首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The total resistances to CO2 uptake by Sticta latifrons Rich, and Pseudocyphellaria amphisticta Kremp. were separated into transport and carboxylation components by calculation after transformation of net photosynthesis rate against CO2 concentration curves into a linear form. The use of this technique circumvented the problem of measuring the internal CO2 concentration of the lichen thalli. Both species exhibited an increase in transport resistance at high thallus water contents and an increase in both transport and carboxylation resistances at low water contents. At low and intermediate water contents internal transport resistances were larger than carboxylation resistances when measured at limiting CO2 concentrations. However, at ambient CO2 concentrations carboxylation processes were the dominant factors limiting photosynthesis at all, except the high, water contents.  相似文献   

2.
Net CO2 exchange rates and dark respiration rates were determined for single attached legume leaves (leaflets) after 6 to 9 days of aphid infestation. Plant-aphid combinations used were broad bean ( Vicia faba L. cv. Aquadulce) and cowpea [ Vigna unguiculata (L.) Walp. cv. Caloona)] infested with cowpea aphids ( Aphis craccivora Koch) and broad bean and garden pea ( Pisum sativum L. cv. Victory Freezer) infested with pea aphids [ Acyrthosiphon pisum (Harris)]. Leaves from all aphid-infested plants had significantly greater net CO2 exchange rates in the light than their respective controls and rates of dark respiration of leaves from infested cowpea and garden pea were also significantly greater than those of controls. Dark respiration, as a percentage of net CO2 exchange rates in the light, was greater in aphid-infested than in control plants. When the mean net daily carbon gain was calculated for the leaves of each plant-aphid combination, leaves from aphid-infested plants had the greatest gain. It is proposed that net CO2, exchange rates increased due to increased sink demand and dark respiration rates increased to meet the increased energy requirements of phloem loading and cellular maintenance associated with aphid feeding. The apparent compensatory carbon gain of infested leaves was consumed by the aphids.  相似文献   

3.
1. The affinity of photosynthesis for CO2 is calculated here as the initial slope of net-photosynthetic rate against concentration of CO2. The affinity for CO2 for pairs of freshwater macrophytes with similar leaf morphology but able or unable to use HCO3 as a carbon source was compared.
2. Species restricted to CO2 had a higher affinity for CO2 than species that were also able to use HCO3 when rates were expressed on the basis of area, dry mass and content of chlorophyll a .
3. Published values for the affinity for CO2 and the concentration of CO2 which half-saturated rate of photosynthesis were compiled and compared. Despite a large range of values, affinity for CO2 was greater for species restricted to CO2 than for those also able to use HCO3 and statistically different when the slope was expressed on the basis of dry mass and chlorophyll a content.
4. The difference in affinity is consistent with predicted benefits of a high permeability to CO2 for species relying on passive diffusion of CO2 and a lower permeability for species able to use HCO3 in order to reduce efflux of CO2 from a high internal concentration generated by active transport.
5. The implications of the different affinities are discussed in terms of species distribution.  相似文献   

4.
Effects of the current (38 Pa) and an elevated (74 Pa) CO2 partial pressure on root and shoot areas, biomass accumulation and daily net CO2 exchange were determined for Opuntia ficus-indica (L.) Miller, a highly productive Crassulacean acid metabolism species cultivated worldwide. Plants were grown in environmentally controlled rooms for 18 weeks in pots of three soil volumes (2 600, 6 500 and 26 000 cm3), the smallest of which was intended to restrict root growth. For plants in the medium-sized soil volume, basal cladodes tended to be thicker and areas of main and lateral roots tended to be greater as the CO2 level was doubled. Daughter cladodes tended to be initiated sooner at the current compared with the elevated CO2 level but total areas were similar by 10 weeks. At 10 weeks, daily net CO2 uptake for the three soil volumes averaged 24% higher for plants growing under elevated compared with current CO2 levels, but at 18 weeks only 3% enhancement in uptake occurred. Dry weight gain was enhanced 24% by elevated CO2 during the first 10 weeks but only 8% over 18 weeks. Increasing the soil volume 10-fold led to a greater stimulation of daily net CO2 uptake and biomass production than did doubling the CO2 level. At 18 weeks, root biomass doubled and shoot biomass nearly doubled as the soil volume was increased 10-fold; the effects of soil volume tended to be greater for elevated CO2. The amount of cladode nitrogen per unit dry weight decreased as the CO2 level was raised and increased as soil volume increased, the latter suggesting that the effects of soil volume could be due to nitrogen limitations.  相似文献   

5.
Abstract: A continuous dual 13CO2 and 15NH415NO3 labelling experiment was undertaken to determine the effects of ambient (350μmol mol-1) or elevated (700μmol mol-1) atmospheric CO2 concentrations on C and N uptake and allocation within 3-year-old beech ( Fagus sylvatica L.) during leafing. After six weeks of growth, total carbon uptake was increased by 63 % (calculated on total C content) under elevated CO2 but the carbon partitioning was not altered. 56 % of the new carbon was found in the leaves. On a dry weight basis was the content of structural biomass in leaves 10 % lower and the lignin content remained unaffected under elevated as compared to ambient [CO2]. Under ambient [CO2] 37 %, and under elevated [CO2] 51 %, of the lignin C of the leaves derived from new assimilates. For both treatments, internal N pools provided more than 90 % of the nitrogen used for leaf-growth and the partitioning of nitrogen was not altered under elevated [CO2]. The C/N ratio was unaffected by elevated [CO2] at the whole plant level, but the C/N ratio of the new C and N uptake was increased by 32 % under elevated [CO2].  相似文献   

6.
Plantago lanceolata L. and Trifolium repens L. were grown for 16 wk in ambient (360 μmol mol−1) and elevated (610 μmol mol−1) atmospheric CO2. Plants were inoculated with the arbuscular mycorrhizal (AM) fungus Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe and given a phosphorus supply in the form of bonemeal, which would not be immediately available to the plants. Seven sequential harvests were taken to determine whether the effect of elevated CO2 on mycorrhizal colonization was independent of the effect of CO2 on plant growth. Plant growth analysis showed that both species grew faster in elevated CO2 and that P. lanceolata had increased carbon allocation towards the roots. Elevated CO2 did not affect the percentage of root length colonized (RLC); although total colonized root length was greater, when plant size was taken into account this effect disappeared. This finding was also true for root length colonized by arbuscules. No CO2 effect was found on hyphal density (colonization intensity) in roots. The P content of plants was increased at elevated CO2, although both shoot and root tissue P concentration were unchanged. This was again as a result of bigger plants at elevated CO2. Phosphorus inflow was unaffected by CO2 concentrations. It is concluded that there is no direct permanent effect of elevated CO2 on mycorrhizal functioning, as internal mycorrhizal development and the mycorrhizal P uptake mechanism are unaffected. The importance of sequential harvests in experiments is discussed. The direction for future research is highlighted, especially in relation to C storage in the soil.  相似文献   

7.
1. Six- to eight-week greenhouse experiments with independent control of pH and dissolved CO2 evaluated the potential for CO2 enrichment to stimulate the accumulation of Al, Fe, P and N in shoots of Vallisneria americana , particularly at pH 5. These minerals were provided only as they occurred in natural lake sediments.
2. The effect of CO2 enrichment at pH 5 v pH 7.3 on growth and tissue N concentration was also determined.
3. CO2 enrichment at pH 5 effected 5.5- and 7-fold increases in total shoot accumulation of Al and Fe, respectively. In a two-way factorial experiment, CO2 enrichment yielded 6- to 11-fold greater total shoot P accumulation in plants grown on less and more fertile sediments, respectively.
4. In a three-way factorial experiment, CO2 enrichment stimulated Vallisneria growth, especially at pH 5, and resulted in a 31–58% reduction in tissue [N] for different pH × sediment combinations. These are greater reductions than previously reported. It also increased total shoot N accumulation up to 6-fold, and there were significant interactions with pH and sediment source: the CO2 enrichment effect on shoot N accumulation was greater at pH 5 than at pH 7.3, and it was greater with the more fertile sediment at pH 5.
5. Water chemistry (pH and/or [CO2]) and sediment fertility thus both indirectly influenced the accumulation of sediment-derived minerals in macrophyte shoots within the water column.  相似文献   

8.
1. Six- to eight-week greenhouse experiments with independent control of pH and dissolved CO2 evaluated the potential for CO2 enrichment to stimulate the accumulation of Al, Fe, P and N in shoots of Vallisneria americana , particularly at pH 5. These minerals were provided only as they occurred in natural lake sediments.
2. The effect of CO2 enrichment at pH 5 v pH 7.3 on growth and tissue N concentration was also determined.
3. CO2 enrichment at pH 5 effected 5.5- and 7-fold increases in total shoot accumulation of Al and Fe, respectively. In a two-way factorial experiment, CO2 enrichment yielded 6- to 11-fold greater total shoot P accumulation in plants grown on less and more fertile sediments, respectively.
4. In a three-way factorial experiment, CO2 enrichment stimulated Vallisneria growth, especially at pH 5, and resulted in a 31–58% reduction in tissue [N] for different pH × sediment combinations. These are greater reductions than previously reported. It also increased total shoot N accumulation up to 6-fold, and there were significant interactions with pH and sediment source: the CO2 enrichment effect on shoot N accumulation was greater at pH 5 than at pH 7.3, and it was greater with the more fertile sediment at pH 5.
5. Water chemistry (pH and/or [CO2]) and sediment fertility thus both indirectly influenced the accumulation of sediment-derived minerals in macrophyte shoots within the water column.  相似文献   

9.
A direct comparison of treatment uniformity and CO2 use of pure and prediluted free-air CO2 enrichment (FACE) systems was conducted in a forest ecosystem. A vertical release pure CO2 fumigation system was superimposed on an existing prediluted CO2 fumigation system and operated on alternate days. The FACE system using prediluted CO2 fumigation technology exhibited less temporal and spatial variability than the pure CO2 fumigation system. The pure CO2 fumigation system tended to over-fumigate the upwind portions of the plot and used 25% more CO2 than the prediluted CO2 fumigation system. The increased CO2 use by the pure CO2 system was exacerbated at low wind speeds. It is not clear if this phenomenon will also be observed in plots with smaller diameters and low-stature vegetation.  相似文献   

10.
Abstract. There have been seven studies of canopy photosynthesis of plants grown in elevated atmospheric CO2: three of seed crops, two of forage crops and two of native plant ecosystems. Growth in elevated CO2 increased canopy photosynthesis in all cases. The relative effect of CO2 was correlated with increasing temperature: the least stimulation occurred in tundra vegetation grown at an average temperature near 10°C and the greatest in rice grown at 43°C. In soybean, effects of CO2 were greater during leaf expansion and pod fill than at other stages of crop maturation. In the longest running experiment with elevated CO2 treatment to date, monospecific stands of a C3 sedge, Scirpus olneyi (Grey), and a C4 grass, Spartina patens (Ait.) Muhl., have been exposed to twice normal ambient CO2 concentrations for four growing seasons, in open top chambers on a Chesapeake Bay salt marsh. Net ecosystem CO2 exchange per unit green biomass (NCEb) increased by an average of 48% throughout the growing season of 1988, the second year of treatment. Elevated CO2 increased net ecosystem carbon assimilation by 88% in the Scirpus olneyi community and 40% in the Spartina patens community.  相似文献   

11.
Abstract. The objective of this study was to investigate the effects of water stress in sweet potato ( Ipomoea batatas L. [Lam] 'Georgia Jet') on biomass production and plant-water relationships in an enriched CO2 atmosphere. Plants were grown in pots containing sandy loam soil (Typic Paleudult) at two concentrations of elevated CO2 and two water regimes in open-top field chambers. During the first 12 d of water stress, leaf xylem potentials were higher in plants grown in a CO2 concentration of 438 and 666 μmol mol−1 than in plants grown at 364 μmol mol−1. The 364 μmol mol−1 CO2 grown plants had to be rewatered 2 d earlier than the high CO2-grown plants in response to water stress. For plants grown under water stress, the yield of storage roots and root: shoot ratio were greater at high CO2 than at 364 μmol mol−1; the increase, however, was not linear with increasing CO2 concentrations. In well-watered plants, biomass production and storage root yield increased at elevated CO2, and these were greater as compared to water-stressed plants grown at the same CO2 concentration.  相似文献   

12.
The effects of CO2 enrichment on growth of Xanthomonas campestris pv. pelargonii and the impact of infection on the photosynthesis and export of attached, intact, 'source' leaves of geranium ( Pelargonium x domesticum, 'Scarlet Orbit Improved' ) are reported. Two experiments were performed, one with plants without flower buds, and another with plants which were flowering. Measurements were made on healthy and diseased leaves at the CO2 levels (35 Pa or 90 Pa) at which the plants were grown. There were no losses of chlorophyll, or any signs of visible chlorosis or necrosis due to infection. Lower numbers of bacteria were found in leaves at high CO2, suggesting growth at elevated CO2 created a less favourable condition in the leaf for bacterial growth. Although high CO2 lowered the bacterial number in infected leaves, reductions in photosynthesis and export were greater than at ambient CO2. The capacity of infected source leaves to export photoassimilates at rates observed in the controls was reduced in both light and darkness. In summary, the severity of infection on source leaf function by the bacteria was increased, rather than reduced by CO2 enrichment, underscoring the need for further assessment of plant diseases and bacterial virulence in plants growing under varying CO2 levels.  相似文献   

13.
Chlamydomonas acidophila Negoro is a green algal species abundant in acidic waters (pH 2–3.5), in which inorganic carbon is present only as CO2. Previous studies have shown that aeration with CO2 increased its maximum growth rate, suggesting CO2 limitation under natural conditions. To unravel the underlying physiological mechanisms at high CO2 conditions that enables increased growth, several physiological characteristics from high- and low-CO2-acclimated cells were studied: maximum quantum yield, photosynthetic O2 evolution (Pmax), affinity constant for CO2 by photosynthesis (K0.5,p), a CO2-concentrating mechanism (CCM), cellular Rubisco content and the affinity constant of Rubisco for CO2 (K0.5,r). The results show that at high CO2 concentrations, C. acidophila had a higher K0.5,p, Pmax, maximum quantum yield, switched off its CCM and had a lower Rubisco content than at low CO2 conditions. In contrast, the K0.5,r was comparable under high and low CO2 conditions. It is calculated that the higher Pmax can already explain the increased growth rate in a high CO2 environment. From an ecophysiological point of view, the increased maximum growth rate at high CO2 will likely not be realised in the field because of other population regulating factors and should be seen as an acclimation to CO2 and not as proof for a CO2 limitation.  相似文献   

14.
Gas exchange studies in two Portuguese grapevine cultivars   总被引:8,自引:0,他引:8  
Gas exchange characteristics of leaves of Vitis vinifera L. cvs Tinta Amarela and Periquita, two grapevine cultivars grown in distinct climatic regions of Portugal, were studied under natural and controlled conditions. Daily time courses of gas exchange were measured on both a hot, sunny day and a cooler, partly cloudy day. Responses of net photosynthesis to irradiance and internal partial pressure of CO2, were also obtained. A strong correlation between net photosynthesis (PN) and leaf conductance (gs) was found during the diurnal time courses of gas exchange, as well as a relatively constant internal partial pressure of CO2 (Pi), even under non-steady-state conditions. On the cloudless day, both PN and gs were lower in the afternoon than in the morning, despite similar conditions of leaf temperature, air to leaf water vapor deficit and irradiance. The response curves of net photosynthesis to internal CO2 showed linearity up to pi values of 50 Pa, possibly indicating a substantial excess of photosynthetic capacity. When measured at low partial pressures of O2 (1 kPa), PN became inhibited at high CO2 levels. Inhibition of PN at high CO2 was absent under normal levels of O2 (21 kPa). Significant differences in gas exchange characteristics were found between the two cultivars, with T. Amarela having higher rates under similar measurement conditions. In particular, the superior performance of T. Amarela at high temperatures may represent adaptation to the warmer conditions at its place of origin.  相似文献   

15.
Evidence from 10 studies comparing angiosperm trees and 5 studies comparing conifers of differing shade‐tolerance was analysed. The number of intraphyletic comparisons in which the more shade‐tolerant species showed the greater relative increase of biomass in elevated CO2 was significantly higher than would be expected by chance alone. It is suggested that more shade‐tolerant species are inherently better disposed, in terms of plant architecture and partitioning of biomass and nitrogen, to utilise resources (light, water, nutrients) that are potentially limiting in elevated CO2 and that these traits are responsible for the interaction between shade‐tolerance and CO2 concentration. Compared with less shade‐tolerant angiosperm trees, more shade‐tolerant angiosperm species generally have a lower leaf area ratio in ambient CO2 and show a smaller relative reduction in elevated CO2. Furthermore, leaf nitrogen content is usually lower in more shade‐tolerant angiosperm species and tends to be more strongly reduced by elevated CO2 in those species. Within angiosperm trees, more shade‐tolerant species showed a stronger stimulation of net leaf photosynthetic rate in most experiments, but this trend was not significant.  相似文献   

16.
Ananas comosus L. (Merr.) (pineapple) was grown at three day/night temperatures and 350 (ambient) and 700 (elevated) μ mol mol–1 CO2 to examine the interactive effects of these factors on leaf gas exchange and stable carbon isotope discrimination ( Δ ,‰). All data were collected on the youngest mature leaf for 24 h every 6 weeks. CO2 uptake (mmol m–2 d–1) at ambient and elevated CO2, respectively, were 306 and 352 at 30/20 °C, 175 and 346 at 30/25 °C and 187 and 343 at 35/25 °C. CO2 enrichment enhanced CO2 uptake substantially in the day in all environments. Uptake at night at elevated CO2, relative to that at ambient CO2, was unchanged at 30/20 °C, but was 80% higher at 30/25 °C and 44% higher at 35/25 °C suggesting that phosphoenolpyruvate carboxylase was not CO2-saturated at ambient CO2 levels and a 25 °C night temperature. Photosynthetic water use efficiency (WUE) was higher at elevated than at ambient CO2. Leaf Δ -values were higher at elevated than at ambient CO2 due to relatively higher assimilation in the light. Leaf Δ was significantly and linearly related to the fraction of total CO2 assimilated at night. The data suggest that a simultaneous increase in CO2 level and temperature associated with global warming would enhance carbon assimilation, increase WUE, and reduce the temperature dependence of CO2 uptake by A. comosus .  相似文献   

17.
The influence of the root holoparasitic angiosperm Orobanche minor Sm. on the biomass, photosynthesis, carbohydrate and nitrogen content of Trifolium repens L. was determined for plants grown at two CO2 concentrations (350 and 550 μmol mol−1). Infected plants accumulated less biomass than their uninfected counterparts, although early in the association there was a transient stimulation of growth. Infection also influenced biomass allocation both between tissues (infected plants had lower root:shoot ratios) and within tissues:infected roots were considerably thicker before the point of parasite attachment and thinner below. Higher concentrations of starch were also found in roots above the point of attachment, particularly for plants grown in elevated CO2. Elevated CO2 stimulated the growth of T. repens only during the early stages of development. There was a significant interaction between infection and CO2 on growth, with infected plants showing a greater response, such that elevated CO2 partly alleviated the effects of the parasite on host growth. Elevated CO2 did not affect total O. minor biomass per host, the number of individual parasites supported by each host, or their time of attachment to the host root system. Photosynthesis was stimulated by elevated CO2 but was unaffected by O. minor . There was no evidence of down-regulation of photosynthesis in T. repens grown at elevated CO2 in either infected or uninfected plants. The data are discussed with regard to the influence of elevated CO2 on other parasitic angiosperm-host associations and factors which control plant responses to elevated CO2.  相似文献   

18.
Abstract.  The anthropophilic malaria mosquito Anopheles gambiae sensu stricto responds to CO2 and human skin emanations. How these odorants affect the behaviour of this mosquito species is studied in an olfactometer. Carbon dioxide is released either as an homogeneous plume or in a turbulent fashion at two different positions from the trap entrance. Anopheles gambiae is deterred from entering a trap with CO2 as the only kairomone, when presented as an homogeneous or turbulent plume. This effect is completely overcome by the addition of skin emanations to the CO2 plume, with a high proportion of mosquitoes found in the trap with skin emanations. Rearrangement of the position of the turbulent CO2 source so that it is 5 cm downwind of the trap entrance overcomes the deterrent effect of CO2. Carbon dioxide alone, however, does not elicit higher proportions caught compared with clean air. Further studies with the CO2 source positioned 5 cm downwind of the trap entrance show that skin emanations alone result in fewer mosquitoes entering the trap than CO2+ skin emanations. Skin emanations induce more mosquitoes to fly into a trap than a synthetic blend of NH3+ l-lactic acid when both are combined with CO2. It is concluded that CO2 is a poor kairomone when offered alone and that its presence in the plume at the trap entrance deters mosquitoes from entering. By contrast, when positioned just downwind of the trap entrance, CO2 appears to guide mosquitoes to the vicinity of the trap, where skin emanations then become the principle attractant, causing the mosquito trap entry response. The results of the study have implications for the design of odour-baited traps for this mosquito species.  相似文献   

19.
Seedlings of two tree species from the Atlantic lowlands of Costa Rica, Ochroma la-gopus Swartz, a fast-growing pioneer species, and Pentaclethra macroloba (Willd.) Kuntze, a slower-growing climax species, were grown under enriched atmospheric CO2 in controlled environment chambers. Carbon dioxide concentrations were maintained at 350 and 675 μl 1−1 under photosynthetic photon flux densities of 500 μol m−2 s−1 and temperatures of 26°C day and 20°C night. Total biomass of both species increased significantly in the elevated CO2 treatment; the increase in biomass was greatest for the pioneer species, O. lagopus . Both species had greater leaf areas and specific leaf weights with increased atmospheric CO2. However, the ratio of non-pho-tosynthetic tissue to leaf area also increased in both species leading to decreased leaf area ratios. Plants of both species grown at 675 μl 1−1 CO2 had lower chlorophyll contents and photosynthesis on a leaf area basis than those grown at 350 μl 1−1. Reductions in net photosynthesis occurred despite increased internal CO2 concentrations in the CO2-enriched treatment. Stomatal conductances of both species decreased with CO2-enrichment resulting in significant increases in water use efficiency.  相似文献   

20.
Soybean ( Glycine max cv. Clark) was grown at both ambient (ca 350 μmol mol−1) and elevated (ca 700 μmol mol−1) CO2 concentration at 5 growth temperatures (constant day/night temperatures of 20, 25, 30, 35 and 40°C) for 17–22 days after sowing to determine the interaction between temperature and CO2 concentration on photosynthesis (measured as A, the rate of CO2 assimilation per unit leaf area) at both the single leaf and whole plant level. Single leaves of soybean demonstrated increasingly greater stimulation of A at elevated CO2 as temperature increased from 25 to 35°C (i.e. optimal growth rates). At 40°C, primary leaves failed to develop and plants eventually died. In contrast, for both whole plant A and total biomass production, increasing temperature resulted in less stimulation by elevated CO2 concentration. For whole plants, increased CO2 stimulated leaf area more as growth temperature increased. Differences between the response of A to elevated CO2 for single leaves and whole plants may be related to increased self-shading experienced by whole plants at elevated CO2 as temperature increased. Results from the present study suggest that self-shading could limit the response of CO2 assimilation rate and the growth response of soybean plants if temperature and CO2 increase concurrently, and illustrate that light may be an important consideration in predicting the relative stimulation of photosynthesis by elevated CO2 at the whole plant level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号