HSD 2 (0.90 mM; n=3), P450arom (0.91 mM; n=3) and 17β-HSD 1 (0.21 mM; n=3) activity. With these enzymes, the use of 10 mM DTE resulted in an at least 80% antagonistic effect, whereas, the effect of TPT on 5-Re 2 was not compensated. In conclusion, the present study shows that TPT acts as an unspecific, but significant inhibitor of human sex steroid hormone metabolism and suggests that the inhibitory effects are mediated by the interaction of TPT with critical cysteine residues of the enzymes.  相似文献   

4.
Human type I placental 3β-hydroxy-5-ene-steroid dehydrogenase/steroid 5→4-ene-isomerase (3β-HSD/isomerase) synthesizes androstenedione from fetal dehydroepiandrosterone and progesterone from pregnenolone. The full length cDNA that encodes type I 3β-HSD/isomerase was inserted into the baculovirus, Autographa californica multiple nucleocapsid polyhedrosis virus, and expressed in Spodoptera fungiperda (Sf-9) insect cells. Western blots showed that the baculovirus-infected Sf-9 cells produced an immunoreactive protein that co-migrated with purified placental 3β-HSD/isomerase. Ultracentrifugation localized the expressed enzyme activities in all the membrane-associated organelles of the Sf-9 cell (nuclear, mitochondrial and microsomal). Kinetic studies showed that the expressed enzyme has 3β-HSD and isomerase activities. The Michaelis-Menton constant is very similar for the 3β-HSD substrate, 5-androstan-3β-o1-17-one, in the Sf-9 cell homogenate (Km = 17.9 μM) and placental microsomes (Km = 16.7 μM). The 3β-HSD activity (Vmax = 14.5 nmol/min/mg) is 1.6-fold higher in the Sf-9 cell homogenate compared to placental microsomes (Vmax = 9.1 nmol/min/mg). The Km values are almost identical for the isomerase substrate, 5-androstene-3,17-dione, in the Sf-9 cell homogenate (Km = 14.7 μM) and placental microsomes (Km = 14.4 μM). The specific isomerase activity is 1.5-fold higher in the Sf-9 cells (Vmax = 25.7 nmol/min/mg) relative to placenta (Vmax = 17.2 nmol/min/mg). These studies show that our recombinant baculovirus system over-expresses fully active enzyme that is kinetically identical to native 3β-HSD/isomerase in human placenta.  相似文献   

5.
Esterification of lysophosphatidylcholine (LPC) with conjugated linoleic acid (CLA) was carried out using porcine pancreatic phospholipase A2 (PLA2). PLA2 only slightly synthesized phosphatidylcholine containing CLA (CLA-PC) at 2.6% by the addition of water. Addition of formamide in place of water markedly increased the yield of CLA-PC. In addition, synthesis of CLA-PC by PLA2 was affected by the amount of substrate CLA and PLA2 in the reaction system. Under optimal reaction conditions using 11 mg LPC, 18 mg CLA, 550 mg glycerol, 50 μL formamide, 3.3 × 104 U PLA2, and 0.3 μmol CaCl2 at 37 °C for 6 h, the reaction yield of CLA-PC reached 65 mol%. Furthermore, addition of protein such as albumin and casein suppressed the decrease of CLA-PC yield after 6 h. PLA2 exhibited the highest activity for the 10t,12c-CLA isomer among four CLA isomers (9c,11t-CLA, 9c,11c-CLA, 9t,11t-CLA and 10t,12c-CLA), whereas that for 9c,11c-CLA was the lowest. These results showed that the present esterification system for LPC and CLA by PLA2 is effective for producing CLA-PC.  相似文献   

6.
Antifungal compounds in the culture filtrate from Bacillus subtilis NSRS 89-24 that inhibited the growth of Pyricularia grisea and Rhizoctonia solani were mainly heat stable as the filter sterilized culture filtrate showed higher activity than an autoclaved one. The heat stable and labile components were due to an antibiotic and a β-1,3-glucanase, respectively. This β-1,3-glucanase was purified and characterized. Glucanase activity in the culture medium of B. subtilis NSRS 89-24 was inducible in the presence of 0.3% chitin, reaching a maximum on day 5. After purification, activity was associated with a protein of molecular mass of approximately 95.5 kDa by both gel filtration and native PAGE. Two major bands of Mr 64.6 and 32.4 kDa were revealed by SDS–PAGE. The enzyme had a Km of 0.9 mg/ml, and Vmax of 0.11 U, the optimal pH was 6.5–9.5 and was stable up to 50 °C. Both the pure enzyme and the antibiotic extract from the culture filtrate of the B. subtilis separately inhibited R. solani and P. grisea with MIC values of 12.5 and 6.25 mU/ml and 3.13 and 1.56 μg/ml, respectively. The glucanase enzyme in combination with the antibiotic showed a strong synergistic inhibitory effect on the hyphal growth of both fungi.  相似文献   

7.
A new flexible sensor for in vitro experiments was developed to measure the surface potential, Φ, and its gradient, E (electric near field), at given sites of the heart. During depolarisation, E describes a vector loop from which direction and magnitude of local conduction velocity θ can be computed. Four recording silver electrodes (14 μm × 14 μm) separated by 50 μm, conducting leads, and solderable pads were patterned on a 50 μm thick polyimide film. The conductive structures, except the electrodes, were isolated with polyimide, and electrodes were chlorided. Spacer pillars mounted on the tip fulfil two functions: they keep the electrodes 70 μm from the tissue allowing non-contact recording of Φ and prevent lateral slipping. The low mass (9.1 mg) and flexibility (6.33 N/m) of the sensor let it easily follow the movement of the beating heart without notable displacement. We examined the electrodes on criteria like rms-noise of Φ, signal-to-noise ratio of Φ and E, maximum peak-slope recording dΦ/dt, and deviation of local activation time (LAT) from a common signal and obtained values of 24–28 μV, 46 and 41 dB, 497–561 V/s and no differences, respectively. With appropriate data acquisition (sampling rate 100 kHz, 24-bit), we were able to record Φ and to monitor E and θ on-line from beat-to-beat even at heart rates of 600 beats/min. Moreover, this technique can discriminate between uncoupled cardiac activations (as occur in fibrotic tissue) separated by less than 1 mm and 1 ms.  相似文献   

8.
Extracellular thermostable lipase produced by the thermophilic Bacillus stearothermophilus MC 7 was purified to 19.25-fold with 10.2% recovery. The molecular weight of the purified enzyme determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was shown to be 62 500 Da. The purified enzyme expressed maximum activity at 75–80 °C and its half life was 30 min at 70 °C. The Km and Vmax were calculated to be, respectively, 0.33 mM and 188 μM min−1 mg−1 with p-nitrophenyl palmitate (pNPP) as a substrate. Enzyme activity was inhibited by divalent ions of heavy metals, thiol and serine inhibitors, whereas calcium ion stimulated its activity. The most advantageous method for immobilization was found to be ionic binding to DEAE Cellulose. The enzyme was able to hydrolyze both soluble and insoluble emulsified substrates and was classified as a lipase, expressing some esterase activity as well.  相似文献   

9.
The bioconversion of propionitrile to propionamide was catalysed by nitrile hydratase (NHase) using resting cells of Microbacterium imperiale CBS 498-74 (formerly, Brevibacterium imperiale). This microorganism, cultivated in a shake flask, at 28 °C, presented a specific NHase activity of 34.4 U mgDCW−1 (dry cell weight). The kinetic parameters, Km and Vmax, tested in 50 mM sodium phosphate buffer, pH 7.0, in the propionitrile bioconversion was evaluated in batch reactor at 10 °C and resulted 21.6 mM and 11.04 μmol min−1 mgDCW−1, respectively. The measured apparent activation energy, 25.54 kJ mol−1, indicated a partial control by mass transport, more likely through the cell wall.

UF-membrane reactors were used for kinetic characterisation of the NHase catalysed reaction. The time dependence of enzyme deactivation on reaction temperature (from 5 to 25 °C), on substrate concentrations (from 100 to 800 mM), and on resting cell loading (from 1.5 to 200 μg  ml−1) indicated: lower diffusional control (Ea=37.73 kJ mol−1); and NHase irreversible damage caused by high substrate concentration. Finally, it is noteworthy that in an integral reactor continuously operating for 30 h, at 10 °C, 100% conversion of propionitrile (200 mM) was attained using 200 μg  ml−1 of resting cells, with a maximum volumetric productivity of 0.5 g l−1 h−1.  相似文献   


10.
This article reports the purification of a renin-like enzyme (an aspartyl protease) from head parts of the leech Theromyzon tessulatum. After four steps of purification including gel permeation and anion exchange chromatographies followed by reversed-phase HPLC, this enzyme was purified to homogeneity. The renin-like enzyme (of 32 kDa) hydrolyses at neutral pH and at 37°C, the Leu10-Leu11 bond of synthetic porcine angiotensinogen tetradecapeptide yielding the angiotensin I and the Leu11-Val12-Tyr13-Ser14 peptide as products, with a specific activity of 1.35 pmol AI/min/mg (Km 22 μM; Kcat 2.7). The hydrolysis of angiotensinogen is inhibitable at 90% by pepstatin A (IC50 = 4.6 μM), consistent with a renin activity. This is the first biochemical evidence of renin-like enzyme in invertebrates.  相似文献   

11.
Phaseolus vulgaris L. cv. Kinghorn Wax seedlings, supplied with nutrient solution containing either 0 or 5 mM nitrate as sole N source, were exposed to 0.25 μl/l NO2 for 6 hr each day for 10 days at continuous photosynthetic photon flux (PPF) of 100, 300, 500 or 700 μmol m−2 sec−1. There was a significant interaction of PPF and nitrate. Shoot and root dry weights increased with increasing PPFs only when nitrate was supplied. The main effects of NO2 on plant growth were significant; none of the interactions involving NO2 were significant. Exposure to NO2 decreased shoot and root dry weight in both the presence and absence of nutrient N and at all PPF levels. All interactions were significant for in vitro leaf nitrate reductase activity (NRA), which increased markedly at PPFs above 100 μmol m−2 sec−1 when nitrate was supplied. Treatment with NO2 strongly inhibited enzyme activity in the presence of nitrate, particularly at the 300 μmol m−2 sec−1 PPF level. These experiments demonstrated that PPF level does not modify the effect of NO2 on growth but does have a major effect on NRA and on NO2 effects on NRA in the presence of nutrient nitrate.  相似文献   

12.
A new formaldehyde-selective biosensor was constructed using NAD+- and glutathione-dependent recombinant formaldehyde dehydrogenase as a bio-recognition element immobilised on the surface of Si/SiO2/Si3N4 structure. Sensor's response to formaldehyde was evaluated by capacitance measurements. The calibration curves obtained for formaldehyde concentration range from 10 μM to 20 mM showed a broad linear response with a sensitivity of 31 mV/decade and a detection limit about 10 μM. It has been shown that the output signal decreases with the increase of borate buffer concentration and the best sensitivity is observed in 2.5 mM borate buffer, pH 8.40. The response of the created formaldehyde-sensitive biosensor has also been examined in 2.5 mM Tris–HCl buffer, and the shift to the positive bias of the C(V) curves along with the potential axis has been observed, but the sensitivity of the biosensor in this buffer is decreased dramatically to the value of 2.4 mV/decade.  相似文献   

13.
The photosynthetic capacity of Myriophyllum salsugineum A.E. Orchard was measured, using plants collected from Lake Wendouree, Ballarat, Victoria and grown subsequently in a glasshouse pond at Griffith, New South Wales. At pH 7.00, under conditions of constant total alkalinity of 1.0 meq dm−3 and saturating photon irradiance, the temperature optimum was found to be 30–35°C with rates of 140 μmol mg−1 chlorophyll a h−1 for oxygen production and 149 μmol mg−1 chlorophyll a h−1 for consumption of CO2. These rates are generally higher than those measured by other workers for the noxious Eurasian water milfoil, Myriophyllum spicatum L., of which Myriophyllum salsugineum is a close relative. The light-compensation point and the photon irradiance required to saturate photosynthetic oxygen production were exponentially dependent on water temperature. Over the temperature range 15–35°C the light-compensation point increased from 2.4 to 16.9 μmol (PAR) m−2 s−1 for oxygen production while saturation photon irradiance increased from 41.5 to 138 μmol (PAR) m−2 s−1 for oxygen production and from 42.0 to 174 μmol (PAR) m−2 s−1 for CO2 consumption. Respiration rates increased from 27.1 to 112.3 μmol (oxygen consumed) g−1 dry weight h−1 as temperature was increased from 15 to 35°C. The optimum temperature for productivity is 30°C.  相似文献   

14.
A Phanerochaete chrysosporium cDNA predicted to encode endo-1,4-β-d-mannanase, man5D, was cloned and expressed in Aspergillus niger. The coding region of the gene man5D was predicted to contain, in order from the N-terminal: a secretory signal peptide, cellulose-binding domain, linker region, and glycosyl hydrolase family 5 catalytic site. The enzyme was purified from culture filtrate of A. niger transformants that carried the recombinant man5D. Recombinant Man5D had an apparent molecular size of about 65 kDa by SDS-PAGE, and optimal activity at pH 4.0–6.0 and 60 °C. It was stable from pH 4.0 to 8.0 and up to 60 °C. The enzyme showed affinity for Avicel cellulose, suggesting that the predicted cellulose-binding domain is biologically functional. The specific activities of Man5D on mannan, galactomannan, and glucomannan at pH 5 and 60 °C ranged from 160 to 460 μmol/(min mg), with apparent Km values from 0.54 to 2.3 mg/mL. Product analysis results indicated that Man5D catalyzes endo-cleavage, and appears to have substantial transglycosylase activity. When used to treat softwood kraft pulp, Man5D hydrolyzed mainly glucomannan and exhibited a positive effect as a prebleaching agent. Compared to a commercial prebleaching with xylanase, the prebleaching effect of Man5D was weaker but with reduced loss of fibre yield as determined by the release of solubilized sugars.  相似文献   

15.
16.
Using recombinant sulfotransferases (SULTs) expressed in E. coli, β-estradiol (E2) sulfonation was examined to determine which SULT enzyme is responsible for producing E2-17-sulfate (E2-17-S). SULTs 1A1*1, 1A1*2, 1A3, 1E1 and 2A1 all sulfated E2 to varying extents. No activity was observed with SULT1B1. Among the SULTs studied, SULT2A1 produced primarily E2-3-sulfate (E2-3-S), but also some E2-17-S and trace amounts of E2 disulfate. SULT2A1 had a Km value of 1.52 μM for formation of E2-3-S and 2.95 μM for formation of E2-17-S. SULT2A1 had the highest Vmax of 493 pmol/min/mg protein for formation of E2-3-S, which was 8.8- and 47-fold higher than the maximal rates of formation of E2-17-S and E2 disulfate, respectively. SULT2A1 formed E2-3-S more efficiently. However, when celecoxib (0–160 μM) was included in the incubation with either SULT2A1 or human liver cytosol, sulfonation switched from E2-3-S to E2-17-S in a concentration-dependent manner. The ratio of E2-17-S/E2-3-S went up to 15 with SULT2A1, and was saturated at 1 with human liver cytosol. In both cases, more E2-17-S was formed, with the unreacted E2 remained unchanged, suggesting celecoxib probably bound to a separate effector site to cause a conformational change in SULT2A1, which favored production of E2-17-S. The ability of celecoxib to alter the position of sulfonation of E2 may in part explain its success in the experimental prevention and treatment of breast cancer.  相似文献   

17.
Immobilization of catalase into chemically crosslinked chitosan beads   总被引:8,自引:0,他引:8  
Bovine liver catalase was immobilized into chitosan beads prepared in crosslinking solution. Various characteristics of immobilized catalase such as the pH–activity curve, the temperature–activity curve, thermal stability, operational stability, and storage stability were evaluated. Among them the pH optimum and temperature optimum of free and immobilized catalase were found to be pH 7.0 and 35 °C. The Km value of immobilized catalase (77.5 mM) was higher than that of free enzyme (35 mM). Immobilization decreased in Vmax value from 32,000 to 122 μmol (min mg protein)−1. It was observed that operational, thermal and storage stabilities of the enzyme were increased with immobilization.  相似文献   

18.
We describe the structure and function of psychrophilic alanine racemases from Bacillus psychrosaccharolyticus and Pseudomonas fluorescens. These enzymes showed high catalytic activities even at 0°C and were extremely labile at temperatures over 35°C. The enzymes were also found to be less resistant to organic solvents than alanine racemases from thermophilic and mesophilic bacteria, both in vivo and in vitro. Both enzymes have a dimeric structure and contain 2 mol of pyridoxal 5′-phosphate (PLP) per mol as a coenzyme. The enzyme from B. psychrosaccharolyticus was found to have a markedly large Km value (5.0 μM) for PLP in comparison with other reported alanine racemases, and was stable at temperatures up to 50°C in the presence of excess amounts of PLP. The dissociation of PLP from the P. fluorescens enzyme may trigger the unfolding of the secondary structure. The enzyme from B. psychrosaccharolyticus has a distinguishing hydrophilic region around residue no. 150 in its deduced amino acid sequence, whereas the corresponding regions of other Bacillus alanine racemases are hydrophobic. The position of this region in the three dimensional structure of this enzyme was predicted to be in a surface loop surrounding the active site. This hydrophilic region may interact with solvent, reduce the compactness of the active site, and destabilize the enzyme.  相似文献   

19.
Yamauchi R  Ohinata K  Yoshikawa M 《Peptides》2003,24(12):1955-1961
β-Lactotensin, a neurotensin NT2 agonist derived from β-lactoglobulin, has hypocholesterolemic activity after administration for 2 days at a dose of 30 mg/kg (i.p.) or 100 mg/kg (p.o.) for 2 days in mice fed a high-cholesterol/cholic acid diet. The onset of hypocholesterolemic activity of β-lactotensin was observed 90 min after a single i.p. or p.o. administration at the same dose as described above. Neurotensin also induced hypocholesterolemic activity 90 min after single i.p. administration at a dose of 2 μg per mouse but was ineffective after oral administration. The rapid onset of hypocholesterolemic activities of β-lactotensin and neurotensin was blocked by levocabastine (50 μg/kg), an NT2 antagonist, and raclopride (0.5 mg/kg), a dopamine D2 antagonist.  相似文献   

20.
Preillumination of intact cells of the eukaryotic, halotolerant, cell-wall-less green alga Dunaliella salina induces a dark ATPase activity the magnitude of which is about 3–5-fold higher than the ATPase activity observed in dark-adapted cells. The light-induced activity arises from the activation and stabilization in vivo of chloroplast coupling factor 1 (CF1). This activity, 150–300 μmol ATP hydrolyzed/mg Chl per h, rapidly decays (with a half-time of about 6 min at room temperature) in intact cells but only slowly decays (with a half-time of about 45 min at room temperature) if the cells are lysed by osmotic shock immediately after illumination. The activated form of the ATPase in lysed cells is inhibited if the membranes are treated with ferri- but not ferrocyanide, suggesting that the stabilization of the activated form of CF1 is due to the reduction of the enzyme in vivo in the light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号