首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During vaccinia virus replication, mature virions (MVs) are wrapped with cellular membranes, transported to the periphery, and exported as extracellular virions (EVs) that mediate spread. The A26 protein is unusual in that it is present in MVs but not EVs. This distribution led to a proposal that A26 negatively regulates wrapping. A26 also has roles in the attachment of MVs to the cell surface and incorporation of MVs into proteinaceous A-type inclusions in some orthopoxvirus species. However, A26 lacks a transmembrane domain, and nothing is known regarding how it associates with the MV, regulates incorporation of the MV into inclusions, and possibly prevents EV formation. Here, we provide evidence that A26 forms a disulfide-bonded complex with A27 that is anchored to the MV through a noncovalent interaction with the A17 transmembrane protein. In the absence of A27, A26 was unstable, and only small amounts were detected. The interaction of A26 with A27 depended on a C-terminal segment of A26 with 45% amino acid identity to A27. Deletion of A26 failed to enhance EV formation by vaccinia virus, as had been predicted. Nevertheless, the interaction of A26 and A27 may have functional significance, since each is thought to mediate binding to cells through interaction with laminin and heparan sulfate, respectively. We also found that A26 formed a noncovalent complex with A25, a truncated form of the cowpox virus A-type inclusion matrix protein. The latter association suggests a mechanism for incorporation of virions into A-type inclusions in other orthopoxvirus strains.  相似文献   

2.
A new ribosomal protein of 38 kDa, named A0, was detected in yeast ribosomes on immunoblotting. The antibody used here was that against A1/A2, 13 kDa acidic ribosomal proteins which cross-reacted with A0. Although A0 and A1/A2 share common antigenic determinants, they differ in the following biochemical properties. While A1/A2 could be extracted from ribosomes with ethanol and ammonium sulfate, A0 could not. A0 gave two protein spots in a less acidic region than for A1/A2 on two-dimensional gel electrophoresis. The heterogeneity observed for A0 was ascribable to phosphorylation because one spot disappeared after treatment of the ribosomes with phosphatase. The syntheses of A0 and A1/A2 are directed by different mRNA species, as judged with a cell-free translation system, ruling out the possibility that A0 is a precursor of A1/A2. Although a mammalian ribosomal protein equivalent to A0 has been shown to be associated with 13 kDa acidic proteins in the cytoplasm, essentially no A0 was detected on immunoblotting in the yeast cytosol, while a small but detectable amount of A1/A2 was present. The possibility that A0 is a eukaryotic equivalent of L10 of Escherichia coli is discussed.  相似文献   

3.
Human hemolysate contains several minor components designated Hb A1a, Hb A1b, Hb A1c, which are post-translational modifications of the major hemoglobin component A0. Individuals with diabetes mellitus have elevated levels of Hb A1c, a hemoglobin modified with a glucose moiety at the NH2 terminus of each beta chain. A new chromatographic technique using Bio-Rex 70 is described which not only allows complete separation of Hb A1a from Hb A1b but also resolution of Hb A1a into two components, designated Hb A1a1 and Hb A1a2. Carbohydrate determinations with the thiobarbituric acid procedure revealed that Hb A1a1, Hb A1a2, and Hb A1b as well as Hb A1c were glycosylated. Total phosphate analysis revealed 2.06 and 1.01 mol of phosphorus/alphabeta dimer for Hb A1a1 and Hb A1a2 respectively; Hb A1b and Hb A1c contained no detectable phosphate. Hemoglobin incubated with D-[14C]glucose-6-P co-chromatographs precisely with Hb A1a2, strongly suggesting that Hb A1a2 is glucose-6-P hemoglobin. Levels of Hb A1a1 and Hb A1a2 are normal in individuals with diabetes mellitus. Furthermore, diabetic red cells contain normal levels of glucose-6-P. Therefore, glucose-6-P hemoglobin does not serve as a significant precursor to Hb A1c. Instead Hb A1c is formed by the direct reaction of hemoglobin with glucose. This suggests that hemoglobin can serve as a model system for nonenzymatic glycosylation of protein.  相似文献   

4.
When a part of a Nitella cell, A, is covered with water and the rest of the cell, B, is in contact with a toxic solution there is an escape of solutes at B. This is followed by the escape of solutes at A which causes the death of A. Water enters at A, flows along inside the cell, and escapes at B carrying solutes with it. When this is prevented by covering A with mineral oil the escape of solutes at A is delayed and the life of A is correspondingly prolonged. It is remarkable that this occurs in spite of the fact that the hydrostatic pressure inside the cell (turgor) drops from 6.4 atmospheres to zero. It would seem that A might not be affected by the death of B if the escape of solutes could be prevented.  相似文献   

5.
RRAG A (Rag A)/Gtr1p is a member of the Ras-like small G protein family that genetically interacts with RCC1, a guanine nucleotide exchange factor for RanGTPase. RRAG A/Gtr1p forms a heterodimer with other G proteins, RRAG C and RRAG D/Gtr2p, in a nucleotide-independent manner. To further elucidate the function of RRAG A/Gtr1p, we isolated a protein that interacts with RRAG A. This protein is a novel nucleolar protein, Nop132. Nop132 is associated with the GTP form, but not the GDP form, of RRAG A, suggesting that RRAG A might regulate Nop132 function. Nop132 is also associated with RRAG C and RRAG D. The Nop132 amino acid sequence is similar to the Saccharomyces cerevisiae nucleolar Nop8p, which is associated with Gtr1p, Gtr2p, and Nip7p. Nop132 also interacts with human Nip7 and is colocalized with RRAG A, RRAG C, and Nip7. RNA interference knockdown of Nop132 inhibited cell growth of HeLa cells.  相似文献   

6.
Elevated S100A4 protein expression is associated with metastatic tumor progression and appears to be a strong molecular marker for clinical prognosis. S100A4 is a calcium-binding protein that is known to form homodimers and interacts with several proteins in a calcium-dependent manner. Here we show that S100A4 localizes to lamellipodia structures in a migrating breast cancer-derived cell line and colocalizes with a known S100A4-interacting protein, myosin heavy chain IIA, at the leading edge. We demonstrate that S100A4 mutants that are defective in either their ability to dimerize or in calcium binding are unable to interact with myosin heavy chain IIA. An S100A4 mutant that is deficient for calcium binding retains the ability to form homodimers, suggesting that S100A4 can exist as calcium-free or calcium-bound dimers in vivo. However, a calcium-bound S100A4 monomer only interacts with another calcium-bound monomer and not with an S100A4 mutant that does not bind calcium. Interestingly, despite the calcium dependence for interaction with known protein partners, calcium binding is not necessary for localization to lamellipodia. Both wild type and a mutant that is deficient for calcium binding colocalize with known markers of actively forming leading edges of lamellipodia, Arp3 and neuronal Wiskott-Aldrich syndrome protein. These data suggest that S100A4 localizes to the leading edge in a calcium-independent manner, and identification of the proteins that are involved in localizing S100A4 to the lamellipodial structures may provide novel insight into the mechanism by which S100A4 regulates metastasis.  相似文献   

7.
We have cloned a cDNA representing mouse phosphodiesterases (PDE) 7A1. The open reading frame encodes a protein of 482 amino acids with a predicted molecular mass of 55417. Like human PDE7A variants, mouse PDE7A1 and A2 are 5' splice variants from a common gene. The distinct N-terminal sequence of mouse PDE7A1 is highly homologous to the corresponding sequence of human PDE7A1 with a similarity of 98% but not to that of mouse PDE7A2 (with a similarity of 12%), and is more hydrophilic than that of mouse PDE7A2. Mouse PDE7A1 expressed in SF9 cells has been compared with human PDE7A1 under identical conditions. Mouse PDE7A1 has a Km for cAMP of 0.2 microM, an optimal pH of 7.5, an IC(50) value of 14 microM for 3-isobutyl-1-methylxanthine (IBMX), and is dependent on Mg(2+) for activity. All these characteristics are very similar to those of human PDE7A1. In mice, PDE7A1 is expressed in tissues of the immune system (lymph node, thymus, spleen, and blood leukocyte), testis, brain, kidney and lung but not in skeletal muscle, heart, embryo, or liver, while PDE7A2 is expressed in skeletal muscle, heart, embryo, and kidney, but not in the other tissues. This tissue distribution profile is very similar to that in humans, and hence suggests that PDE7A1 and 7A2 might play a similar role in different species.  相似文献   

8.
PD81,723 {(2-amino-4,5-dimethyl-3-thienyl)-[3-(trifluromethyl)-phenyl]methanone} is a selective allosteric enhancer of the G(i)-coupled A1 AR (adenosine receptor) that is without effect on G(s)-coupled A2A ARs. PD81,723 elicits a decrease in the dissociation kinetics of A1 AR agonist radioligands and an increase in functional agonist potency. In the present study, we sought to determine whether enhancer sensitivity is dependent on coupling domains or G-protein specificity of the A1 AR. Using six chimaeric A1/A2A ARs, we show that the allosteric effect of PD81,723 is maintained in a chimaera in which the predominant G-protein-coupling domain of the A1 receptor, the 3ICL (third intracellular loop), is replaced with A2A sequence. These chimaeric receptors are dually coupled with G(s) and G(i), and PD81,723 increases the potency of N6-cyclopentyladenosine to augment cAMP accumulation with or without pretreatment of cells with pertussis toxin. Thus PD81,723 has similar functional effects on chimaeric receptors with A1 transmembrane sequences that couple with G(i) or G(s). This is the first demonstration that an allosteric regulator can function in the context of a switch in G-protein-coupling specificity. There is no enhancement by PD81,723 of G(i)-coupled A2A chimaeric receptors with A1 sequence replacing A2A sequence in the 3ICL. The results suggest that the recognition site for PD81,723 is on the A1 receptor and that the enhancer acts to directly stabilize the receptor to a conformational state capable of coupling with G(i) or G(s).  相似文献   

9.
Alloiococcus otitidis is a recently discovered bacterium frequently associated with otitis media. However, no study is available as to whether A. otitidis has a pathogenic role and induces local immune response in the middle ear as a true pathogen. Whole bacterial sonicate of A. otitidis was separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and transferred to a nitrocellulose membrane. Then, Western blot analysis was performed with supernatant of the middle ear effusions from children with A. otitidis-positive otitis media. SDS-PAGE of the bacterial sonicate showed several protein bands, designated A1-A11. Western blot analysis revealed the presence of IgG, secretory IgA, IgG2, and IgM against A. otitidis in the middle ear effusions. Absorption of the specimens with sonicates of other major middle ear pathogens did not alter the reactivity of antibodies against the alloiococcal antigens. The results suggest that specific local immune response against A. otitidis is induced during middle ear infection of the organism as a true pathogen. A5, A6 or A11 is expected to be a main antigenic determinant. This is the first report to show evidence of local antibody response against A. otitidis and to disclose antigenic components of A. otitidis.  相似文献   

10.
Administration iv of 50 mg X kg-1 acetazolamide (A) and 3 mg X kg-1 timolol (T) causes the formation of cerebrospinal fluid (f-CSF) to be reduced to 43.7% of the control rate compared with a reduction to 82.5% of control by T alone and to 52.6% of control by A alone. The effect of combined drugs is the same when A is combined with T initially, when A is added to T after studying T alone, or when T is added to A after studying A alone. In contrast, in rats f-CSF is not influenced by T, either alone or when in combination with A. The rate in rats is reduced to 55% of control by treatments with A or A and T. Decrease in formation of cerebrospinal fluid by A occurs through inhibition of carbonic anhydrase, but the means whereby T (a known blocker of beta-adrenergic receptors) causes a reduction in f-CSF is not established; it is known that it does not inhibit carbonic anhydrase. Control of f-CSF by the sympathetic nervous system is discussed.  相似文献   

11.
Three-dimensional structures of trypsin with the reversible inhibitor leupeptin have been determined in two different crystal forms. The first structure was determined at 1.7 A resolution with R-factor = 17.7% in the trigonal crystal space group P3(1)21, with unit cell dimensions of a = b = 55.62 A, c = 110.51 A. The second structure was determined at a resolution of 1.8 A with R-factor = 17.5% in the orthorhombic space group P2(1)2(1)2(1), with unit cell dimensions of a = 63.69 A, b = 69.37 A, c = 63.01 A. The overall protein structure is very similar in both crystal forms, with RMS difference for main-chain atoms of 0.27 A. The leupeptin backbone forms four hydrogen bonds with trypsin and a fifth hydrogen bond interaction is mediated by a water molecule. The aldehyde carbonyl of leupeptin forms a covalent bond of 1.42 A length with side-chain oxygen of Ser-195 in the active site. The reaction of trypsin with leupeptin proceeds through the formation of stable tetrahedral complex in which the hemiacetal oxygen atom is pointing out of the oxyanion hole and forming a hydrogen bond with His-57.  相似文献   

12.
Myosin-Va (Myo5a) is a motor protein associated with synaptic vesicles (SVs) but the mechanism by which it interacts has not yet been identified. A potential class of binding partners are Rab GTPases and Rab3A is known to associate with SVs and is involved in SV trafficking. We performed experiments to determine whether Rab3A interacts with Myo5a and whether it is required for transport of neuronal vesicles. In vitro motility assays performed with axoplasm from the squid giant axon showed a requirement for a Rab GTPase in Myo5a-dependent vesicle transport. Furthermore, mouse recombinant Myo5a tail revealed that it associated with Rab3A in rat brain synaptosomal preparations in vitro and the association was confirmed by immunofluorescence imaging of primary neurons isolated from the frontal cortex of mouse brains. Synaptosomal Rab3A was retained on recombinant GST-tagged Myo5a tail affinity columns in a GTP-dependent manner. Finally, the direct interaction of Myo5a and Rab3A was determined by sedimentation velocity analytical ultracentrifugation using recombinant mouse Myo5a tail and human Rab3A. When both proteins were incubated in the presence of 1 mm GTPγS, Myo5a tail and Rab3A formed a complex and a direct interaction was observed. Further analysis revealed that GTP-bound Rab3A interacts with both the monomeric and dimeric species of the Myo5a tail. However, the interaction between Myo5a tail and nucleotide-free Rab3A did not occur. Thus, our results show that Myo5a and Rab3A are direct binding partners and interact on SVs and that the Myo5a/Rab3A complex is involved in transport of neuronal vesicles.  相似文献   

13.
Summary The group A streptococcal strain 56188 used as standard donor in transduction with the virulent phage A25 is lysogenic for a phage called P56188. By using specific antiphage sera it is shown that A25 lysates obtained from 56188 contain a fraction of about 10-4 phenotypically A25 but genotypically P56188 particles. A25-mediated transduction of prophage P56188 is measured by scoring plaques produced by transfer induction on 5004, a lysogenic strain unable to support the growth of A25. Data are obtained suggesting that A25 can also transduce a prophage carried by strain T253.Prophage P5004 present in 5004 is found to interfere with the propagation of A25 but does not seem to exert its action by directing extensive degradation of A25 DNA. Lysogenization of SM27 with P5004 leads to dramatically decreased burst sizes of A25, associated with the loss of its ability to plaque on this strain. Furthermore, P5004 lysogens of SM27 yield fewer streptomycin resistant transductants than their parent but gain the ability to serve as donors in A25-mediated transduction. A comparison of the burst size and the yield of transducing particles of A25 on various lysogenic and nonlysogenic hosts suggests that interfering with A25 growth is a widespread property of streptococcal prophages, which might favour processes leading to the formation of transducing A25 particles.  相似文献   

14.
H2A.Z is a histone H2A variant that is essential for viability in organisms such as Tetrahymena thermophila, Drosophila melanogaster, and mice. In Saccharomyces cerevisiae, loss of H2A.Z is tolerated, but proper regulation of gene expression is affected. Genetics and genome-wide localization studies show that yeast H2A.Z physically localizes to the promoters of genes and functions in part to protect active genes in euchromatin from being silenced by heterochromatin spreading. To date, the function of H2A.Z in mammalian cells is less clear, and evidence so far suggests that it has a role in chromatin compaction and heterochromatin silencing. In this study, we found that the bulk of H2A.Z is excluded from constitutive heterochromatin in differentiated human and mouse cells. Consistent with this observation, analyses of H2A.Z- or H2A-containing mononucleosomes show that the H3 associated with H2A.Z has lower levels of K9 methylation but higher levels of K4 methylation than those associated with H2A. We also found that a fraction of mammalian H2A.Z is monoubiquitylated and that, on the inactive X chromosomes of female cells, the majority of this histone variant is modified by ubiquitin. Finally, ubiquitylation of H2A.Z is mediated by the RING1b E3 ligase of the human polycomb complex, further supporting a silencing role of ubiquitylated H2A.Z. These new findings suggest that mammalian H2A.Z is associated with both euchromatin and facultative heterochromatin and that monoubiquitylation is a specific mark that distinguishes the H2A.Z associated with these different chromatin states.  相似文献   

15.
16.
Family 3A mammalian liver cytochromes P450 (3A1, rat; 3A3/4, human) catalyze the 6 beta-hydroxylation of endogenous steroids and are steroid inducible. Our recent finding that A6 cells (a toad kidney epithelial cell line) contain corticosterone 6 beta-hydroxylase activity as a steroid-inducible microsomal cytochrome P450 raised the possibility that corticosterone 6 beta-hydroxylase activity in the A6 cells is catalyzed by a member of the 3A family. We found that incubation of A6 cell microsomes from dexamethasone-induced cells with antibodies against family 3A proteins specifically inhibited corticosterone 6 beta-hydroxylase activity. Microsomes from A6 cells analyzed on immunoblots developed with family 3A specific antibodies revealed immunoreactive proteins and treatment of A6 with corticosterone or dexamethasone increased the amounts of 3A immunoreactive protein(s). Furthermore, A6 RNA hybridized with 3A cDNAs on Northern blots and genomic DNA from A6 cells hybridized with a 3A cDNA on a Southern blot. Thus, toad kidney A6 cells express a family 3A P450 that is immunochemically, functionally, and genetically related to the mammalian liver 3A proteins. Prompted by these findings in amphibian kidney, we examined mammalian kidney for evidence of family 3A proteins. Immunocytochemical studies of frozen cryostat sections of normal adult rat kidney incubated with 3A1 antibody showed immunoreactivity only with collecting duct. Immunoblot analysis of human kidney microsomes found three protein bands representing 3A3/4, 3A5, and a 53-kDa Mr protein immunoreactive with human 3A antibody. An unexpected finding was the polymorphic expression of 3A3/4 in human kidney with only one of seven (14%) adult human kidneys tested expressing this protein while 3A5, a protein which is polymorphically expressed in adult human livers, was routinely present in the adult human kidney samples tested. Since human fetal liver contains a family 3A P450 we examined human fetal kidney microsomes by immunoblot analysis with human liver 3A antibody and found expression of a protein tentatively identified as 3A7. Thus, like A6 amphibian cells, family 3A P450 proteins and mRNAs are prominent, functional components in the kidney of mammals, including man.  相似文献   

17.
Detection of immunoreactive napsin A in human urine   总被引:3,自引:0,他引:3  
Human napsin A is an aspartic proteinase highly expressed in kidney and lung. To elucidate whether napsin A is excreted in the urine we have performed an immunochemical study using anti-napsin A polyclonal antibody. As a result an immunoreactive band at approx. 38 kDa was detected which corresponds to the molecular mass of recombinant active human napsin A. A deglycosylation study showed that excreted napsin A is N-glycosylated on apparently all of the three potential glycosylation sites. Immunoreactive napsin A was also observed in urine from patients with a transplanted kidney whose kidney function appeared half to fully normal. On the other hand, no or very low immunostaining was detected in samples from patients with diseased kidneys. The urinary excretion pattern correlates well with the enzymatic activity of napsin A. These data show that human napsin A is excreted as functional proteinase in the urine. Furthermore, immunochemical studies suggest a relation between urinary excretion of napsin A and renal function. More specifically, lack of urinary excretion of napsin A could potentially serve as a tool for the detection of kidney dysfunction.  相似文献   

18.
Vaccinia virus A33 is an extracellular enveloped virus (EEV)-specific type II membrane glycoprotein that is essential for efficient EEV formation and long-range viral spread within the host. A33 is a target for neutralizing antibody responses against EEV. In this study, we produced seven murine anti-A33 monoclonal antibodies (MAbs) by immunizing mice with live VACV, followed by boosting with the soluble A33 homodimeric ectodomain. Five A33 specific MAbs were capable of neutralizing EEV in the presence of complement. All MAbs bind to conformational epitopes on A33 but not to linear peptides. To identify the epitopes, we have adetermined the crystal structures of three representative neutralizing MAbs in complex with A33. We have further determined the binding kinetics for each of the three antibodies to wild-type A33, as well as to engineered A33 that contained single alanine substitutions within the epitopes of the three crystallized antibodies. While the Fab of both MAbs A2C7 and A20G2 binds to a single A33 subunit, the Fab from MAb A27D7 binds to both A33 subunits simultaneously. A27D7 binding is resistant to single alanine substitutions within the A33 epitope. A27D7 also demonstrated high-affinity binding with recombinant A33 protein that mimics other orthopoxvirus strains in the A27D7 epitope, such as ectromelia, monkeypox, and cowpox virus, suggesting that A27D7 is a potent cross-neutralizer. Finally, we confirmed that A27D7 protects mice against a lethal challenge with ectromelia virus.  相似文献   

19.
Factor VIIIa consists of subunits designated A1, A2, and A3-C1-C2. The limited cofactor activity observed with the isolated A2 subunit is markedly enhanced by the A1 subunit. A truncated A1 (A1(336)) was previously shown to possess similar affinity for A2 and retain approximately 60% of its A2 stimulatory activity. We now identify a second site in A1 at Lys(36) that is cleaved by factor Xa. A1 truncated at both cleavage sites (A1(37-336)) showed little if any affinity for A2 (K(d)>2 microm), whereas factor VIIIa reconstituted with A2 plus A1(37-336)/A3-C1-C2 dimer demonstrated significant cofactor activity ( approximately 30% that of factor VIIIa reconstituted with native A1) in a factor Xa generation assay. These affinity values were consistent with values obtained by fluorescence energy transfer using acrylodan-labeled A2 and fluorescein-labeled A1. In contrast, factor VIIIa reconstituted with A1(37-336) showed little activity in a one-stage clotting assay. This resulted in part from a 5-fold increase in K(m) for factor X when A1 was cleaved at Arg(336). These findings suggest that both A1 termini are necessary for functional interaction of A1 with A2. Furthermore, the C terminus of A1 contributes to the K(m) for factor X binding to factor Xase, and this parameter is critical for activity assessed in plasma-based assays.  相似文献   

20.
STK17A is a relatively uncharacterized member of the death-associated protein family of serine/threonine kinases which have previously been associated with cell death and apoptosis. Our prior work established that STK17A is a novel p53 target gene that is induced by a variety of DNA damaging agents in a p53-dependent manner. In this study we have uncovered an additional, unanticipated role for STK17A as a candidate promoter of cell proliferation and survival in glioblastoma (GBM). Unexpectedly, it was found that STK17A is highly overexpressed in a grade-dependent manner in gliomas compared to normal brain and other cancer cell types with the highest level of expression in GBM. Knockdown of STK17A in GBM cells results in a dramatic alteration in cell shape that is associated with decreased proliferation, clonogenicity, migration, invasion and anchorage independent colony formation. STK17A knockdown also sensitizes GBM cells to genotoxic stress. STK17A overexpression is associated with a significant survival disadvantage among patients with glioma which is independent of age, molecular phenotype, IDH1 mutation, PTEN loss, and alterations in the p53 pathway and partially independent of grade. In summary, we demonstrate that STK17A provides a proliferative and survival advantage to GBM cells and is a potential target to be exploited therapeutically in patients with glioma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号