首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transport of long-chain fatty acids across the inner membrane of Escherichia coli K-12 requires a functional fadL gene (Maloy, S. R., Ginsburgh, C. L., Simons, R. W., and Nunn, W. D. (1981) J. Biol. Chem. 256, 3735-3742). Mutants defective in the fadL gene lack a 33,000-dalton inner membrane protein as evaluated using two-dimensional pI/sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (Ginsburgh, C. L., Black, P. N., and Nunn, W. D. (1984) J. Biol. Chem. 259, 8437-8443). In an effort to determine whether the fadL gene is the structural gene for this 33,000-dalton protein, we have cloned, mapped, and analyzed the expression of the fadL gene. The fadL gene has been localized on a 2.8-kilobase EcoRV fragment of E. coli genomic DNA. Plasmids containing this gene (i) complement all fadL mutants, (ii) increase the long-chain fatty acid transport activity of fadL strains harboring them by 2- to 3-fold, and (iii) direct the synthesis of a membrane protein which has the same molecular weight and isoelectric point as that described by Ginsburgh et al. This is a heat-modifiable protein which has an apparent molecular weight of 43,000 daltons when solubilized at 100 degrees C in the presence of SDS and 33,000 daltons when solubilized at 50 degrees C in the presence of SDS.  相似文献   

2.
3.
The fadL+ gene of Escherichia coli encodes an outer membrane protein (FadL) essential for the uptake of long-chain fatty acids (C12 to C18). The present study shows that in addition to being required for uptake of and growth on the long-chain fatty acid oleate (C18:1), FadL acts as a receptor of bacteriophage T2. Bacteriophage T2-resistant (T2r) strains lacked FadL and were unable to take up and grow on long-chain fatty acids. Upon transformation with the fadL+ clone pN103, T2r strains became sensitive to bacteriophage T2 (T2s), became able to take up long-chain fatty acids at wild-type levels, and contained FadL in the outer membrane.  相似文献   

4.
Transport of long-chain fatty acids (LCFA) across the cytoplasmic membrane of Escherichia coli requires functional fadL and fadD genes. The fadD gene codes for an acyl-CoA synthetase (fatty acid: CoA ligase (AMP forming] which has broad chain length specificity and is loosely bound to the cytoplasmic membrane. The fadL gene codes for a 43,000-dalton cytoplasmic membrane protein which, acting by an unknown mechanism, is needed specifically for LCFA transport. As a first step to define the role of the fadL gene product, studies were performed to determine if it functions as a LCFA receptor. The LCFA-binding activity was quantitated in intact cells in the absence of LCFA transport by comparing the binding of LCFA in fadD fadL and fadD fadL+ strains. These studies revealed that (i) fadD fadL+ strains bind 6-fold more LCFA than fadD fadL strains; (ii) fadD fadL strains harboring a plasmid containing the fadL gene bind 16-fold more LCFA than fadD fadL strains harboring only the plasmid vector; and (iii) the fadL-specific LCFA-binding activity is regulated by the fadR gene and catabolite repression. Studies with fadL strains harboring fadL plasmids containing in vitro constructed deletions indicate that mutations which alter the physical properties of the 43,000-dalton fadL gene product also affect fadL gene product-specific LCFA-binding activity. Overall, these studies suggest that one role of the fadL gene product in the LCFA transport process is to sequester LCFA at sites in the cell membrane for transport.  相似文献   

5.
The nature of resistance to phage T2 in Escherichia coli K-12 was investigated by analyzing a known phage T2-resistant mutant and by isolating new T2-resistant mutants. It was found that mutational alterations at two loci, ompF (encoding the outer membrane protein OmpF) and ttr (T-two resistance), are needed to give full resistance to phage T2. A ttr::Tn10 mutation was isolated and was mapped between aroC and dsdA, where the fadL gene (required for long-chain fatty acid transport) is located. The receptor affected by ttr was the major receptor used by phage T2 and was located in the outer membrane. Phage T2 was thus able to use two outer membrane proteins as receptors. All strains having a ttr::Tn10 allele and most of the independently isolated phage T2-resistant mutants were unable to grow on oleate as the sole carbon and energy source, i.e., they had the phenotype of fadL mutants. The gene fadL is known to encode an inner membrane protein. The most likely explanation is that fadL and ttr are in an operon and that ttr encodes an outer membrane protein which functions in translocating long-chain fatty acids across the outer membrane and also as a receptor for phage T2.  相似文献   

6.
The fatty acid transport protein FadL from Escherichia coli is predicted to be rich in beta-structure and span the outer membrane multiple times to form a long-chain fatty acid specific channel. Proteolysis of FadL within whole cells, total membranes, and isolated outer membranes identified two trypsin-sensitive sites, both predicted to be in externally exposed loops of FadL. Amino acid sequence analysis of the proteolytic fragments determined that the first followed R93 and yielded a peptide beginning with 94S-L-K-A-D-N-I-A-P-T-A104 while the second followed R384 and yielded a peptide beginning with 385S-I-S-I-P-D-Q-D-R-F-W395. Proteolysis using trypsin eliminated the bacteriophage T2 binding activity associated with FadL, suggesting the T2 binding domain within FadL requires elements within one of these extracellular loops. A peptide corresponding to the amino-terminal region of FadL (FadL28-160) was purified and shown to inactivate bacteriophage T2 in a concentration-dependent manner, supporting the hypothesis that the amino-proximal extracellular loop of the protein confers T2 binding activity. Using an artificial neural network (NN) topology prediction method in combination with Gibbs motif sampling, a predicted topology of FadL within the outer membrane was developed. According to this model, FadL spans the outer membrane 20 times as antiparallel beta-strands. The 20 antiparallel beta-strands are presumed to form a beta-barrel specific for long-chain fatty acids. On the basis of our previous studies evaluating the function of FadL using site-specific mutagenesis of the fadL gene, proteolysis of FadL within outer membranes, and studies using the FadL28-160 peptide, the predicted extracellular regions between beta-strands 1 and 2 and beta-strands 3 and 4 are expected to contribute to a domain of the protein required for long-chain fatty acid and bacteriophage T2 binding. The first trypsin-sensitive site (R93) lies between predicted beta-strands 3 and 4 while the second (R384) is between beta-strands 17 and 18. The trypsin-resistant region of FadL is predicted to contain 13 antiparallel beta-strands and contribute to the long-chain fatty acid specific channel.  相似文献   

7.
The photoreactive fatty acid 11-m-diazirinophenoxy-[11-3H]undecanoate was shown to be taken up specifically by the fatty acid transport system expressed in Escherichia coli grown on oleate. This photoreactive fatty acid analogue was therefore used to identify proteins involved in fatty acid uptake in E. coli. The fadL protein was labeled by the probe, confirmed to be exclusively in the outer membrane and to exhibit the heat modifiable behavior typical of outer membrane proteins. The apparent pI of the incompletely denatured form of the protein having the mobility of a 33-kDa protein was 4.6 while that of the fully denatured form was consistent with the calculated value of 5.2. The denaturation was reversible depending upon the protein to detergent ratios. The photoreactive fatty acid partitions into the outer membrane, resulting in extensive photolabeling of the lipid; a high affinity fatty acid-binding site is not apparent in total membranes labeled using free fatty acids due to this large binding capacity of the outer membrane. However, when the free fatty acid concentration was controlled by supplying it as a bovine serum albumin complex, the fadL protein exhibited saturable high affinity fatty acid binding, having an apparent Kd for the probe of 63 nM. The methods described very readily identify fatty acid-binding proteins: the fact that even when the sensitivity was increased 500-fold, no evidence was found for the presence of a fatty acid-binding protein in the inner membrane is consistent with the proposal that fatty acid permeation across the plasma membrane is not protein mediated but occurs by a simple diffusive mechanism.  相似文献   

8.
The product of the fadL gene (FadL) of Escherichia coli is a multifunctional integral outer-membrane protein required for the specific binding and transport of exogenous long-chain fatty acids [C12-C18]. FadL also serves as a receptor for the bacteriophage T2. In order to define regions of functional importance within FadL, the fadL gene has been mutagenized by the insertion of single-stranded hexameric linkers into the unique SalI restriction site that lies towards the 3' end of the gene and into four HpaII restriction sites distributed throughout the coding region. The five insertion mutants were classified into three groups based on their specific growth rates (alpha) in minimal media containing the long-chain fatty acid oleate (C18:1) as a sole carbon and energy source: Oleslow, alpha = 0.035-0.045; Ole +/-, alpha = 0.020-0.035; and Ole-, alpha less than or equal to 0.005 (wild-type, alpha = 0.07-0.10). The hexameric insertion at the SalI site (fadL allele termed S1; insertion after amino acid 410) conferred an Oleslow phenotype and resulted in a reduction of long-chain fatty acid transport (36% the wild-type level). This insertion mutant, however, bound oleic acid at wild-type levels and was fully functional as a receptor for the bacteriophage T2. The modified FadL-S1 protein did not have the heat-modifiable property characteristic of wild-type FadL. Insertions in the four HpaII sites (fadL alleles termed H1, H2, H3, and H5; after amino acids 41, 81, 238, and 389, respectively) resulted in all three classes of mutants. The fadL insertion mutant H5 was defective for long-chain fatty acid transport but bound oleic acid at significant levels. Together with the S1 allele, these data suggest that the carboxyl terminus of FadL is crucial for long-chain fatty acid transport. The insertion mutants H1 and H2 were defective for both oleic acid binding and transport suggesting that the amino terminus of FadL is important for long-chain fatty acid binding and transport. The fadL linker mutant H3 was defective in oleic acid binding yet had significant levels of oleic acid transport. These studies delineated for the first time different regions of the fadL gene that encode domains of FadL implicated in the binding and transport of long-chain fatty acids.  相似文献   

9.
10.
11.
The mechanism of lipopolysaccharide (LPS) transport in Gram-negative bacteria from the inner membrane to the outer membrane is largely unknown. Here, we investigated the possibility that LPS transport proceeds via a soluble intermediate associated with a periplasmic chaperone analogous to the Lol-dependent transport mechanism of lipoproteins. Whereas newly synthesized lipoproteins could be released from spheroplasts of Escherichia coli upon addition of a periplasmic extract containing LolA, de novo synthesized LPS was not released. We demonstrate that LPS synthesized de novo in spheroplasts co-fractionated with the outer membranes and that this co-fractionation was dependent on the presence in the spheroplasts of a functional MsbA protein, the protein responsible for the flip-flop of LPS across the inner membrane. The outer membrane localization of the LPS was confirmed by its modification by the outer membrane enzyme CrcA (PagP). We conclude that a substantial amount of LPS was translocated to the outer membrane in spheroplasts, suggesting that transport proceeds via contact sites between the two membranes. In contrast to LPS, de novo synthesized phospholipids were not transported to the outer membrane in spheroplasts. Apparently, LPS and phospholipids have different requirements for their transport to the outer membrane.  相似文献   

12.
The protein composition of purified outer membranes of 47 Escherichia coli strains was examined by sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis. Of 33 encapsulated strains, all contained an outer membrane protein distinguishable from previously reported proteins. The 14 non-encapsulated strains with one exception lacked this protein. Because of its apparent association with encapsulation (K antigen) we have named it K protein. The protein was purified nearly to homogeneity by chromatography in the presence of detergents, and its composition was determined. Its amino acid composition does not differ significantly from that reported for protein I, another E. coli major outer membrane protein. Furthermore, the N-terminal amino acid sequence of protein K indicates that it is related to protein I.  相似文献   

13.
Outer membrane proteins of Vibrio cholerae were purified by sucrose density centrifugation and Triton X-100 extraction at 10 mM Mg2+. The proteins were separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. V. cholerae outer membrane proteins presented a unique pattern when compared with the patterns of other gram-negative rods. There were 8 to 10 major bands (Mr 94,000 to 27,000), with most of the protein located in band 5 (Mr approximately 45,000), which thus appears to be the major structural protein of the outer membrane. Lipid and carbohydrate were associated with band 6.  相似文献   

14.
Characteristics of major outer membrane proteins of Haemophilus influenzae.   总被引:32,自引:6,他引:26  
Several properties of Haemophilus influenzae outer membrane proteins were analyzed to define related proteins in various isolates. H. influenzae type b 760705 had six major outer membrane proteins with the following characteristics. Protein a (Mr, 47,000) demonstrated heat modifiability in sodium dodecyl sulfate; its apparent molecular weight was 34,000 at temperatures below 60 degrees C. This protein was extracted from cell envelopes by using Triton X-100-10 mM MgCl2; in cell envelope preparations, the protein was degraded by trypsin. Proteins b (Mr, 41,000) and c (Mr, 40,000) were insensitive to trypsin degradation, were not heat modifiable in sodium dodecyl sulfate, and were peptidoglycan associated in 0.5% Triton X-100-0.2% sodium dodecyl sulfate. The amount of protein b was reduced in ultrasonically obtained cell envelopes. Protein d (Mr, 37,000) was heat modifiable in sodium dodecyl sulfate with an Mr of 28,000 at temperatures below 100 degrees C and was degraded by trypsin, leaving a membrane-bound fragment of Mr, 27,000. Both the intact and degraded proteins were immunologically cross-reactive with the heat-modifiable OmpA protein of Escherichia coli K-12. Protein d was absent in LiCl-EDTA extracts of cells. Protein e (Mr, 30,000), invariably present in all H. influenzae strains tested, was insensitive to trypsin and absent in LiCl-EDTA extracts of cells. Protein k (Mr, 58,000) was extracted from cell envelopes with 2% Triton X-100-10 mM MgCl2 and, in cell envelopes, appeared to be sensitive to trypsin degradation. Proteins with similar properties to those of proteins a to k were found in 10 other H. influenzae b strains, reference strains with serotype a, c, d, e, and f capsules, and 18 of 20 nonencapsulated strains. Their relative molecular weights, however, varied.  相似文献   

15.
The cell envelope of Neisseria gonorrhoeae strain 2686, colonial type 4, was isolated from spheroplasts formed by the action of ethylenediaminetetraacetic acid and lysozyme. Isopycnic centrifugation of osmotically ruptured spheroplasts resolved the cell envelope into two main membrane fractions. Chemical and enzymatic analyses were used to characterize these isolated membranes. Succinic dehydrogenase, reduced nicotinamide adenine dinucleotide oxidase, and d-lactate dehydrogenase were localized in the membrane fraction of buoyant density, rho degrees = 1.141 g/cm(3). Lipopolysaccharide and over half of the cell envelope protein were associated with the membrane that banded in sucrose at rho degrees = 1.219 g/cm(3). These fractions were consequently designated cytoplasmic and outer or L-membrane, respectively. Sodium dodecyl sulfate-polyacrylamide electrophoresis of isolated membranes demonstrated the relative simplicity of the protein spectrum of the outer membrane. The majority of the protein in this membrane could be accounted for by proteins of molecular weights 34,500, 22,000, and 11,500. The protein of molecular weight 34,500 accounted for 66% of the total protein of the L-membrane. Isoelectric precipitation at pH 4.6 with 10% acetic acid selectively removed this protein from a 150 mM NaCl in 10 mM tris(hydroxymethyl)aminomethane-hydrochloride, pH 7.4, extract of purified outer membrane. At pH 4.0, the other proteins of the L-membrane were precipitated. It was concluded that the membrane components of the cell envelope of N. gonorrhoeae were similar to those of other gram-negative bacteria. The cell envelope fractions described here, in particular the outer membrane, are sufficiently well defined to provide a valuable tool for future biochemical and immunological studies on N. gonorrhoeae.  相似文献   

16.
Exposure of rat liver mitochondrial membranes to octyl glucoside, Triton X-100, or Tween 20 solubilized an active and tetradecylglycidyl-CoA (TG-CoA)-insensitive carnitine palmitoyltransferase (presumed to be carnitine palmitoyltransferase II). The residual membranes after octyl glucoside or Triton X-100 treatment were devoid of all transferase activity. By contrast, Tween 20-extracted membranes were still rich in transferase; this was completely blocked by TG-CoA and thus was presumed to be carnitine palmitoyltransferase I. The residual carnitine palmitoyltransferase activity disappeared from the membranes upon subsequent addition of octyl glucoside or Triton X-100 and could not be recovered in the supernatant fraction. Antibody raised against purified rat liver transferase II (Mr 80,000) recognized only this protein in immunoblots from untreated liver mitochondrial membranes containing both transferases I and II. Tween 20-extracted membranes, which contained only transferase I, did not react with the antibody. Purified transferase II from skeletal muscle (also of Mr 80,000) was readily recognized by the antiserum, suggesting antigenic similarity with the liver enzyme. These and other studies on the effects of detergents on the mitochondrial [3H]TG-CoA binding protein provide further support for the model of carnitine palmitoyltransferase proposed in the preceding paper. They suggest that: 1) carnitine palmitoyltransferases I and II in rat liver are immunologically distinct proteins; 2) transferase I is more firmly anchored into its membrane environment than transferase II; 3) association of carnitine palmitoyltransferase I with a membrane component(s) is necessary for catalytic activity. While carnitine palmitoyltransferase I is a different protein in liver and muscle, it seems likely that both tissues share the same transferase II.  相似文献   

17.
The porin of the outer membrane of rat-brain mitochondria was isolated and purified. The protein showed a single band of apparent Mr 35,500 on dodecyl sulfate-containing polyacrylamide gels. The incorporation of rat-brain porin into artificial lipid bilayer membranes showed that it is able to form pores with an average single-channel conductance of 400 pS in 0.1 M KCI. The pores were found to be voltage-dependent and switched to substrates at higher transmembrane potentials. The voltage-dependence of the rat brain pore was considerably smaller than that of the other known eukaryotic porins. The possible role of the rat-brain porin in the regulation of transport process across the outer mitochondrial membrane is discussed.  相似文献   

18.
Outer membrane materials prepared from an Escherichia coli ompA (tolG) strain do not contain one of the major outer membrane proteins found in ompA+ strains. This protein has been purified in high yield from detergent-solubilized cell envelope material prepared from an ompA+ strain by preparative electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate. The purified protein is homogeneous in three electrophoretic systems, contains 2 mol of reducing sugar/mol of peptide and has alanine as the N-terminal amino acid. The amino acid composition is nearly identical to outer membrane protein II or B purified by others from incompletely solubilized cell envelope material. Thus, the fraction of outer membrane protein II or B that is difficult to solubilize is identical with the more readily solubilized fraction.  相似文献   

19.
A variety of commercially available cell wall hydrolytic enzyme preparations were screened alone and in various combinations for their ability to degrade the cell wall of Neurospora crassa wild type strain 1A. A combination was found which causes complete conversion of the normally filamentous germinated conidia to spherical structures in about 1.5 h. Examination of these spheroplasts by scanning electron microscopy indicated that, although they are spherical, they retain a smooth coat that can only be removed upon prolonged incubation in the enzyme mixture (about 10 h). The 10-h incubation in the enzyme mixture appears to have no obvious detrimental effects on the integrity of the plasma membrane since the activity and regulatory properties of the glucose active transport system in 10-h spheroplasts are essentially unimpaired. Importantly, plasma membranes can be isolated from the 10-h spheroplasts by an adaptation of the concanavalin A method developed previously in this laboratory for cells of the cell wall-less sl strain, which is not the case for the 1.5-h spheroplasts. The yield of plasma membrane vesicles isolated by this procedure is 18-36% as indicated by surface labeling with diazotized [125I]iodosulfanilic acid, and the preparation is less than 1% contaminated with mitochondrial protein. The chemical composition of the wild type plasma membranes is similar to that previously reported for membranes of the sl strain of Neurospora. The isolated wild type plasma membrane vesicles also exhibit all of the functional properties that have previously been demonstrated for the sl plasma membrane vesicles. The wild type vesicles catalyze MgATP-dependent electrogenic proton translocation as indicated by the concentrative uptake of [14C]SCN- and [14C]imidazole under the appropriate conditions, which indicates that they contain the plasma membrane H+-ATPase previously shown to exist in the sl plasma membranes and that they possess permeability barrier function as well. The vesicles also contain a Ca2+/H+ antiporter as evidenced by their ability to catalyze protonophore-inhibited MgATP-dependent 45Ca2+ accumulation. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analyses of the isolated vesicles indicate that the protein composition of the wild type vesicles is roughly similar to that of the sl plasma membranes with the H+-ATPase present as a major band of Mr approximately 105,000. The wild type plasma membrane ATPase forms a phosphorylated intermediate similar to that of the sl ATPase, and the specific activity of the H+-ATPase in both wild type and sl membranes is approximately 3 mumol of Pi released/mg of protein/min.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Outer membranes of Haemophilus influenzae type b were fractionated to yield Triton X-100-insoluble material and lipopolysaccharide and phospholipids. Liposomes reconstituted from lipopolysaccharide and phospholipids were impermeable to sucrose (Mr, 342) and to a high-molecular-weight dextran (average Mr, 6,600). When the Triton X-100-insoluble material was introduced into the reconstituted liposomes, the vesicles became permeable to sucrose, raffinose (Mr, 504), and stachyose (Mr, 666) and fully retained dextrans of Mr greater than 1,500. Inulin (average Mr, 1,400) was tested for its efflux from the reconstituted outer membrane vesicles; 62% of the added inulin was trapped. The molecular weight exclusion limit for the outer membrane of H. influenzae type b was therefore estimated at approximately 1,400. A protein responsible for the transmembrane diffusion of solutes was purified from H. influenzae type b by extraction of whole cells with cetyl trimethyl ammonium bromide. When this extract was passed over DEAE-Sepharose, three protein-containing peaks (I, II, and III) were eluted. Peaks I and II contained mixtures of proteins as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; when tested for their pore-forming properties, these proteins were unable to render liposomes of lipopolysaccharide and phospholipid permeable to sucrose. Peak III contained only one molecular species of protein of molecular weight 40,000; this protein acted as a porin in reconstituted vesicles. The molecular weight exclusion limit for 40,000-molecular-weight protein matched the estimate of approximately 1,400 which was determined for outer membranes. A series of homologous saccharides of increasing degree of polymerization was prepared from agarose by hydrolysis with beta-agarase and fractionation on gel filtration chromatography. These oligosaccharides of Mr, 936, 1,242, 1,548, and 1,854 were assayed for retention by the complete vesicles containing 40-kilodalton protein and lipopolysaccharide and phospholipids. All of these oligosaccharides were lost by efflux through the porin. Since the molecular conformation of the largest oligosaccharide is an elongated semirigid helix, it is suggested that the pore formed by the 40-kilodalton protein does not act as a barrier to the diffusion of this compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号