首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents a site-resolved experimental view of backbone C(alpha)H and NH internal motions in the 56-residue immunoglobulin-binding domain of streptococcal protein G, GB1. Using (13)C(alpha)H and (15)NH NMR relaxation data [T(1), T(2), and NOE] acquired at three resonance frequencies ((1)H frequencies of 500, 600, and 800 MHz), spectral density functions were calculated as F(omega) = 2omegaJ(omega) to provide a model-independent way to visualize and analyze internal motional correlation time distributions for backbone groups in GB1. Line broadening in F(omega) curves indicates the presence of nanosecond time scale internal motions (0.8 to 5 nsec) for all C(alpha)H and NH groups. Deconvolution of F(omega) curves effectively separates overall tumbling and internal motional correlation time distributions to yield more accurate order parameters than determined by using standard model free approaches. Compared to NH groups, C(alpha)H internal motions are more broadly distributed on the nanosecond time scale, and larger C(alpha)H order parameters are related to correlated bond rotations for C(alpha)H fluctuations. Motional parameters for NH groups are more structurally correlated, with NH order parameters, for example, being larger for residues in more structured regions of beta-sheet and helix and generally smaller for residues in the loop and turns. This is most likely related to the observation that NH order parameters are correlated to hydrogen bonding. This study contributes to the general understanding of protein dynamics and exemplifies an alternative and easier way to analyze NMR relaxation data.  相似文献   

2.
Oxidized flavodoxin from Cyanobacterium anabaena PCC 7119 is used as a model system to investigate the fast internal dynamics of a flavin-bearing protein. Virtually complete backbone and side chain resonance NMR assignments of an oxidized flavodoxin point mutant (C55A) have been determined. Backbone and side chain dynamics in flavodoxin (C55A) were investigated using (15)N amide and deuterium methyl NMR relaxation methods. The squared generalized order parameters (S(NH)(2)) for backbone amide N-H bonds are found to be uniformly high ( approximately 0.923 over 109 residues in regular secondary structure), indicating considerable restriction of motion in the backbone of the protein. In contrast, methyl-bearing side chains are considerably heterogeneous in their amplitude of motion, as indicated by obtained symmetry axis squared generalized order parameters (S(axis)(2)). However, in comparison to nonprosthetic group-bearing proteins studied with these NMR relaxation methods, the side chains of oxidized flavodoxin are unusually rigid.  相似文献   

3.
The backbone dynamics of the J domain from polyomavirus T antigens have been investigated using 15N NMR relaxation and molecular dynamics simulation. Model-free relaxation analysis revealed picosecond to nanosecond motions in the N terminus, the I-II loop, the C-terminal end of helix II through the HPD loop to the beginning of helix III, and the C-terminal end of helix III to the C terminus. The backbone dynamics of the HPD loop and termini are dominated by motions with moderately large amplitudes and correlation times of the order of a nanosecond or longer. Conformational exchange on the microsecond to millisecond timescale was identified in the HPD loop, the N and C termini, and the I-II loop. A 9.7ns MD trajectory manifested concerted swings of the HPD loop. Transitions between major and minor conformations of the HPD loop featured distinct patterns of change in backbone dihedral angles and hydrogen bonds. Fraying of the C-terminal end of helix II and the N-terminal end of helix III correlated with displacements of the HPD loop. Correlation of crankshaft motions of Gly46 and Gly47 with the collective motions of the HPD loop suggested an important role of the two glycine residues in the mobility of the loop. Fluctuations of the HPD loop correlated with relative reorientation of side-chains of Lys35 and Asp44 that interact with Hsc70.  相似文献   

4.
The molecular dynamics and structural organization of mouse epidermal keratin intermediate filaments (IF) have been studied via solid-state nuclear magnetic resonance (NMR) experiments performed on IF labeled both in vivo and in vitro with isotopically enriched amino acids. As a probe of the organization of the peripheral glycine-rich end domains of the IF, carbon-13 NMR experiments have been performed on subfilamentous forms (prekeratin) and on IF reassembled in vitro that had been labeled with either [1-13C]glycine or [2-13C]glycine, as more than 90% of the glycines of the keratins are located in the end domains. Although cross-labeling to seryl residues was observed, the proportion of serine located in the end domains is nearly the same as that for glycine. Measurements of carbon relaxation times, nuclear Overhauser enhancements, and signal intensities show that the motions of the peptide backbone in the end domains are effectively isotropic, with average correlation times distributed over the range of 0.2-20 ns. These results indicate that the end domains of IF are remarkably flexible and have little or no structural order. To probe the structural organization of the coiled-coil rod domains of the IF, separate samples of native keratin IF, raised in primary tissue culture, were labeled with L-[1-13C]leucine, L-[2H10]leucine, or L-[2,3,3-2H3]leucine, as greater than 90% of the leucyl residues of the keratin IF types studied are located in the coiled coils which form the central core of IF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
The backbone dynamics of the tetrameric p53 oligomerization domain (residues 319-360) have been investigated by two-dimensional inverse detected heteronuclear 1H-15N NMR spectroscopy at 500 and 600 MHz. 15N T1, T2, and heteronuclear NOEs were measured for 39 of 40 non-proline backbone NH vectors at both field strengths. The overall correlation time for the tetramer, calculated from the T1/T2 ratios, was found to be 14.8 ns at 35 degrees C. The correlation times and amplitudes of the internal motions were extracted from the relaxation data using the model-free formalism (Lipari G, Szabo A, 1982, J Am Chem Soc 104:4546-4559). The internal dynamics of the structural core of the p53 oligomerization domain are uniform and fairly rigid, with residues 327-354 exhibiting an average generalized order parameter (S2) of 0.88 +/- 0.08. The N- and C-termini exhibit substantial mobility and are unstructured in the solution structure of p53. Residues located at the N- and C-termini, in the beta-sheet, in the turn between the alpha-helix and beta-sheet, and at the C-terminal end of the alpha-helix display two distinct internal motions that are faster than the overall correlation time. Fast internal motions (< or = 20 ps) are within the extreme narrowing limit and are of uniform amplitude. The slower motions (0.6-2.2 ns) are outside the extreme narrowing limit and vary in amplitude.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Model-free parameters obtained from nuclear magnetic resonance (NMR) relaxation experiments and molecular dynamics (MD) simulations commonly are used to describe the intramolecular dynamical properties of proteins. To assess the relative accuracy and precision of experimental and simulated model-free parameters, three independent data sets derived from backbone 15N NMR relaxation experiments and two independent data sets derived from MD simulations of Escherichia coli ribonuclease HI are compared. The widths of the distributions of the differences between the order parameters for pairs of NMR data sets are congruent with the uncertainties derived from statistical analyses of individual data sets; thus, current protocols for analyzing NMR data encapsulate random uncertainties appropriately. Large differences in order parameters for certain residues are attributed to systematic differences between samples for intralaboratory comparisons and unknown, possibly magnetic field-dependent, experimental effects for interlaboratory comparisons. The widths of distributions of the differences between the order parameters for two NMR sets are similar to widths of distributions for an NMR and an MD set or for two MD sets. The linear correlations between the order parameters for an MD set and an NMR set are within the range of correlations observed between pairs of NMR sets. These comparisons suggest that the NMR and MD generalized order parameters for the backbone amide N—H bond vectors are of comparable accuracy for residues exhibiting motions on a fast time scale (<100 ps). Large discrepancies between NMR and MD order parameters for certain residues are attributed to the occurrence of “rare” motional events over the simulation trajectories, the disruption of an element of secondary structure in one of the simulations, and lack of consensus among the experimental data sets. Consequently, (easily detectable) severe distortions of local protein structure and infrequent motional events in MD simulations appear to be the most serious artifacts affecting the accuracy and precision, respectively, of MD order parameters relative to NMR values. In addition, MD order parameters for motions on a fast (<100 ps) timescale are more precisely determined than their NMR counterparts, thereby permitting more detailed dynamic characterization of biologically important residues by MD simulation than is sometimes possible by experimental methods. Proteins 28:481–493, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
The potent nitric oxide dioxygenase (NOD) activity (trHbN-Fe2?-O? + (?)NO → trHbN-Fe3?-OH? + NO??) of Mycobacterium tuberculosis truncated hemoglobin N (trHbN) protects aerobic respiration from inhibition by (?)NO. The high activity of trHbN has been attributed in part to the presence of numerous short-lived hydrophobic cavities that allow partition and diffusion of the gaseous substrates (?)NO and O? to the active site. We investigated the relation between these cavities and the dynamics of the protein using solution NMR spectroscopy and molecular dynamics (MD). Results from both approaches indicate that the protein is mainly rigid with very limited motions of the backbone N-H bond vectors on the picoseconds-nanoseconds time scale, indicating that substrate diffusion and partition within trHbN may be controlled by side-chains movements. Model-free analysis also revealed the presence of slow motions (microseconds-milliseconds), not observed in MD simulations, for many residues located in helices B and G including the distal heme pocket Tyr33(B10). All currently known crystal structures and molecular dynamics data of truncated hemoglobins with the so-called pre-A N-terminal extension suggest a stable α-helical conformation that extends in solution. Moreover, a recent study attributed a crucial role to the pre-A helix for NOD activity. However, solution NMR data clearly show that in near-physiological conditions these residues do not adopt an α-helical conformation and are significantly disordered and that the helical conformation seen in crystal structures is likely induced by crystal contacts. Although this lack of order for the pre-A does not disagree with an important functional role for these residues, our data show that one should not assume an helical conformation for these residues in any functional interpretation. Moreover, future molecular dynamics simulations should not use an initial α-helical conformation for these residues in order to avoid a bias based on an erroneous initial structure for the N-termini residues. This work constitutes the first study of a truncated hemoglobin dynamics performed by solution heteronuclear relaxation NMR spectroscopy.  相似文献   

9.
Chugha P  Oas TG 《Biochemistry》2007,46(5):1141-1151
Oxidizing two native methionine residues predominantly populates the denatured state of monomeric lambda repressor (MetO-lambdaLS) under nondenaturing conditions. NMR was used to characterize the secondary structure and dynamics of MetO-lambdaLS in standard phosphate buffer. 13Calpha and 1Halpha chemical shift indices reveal a region of significant helicity between residues 9 and 29. This helical content is further supported by the observation of medium-range amide NOEs. The remaining residues do not exhibit significant helicity as determined by NMR. We determined 15N relaxation parameters for 64 of 85 residues at 600 and 800 MHz. There are two distinct regions of reduced flexibility, residues 8-32 in the N-terminal third and residues 50-83 in the C-terminal third. The middle third, residues 33-50, has greater flexibility. We have analyzed the amplitude of the backbone motions in terms of the physical properties of the amino acids and conclude that conformational restriction of the backbone MetO-lambdaLS is due to nascent helix formation in the region corresponding to native helix 1. The bulkiness of amino acid residues in the C-terminal third leads to the potential for hydrophobic interactions, which is suggested by chemical exchange detected by the difference in spectral density J(0) at the two static magnetic fields. The more flexible middle region is the result of a predominance of small side chains in this region.  相似文献   

10.
Amino acids in peptides and proteins display distinct preferences for alpha-helical, beta-strand, and other conformational states. Various physicochemical reasons for these preferences have been suggested: conformational entropy, steric factors, hydrophobic effect, and backbone electrostatics; however, the issue remains controversial. It has been proposed recently that the side-chain-dependent solvent screening of the local and non-local backbone electrostatic interactions primarily determines the preferences not only for the alpha-helical but also for all other main-chain conformational states. Side-chains modulate the electrostatic screening of backbone interactions by excluding the solvent from the vicinity of main-chain polar atoms. The deficiency of this electrostatic screening model of amino acid preferences is that the relationships between the main-chain electrostatics and the amino acid preferences have been demonstrated for a limited set of six non-polar amino acid types in proteins only. Here, these relationships are determined for all amino acid types in tripeptides, dekapeptides, and proteins. The solvation free energies of polar backbone atoms are approximated by the electrostatic contributions calculated by the finite difference Poisson-Boltzmann and the Langevin dipoles methods. The results show that the average solvation free energy of main-chain polar atoms depends strongly on backbone conformation, shape of side-chains, and exposure to solvent. The equilibrium between the low-energy beta-strand conformation of an amino acid (anti-parallel alignment of backbone dipole moments) and the high-energy alpha conformation (parallel alignment of backbone dipole moments) is strongly influenced by the solvation of backbone polar atoms. The free energy cost of reaching the alpha conformation is by approximately 1.5 kcal/mol smaller for residues with short side-chains than it is for the large beta-branched amino acid residues. This free energy difference is comparable to those obtained experimentally by mutation studies and is thus large enough to account for the distinct preferences of amino acid residues. The screening coefficients gamma(local)(r) and gamma(non-local)(r) correlate with the solvation effects for 19 amino acid types with the coefficients between 0.698 to 0.851, depending on the type of calculation and on the set of point atomic charges used. The screening coefficients gamma(local)(r) increase with the level of burial of amino acids in proteins, converging to 1.0 for the completely buried amino acid residues. The backbone solvation free energies of amino acid residues involved in strong hydrogen bonding (for example: in the middle of an alpha-helix) are small. The hydrogen bonded backbone is thus more hydrophobic than the peptide groups in random coil. The alpha-helix forming preference of alanine is attributed to the relatively small free energy cost of reaching the high-energy alpha-helix conformation. These results confirm that the side-chain-dependent solvent screening of the backbone electrostatic interactions is the dominant factor in determining amino acid conformational preferences.  相似文献   

11.
The effects of amino acid replacements on the backbone dynamics of bovine pancreatic trypsin inhibitor (BPTI) were examined using 15N NMR relaxation experiments. Previous studies have shown that backbone amide groups within the trypsin-binding region of the wild-type protein undergo conformational exchange processes on the micros time scale, and that replacement of Tyr35 with Gly greatly increases the number of backbone atoms involved in such motions. In order to determine whether these mutational effects are specific to the replacement of this residue with Gly, six additional replacements were examined in the present study. In two of these, Tyr35 was replaced with either Ala or Leu, and the other four were single replacements of Tyr23, Phe33, Asn43 or Asn44, all of which are highly buried in the native structure and conserved in homologous proteins. The Y35A and Y35L mutants displayed dynamic properties very similar to those of the Y35G mutant, with the backbone segments including residues 10-19 and 32-44 undergoing motions revealed by enhanced 15N transverse relaxation rates. On the other hand, the Y23L, N43G and N44A substitutions caused almost no detectable changes in backbone dynamics, on either the ns-ps or ms-micros time scales, even though each of these replacements significantly destabilizes the native conformation. Replacement of Phe33 with Leu caused intermediate effects, with several residues that have previously been implicated in motions in the wild-type protein displaying enhanced transverse relaxation rates. These results demonstrate that destabilizing amino acid replacements can be accommodated in a native protein with dramatically different effects on conformational dynamics and that Tyr35 plays a particularly important role in defining the conformation of the trypsin-binding site of BPTI.  相似文献   

12.
X-linked lymphoproliferative disease is caused by mutations in the protein SAP, which consists almost entirely of a single SH2 domain. SAP interacts with the Tyr281 site of the T<-->B cell signaling protein SLAM via its SH2 domain. Interestingly, binding is not dependent on phosphorylation but does involve interactions with residues N-terminal to the Tyr. We have used 15N and 2H NMR relaxation experiments to investigate the motional properties of the SAP SH2 domain backbone amides and side-chain methyl groups in the free protein and complexes with phosphorylated and non-phosphorylated peptides derived from the Tyr281 site of SLAM. The most mobile methyl groups are in side-chains with large RMSD values between the three crystal structures of SAP, suggesting that fast time-scale dynamics in side-chains is associated with conformational plasticity. The backbone amides of two residues which interact with the C-terminal part of the peptides experience fast time-scale motions in the free SH2 domain that are quenched upon binding of either the phosphorylated or non-phosphorylated peptide. Of most importance, the mobility of methyl groups in and around the binding site for residues in the N-terminus of the peptide is significantly restricted in the complexes, underscoring the dominance of this interaction with SAP and demonstrating a correlation between changes in rapid side-chain motion upon binding with local binding energy.  相似文献   

13.
14.
Walsh ST  Lee AL  DeGrado WF  Wand AJ 《Biochemistry》2001,40(32):9560-9569
Understanding how the amino acid sequence of a polypeptide chain specifies a unique, functional three-dimensional structure remains an important goal, especially in the context of the emerging discipline of de novo protein design. Alpha3D is a single chain protein of 73 amino acids resulting from a de novo design effort. Previous solution nuclear magnetic resonance studies of alpha3D confirm that the protein adopts the designed structure of a three-helix bundle. Furthermore, alpha3D has been previously shown to possess all of the major thermodynamic and structural characteristics of natural proteins, though it shares no sequence homology to any protein sequence in the database. In this work, the backbone and side-chain dynamics of alpha3D were investigated using 15N, 13C, and 2H nuclear magnetic resonance relaxation methods with the aim of assessing the character of the internal motions of this native-like protein of de novo design. At the backbone level, both 15N and 13C(alpha) relaxation studies indicate highly restrictive motion on the picosecond to nanosecond time scale in the alpha-helical regions of alpha3D, with increasing mobility at the ends of the alpha-helices and in the two loop regions. This is largely consistent with what is seen in proteins of natural origin. Overall, the view provided by both 2H and 13C methyl relaxation methods suggest that the side chains of alpha3D are more dynamic compared to natural proteins. Regions of relative flexibility bound clusters of rigid methyl-bearing side-chain groups that are interspersed with aromatic and beta-branched amino acids. The time scale of motions associated with methyl-bearing side chains of alpha3D are significantly longer than that seen in natural proteins. These results indicate that the strategies underlying the design of alpha3D have largely, but not completely, captured both the structural and dynamic character of natural proteins.  相似文献   

15.
The backbone dynamics of the uniformly 15N-labeled IIA domain of the glucose permease of Bacillus subtilis have been characterized using inverse-detected two-dimensional 1H-15N NMR spectroscopy. Longitudinal (T1) and transverse (T2) 15N relaxation time constants and steady-state (1H)-15N NOEs were measured, at a spectrometer proton frequency of 500 MHz, for 137 (91%) of the 151 protonated backbone nitrogens. These data were analyzed by using a model-free dynamics formalism to determine the generalized order parameter (S2), the effective correlation time for internal motions (tau e), and 15N exchange broadening contributions (Rex) for each residue, as well as the overall molecular rotational correlation time (tau m). The T1 and T2 values for most residues were in the ranges 0.45-0.55 and 0.11-0.15 s, respectively; however, a small number of residues exhibited significantly slower relaxation. Similarly, (1H)-15N NOE values for most residues were in the range 0.72-0.80, but a few residues had much smaller positive NOEs and some exhibited negative NOEs. The molecular rotational correlation time was 6.24 +/- 0.01 ns; most residues had order parameters in the range 0.75-0.90 and tau e values of less than ca. 25 ps. Residues found to be more mobile than the average were concentrated in three areas: the N-terminal residues (1-13), which were observed to be highly disordered; the loop from P25 to D41, the apex of which is situated adjacent to the active site and may have a role in binding to other proteins; and the region from A146 to S149. All mobile residues occurred in regions close to termini, in loops, or in irregular secondary structure.  相似文献   

16.
A new model for the prediction of protein backbone motions is presented. The model, termed reorientational contact-weighted elastic network model, is based on a multidimensional reorientational harmonic potential of the backbone amide bond vector orientations and it is applied to the interpretation of dynamics parameters obtained from NMR relaxation data. The individual energy terms are weighted as a function of the intervector distances and by the contact strengths of each bond vector with respect to its local environment. Correlated reorientational motional properties of the bond vectors are obtained by means of normal mode analysis. Application to a set of proteins with known three-dimensional structures yields good to excellent agreement between predicted and experimental NMR order parameters presenting an improvement over the local contact model. The reorientational eigenmodes of the reorientational contact-weighted elastic network model method provide direct information on the collective nature of protein backbone motions. The dominant eigenmodes have a notably low collectivity, which is consistent with the behavior found for reorientational eigenmodes from molecular dynamics simulations.  相似文献   

17.
The diphtheria toxin repressor contains an SH3-like domain that forms an intramolecular complex with a proline-rich (Pr) peptide segment and stabilizes the inactive state of the repressor. Upon activation of diphtheria toxin repressor (DtxR) by transition metals, this intramolecular complex must dissociate as the SH3 domain and Pr segment form different interactions in the active repressor. Here we investigate the dynamics of this intramolecular complex using backbone amide nuclear spin relaxation rates determined using NMR spectroscopy and molecular dynamics trajectories. The SH3 domain in the unbound and bound states showed typical dynamics in that the secondary structures were fairly ordered with high generalized order parameters and low effective correlation times, while residues in the loops connecting β-strands exhibited reduced generalized order parameters and required additional motional terms to adequately model the relaxation rates. Residues forming the Pr segment exhibited low-order parameters with internal rotational correlation times on the order of 0.6 ns-1 ns. Further analysis showed that the SH3 domain was rich in millisecond time scale motions while the Pr segment exhibited motions on the 100 μs time scale. Molecular dynamics simulations indicated structural rearrangements that may contribute to the observed relaxation rates and, together with the observed relaxation rate data, suggested that the Pr segment exhibits a binding ↔ unbinding equilibrium. The results here provide new insights into the nature of the intramolecular complex and provide a better understanding of the biological role of the SH3 domain in regulating DtxR activity.  相似文献   

18.
Factors affecting the accuracy of molecular dynamics (MD) simulations are investigated by comparing generalized order parameters for backbone NH vectors of the B3 immunoglobulin‐binding domain of streptococcal protein G (GB3) derived from simulations with values obtained from NMR spin relaxation (Yao L, Grishaev A, Cornilescu G, Bax A, J Am Chem Soc 2010;132:4295‐4309.). Choices for many parameters of the simulations, such as buffer volume, water model, or salt concentration, have only minor influences on the resulting order parameters. In contrast, seemingly minor conformational differences in starting structures, such as orientations of sidechain hydroxyl groups, resulting from applying different protonation algorithms to the same structure, have major effects on backbone dynamics. Some, but not all, of these effects are mitigated by increased sampling in simulations. Most discrepancies between simulated and experimental results occur for residues located at the ends of secondary structures and involve large amplitude nanosecond timescale transitions between distinct conformational substates. These transitions result in autocorrelation functions for bond vector reorientation that do not converge when calculated over individual simulation blocks, typically of length similar to the overall rotational diffusion time. A test for convergence before averaging the order parameters from different blocks results in better agreement between order parameters calculated from different sets of simulations and with NMR‐derived order parameters. Thus, MD‐derived order parameters are more strongly affected by transitions between conformational substates than by fluctuations within individual substates themselves, while conformational differences in the starting structures affect the frequency and scale of such transitions. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Structure and backbone dynamics of Apo-CBFbeta in solution   总被引:1,自引:0,他引:1  
Wolf-Watz M  Grundström T  Härd T 《Biochemistry》2001,40(38):11423-11432
  相似文献   

20.
Double-stranded RNA binding domains of human protein kinase R (dsRBD-PKR) regulate distinct cellular functions and the fate of an RNA molecule in the cell. This highly homologous domains present in multiple copies in a number of species, exhibit individual and specific functional specificity. Number of NMR and X-ray crystallographic structural studies reveals that such domains take a common alpha-beta-beta-beta-alpha tertiary fold. However, the functional specificities of these domains could be due to the dynamics of the individual amino acid residues, as has been shown earlier in the case of backbone dynamics of 15N-1H of dsRNA binding motifs (dsRBMs) of human protein kinase R (PKR) (Nanduri S, Rahman F, Williams BRG, Qin J. EMBO J 2000;19:5567-5574). To further investigate if the differences in dynamics of the two dsRBMs are restricted to only backbone, or if the side-chain motions are also different to the extent of influencing their packing of the two hydrophobic cores, we have investigated the methyl group dynamics using 13C-methyl relaxation measurements. The results show that the hydrophobic core of dsRBM1 is more tightly packed than dsRBM2, and it seems to undergo less fast scale motions in the subnanosecond regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号