首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Tropical forest ecosystems play an important role in regulating the global climate, yet deforestation and land‐use change mean that the tropical carbon sink is increasingly influenced by agroecosystems and pastures. Despite this, it is not yet fully understood how carbon cycling in the tropics responds to land‐use change, particularly for pasture and afforestation. Thus, the objectives of our study were: (1) to elucidate the environmental controls and the impact of management on gross primary production (GPP), total ecosystem respiration (TER) and net ecosystem CO2 exchange (NEE); (2) to estimate the carbon sequestration potential of tropical pasture compared with afforestation; and (3) to compare eddy covariance‐derived carbon budgets with biomass and soil inventory data. We performed comparative measurements of NEE in a tropical C4 pasture and an adjacent afforestation with native tree species in Sardinilla (Panama) from 2007 to 2009. Pronounced seasonal variation in GPP, TER and NEE were closely related to radiation, soil moisture, and C3 vs. C4 plant physiology. The shallow rooting depth of grasses compared with trees resulted in a higher sensitivity of the pasture ecosystem to water limitation and seasonal drought. During 2008, substantial amounts of carbon were sequestered by the afforestation (–442 g C m–2, negative values denote ecosystem carbon uptake), which was in agreement with biometric observations (–450 g C m–2). In contrast, the pasture ecosystem was a strong carbon source in 2008 and 2009 (261 g C m–2), associated with seasonal drought and overgrazing. In addition, soil carbon isotope data indicated rapid carbon turnover after conversion from C4 pasture to C3 afforestation. Our results clearly show the potential for considerable carbon sequestration of tropical afforestation and highlight the risk of carbon losses from pasture ecosystems in a seasonal tropical climate.  相似文献   

2.
The carbon balance of tropical, temperate and boreal forests   总被引:28,自引:0,他引:28  
Forest biomes are major reserves for terrestrial carbon, and major components of global primary productivity. The carbon balance of forests is determined by a number of component processes of carbon acquisition and carbon loss, and a small shift in the magnitude of these processes would have a large impact on the global carbon cycle. In this paper, we discuss the climatic influences on the carbon dynamics of boreal, temperate and tropical forests by presenting a new synthesis of micrometeorological, ecophysiological and forestry data, concentrating on three case-study sites. Historical changes in the carbon balance of each biome are also reviewed, and the evidence for a carbon sink in each forest biome and its likely behaviour under future global change are discussed. We conclude that there have been significant advances in determining the carbon balance of forests, but there are still critical uncertainties remaining, particularly in the behaviour of soil carbon stocks.  相似文献   

3.
Across many dryland regions, historically grass‐dominated ecosystems have been encroached upon by woody‐plant species. In this paper, we compare ecosystem water and carbon dioxide (CO2) fluxes over a grassland, a grassland–shrubland mosaic, and a fully developed woodland to evaluate potential consequences of woody‐plant encroachment on important ecosystem processes. All three sites were located in the riparian corridor of a river in the southwest US. As such, plants in these ecosystems may have access to moisture at the capillary fringe of the near‐surface water table. Using fluxes measured by eddy covariance in 2003 we found that ecosystem evapotranspiration (ET) and net ecosystem exchange of carbon dioxide (NEE) increased with increasing woody‐plant dominance. Growing season ET totals were 407, 450, and 639 mm in the grassland, shrubland, and woodland, respectively, and in excess of precipitation by 227, 265, and 473 mm. This excess was derived from groundwater, especially during the extremely dry premonsoon period when this was the only source of moisture available to plants. Access to groundwater by the deep‐rooted woody plants apparently decouples ecosystem ET from gross ecosystem production (GEP) with respect to precipitation. Compared with grasses, the woody plants were better able to use the stable groundwater source and had an increased net CO2 gain during the dry periods. This enhanced plant activity resulted in substantial accumulation of leaf litter on the soil surface that, during rainy periods, may lead to high microbial respiration rates that offset these photosynthetic fluxes. March–December (primary growing season) totals of NEE were ?63, ?212, and ?233 g C m?2 in the grassland, shrubland, and woodland, respectively. Thus, there was a greater disparity between ecosystem water use and the strength of the CO2 sink as woody plants increased across the encroachment gradient. Despite a higher density of woody plants and a greater plant productivity in the woodland than in the shrubland, the woodland produced a larger respiration response to rainfall that largely offset its higher photosynthetic potential. These data suggest that the capacity for woody plants to exploit water resources in riparian areas results in enhanced carbon sequestration at the expense of increased groundwater use under current climate conditions, but the potential does not scale specifically as a function of woody‐plant abundance. These results highlight the important roles of water sources and ecosystem structure on the control of water and carbon balances in dryland areas.  相似文献   

4.
Compared to other ecosystems, estuarine ecosystems have distinct carbon flux dynamics – the lateral carbon flux incurred by tidal activities, and methane generation under the anaerobic conditions of wetland soils. The conventional estimation of gross primary production (GPP) based on the light use efficiency (LUE) model used for non‐wetland terrestrial ecosystems, therefore, cannot be applied directly to estuarine wetland ecosystems. In this paper, we estimated the 2005's annual carbon budget of an estuarine wetland on Chongming Island, Shanghai, and partitioned the losses of carbon due to lateral tidal dynamics and anaerobic methane production using an innovative technique. The average GPP calculated from eddy covariance between March and November was 261.79 μmol m?2 day?1, whereas that from the LUE model was 58.84 μmol m?2 day?1. The correlation coefficient between GPP simulated from the LUE model and that calculated from flux tower data was low in the growing season (R2=0.55). We hypothesized that tidal activities and uncounted methane release were responsible for the difference, which can be predicted from measurements of remote sensing products such as land surface water index (LSWI), evapotranspiration (ET), and tide height (TH). We developed an integrated GPP model by combining the LUE model and an autoregression model to estimate carbon budget. The average GPP from the modified model increased to 263.38 μmol m?2 day?1, and R2 for the correlation between the simulated and calculated data increased to 0.88, demonstrating the potential of our technique for GPP estimation and quantification of seasonal variation in estuarine ecosystems. The approach developed in this study has great potential for correcting unavoidable errors when estimating carbon budget of coastal wetlands. Furthermore, global warming is expected to accelerate sea level rise, which may enhance the effect of tidal activities and increase the difficulty in estimating coastal carbon budgets using conventional methods.  相似文献   

5.
To evaluate the carbon budget of a boreal deciduous forest, we measured CO2 fluxes using the eddy covariance technique above an old aspen (OA) forest in Prince Albert National Park, Saskatchewan, Canada, in 1994 and 1996 as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). We found that the OA forest is a strong carbon sink sequestering 200 ± 30 and 130 ± 30 g C m–2 y–1 in 1994 and 1996, respectively. These measurements were 16–45% lower than an inventory result that the mean carbon increment was about 240 g C m–2 y–1 between 1919 and 1994, mainly due to the advanced age of the stand at the time of eddy covariance measurements. Assuming these rates to be representative of Canadian boreal deciduous forests (area ≈ 3 × 105 km2), it is likely they can sequester 40–60 Tg C y–1, which is 2–3% of the missing global carbon sink. The difference in carbon sequestration by the OA forest between 1994 and 1996 was mainly caused by the difference in leaf emergence date. The monthly mean air temperature during March–May 1994, was 4.8 °C higher than in 1996, resulting in leaf emergence being 18–24 days earlier in 1994 than 1996. The warm spring and early leaf emergence in 1994 enabled the aspen forest to exploit the long days and high solar irradiance of mid-to-late spring. In contrast, the 1996 OA growing season included only 32 days before the summer solstice. The earlier leaf emergence in 1994 resulted 16% more absorbed photosynthetically active radiation and a 90 g C m–2 y–1 increase in photosynthesis than 1996. The concomitant increase in respiration in the warmer year (1994) was only 20 g C m–2 y–1. These results show that an important control on carbon sequestration by boreal deciduous forests is spring temperature, via the influence of air temperature on the timing of leaf emergence.  相似文献   

6.
As one of the important ecosystem services of wetlands, carbon sequestration potential of lakes and swamps in China were investigated. Significant differences were found among the carbon sequestration potential of various lakes, determined by natural conditions and human disturbance. In this study, swamps had a carbon sequestration potential of 4.90 TgC, much higher than lakes in China. Mangrove and coastal marsh have the highest carbon sediment rate among swamps. Carbon sequestration potential in returning farms to lakes and swamps was 30.26 and 0.22 GgC. … a?1, respectively. Under the ongoing national wetland conservation action plan in China, the carbon sequestration potential of wetland restoration was 6.57 GgC. … a?1. Protection and restoration measurements can improve carbon sequestration potential of wetlands.  相似文献   

7.
Duan X N  Wang X K  Fei L  Ouyang Z Y 《农业工程》2008,28(2):463-469
As one of the important ecosystem services of wetlands, carbon sequestration potential of lakes and swamps in China were investigated. Significant differences were found among the carbon sequestration potential of various lakes, determined by natural conditions and human disturbance. In this study, swamps had a carbon sequestration potential of 4.90 TgC, much higher than lakes in China. Mangrove and coastal marsh have the highest carbon sediment rate among swamps. Carbon sequestration potential in returning farms to lakes and swamps was 30.26 and 0.22 GgC. … a?1, respectively. Under the ongoing national wetland conservation action plan in China, the carbon sequestration potential of wetland restoration was 6.57 GgC. … a?1. Protection and restoration measurements can improve carbon sequestration potential of wetlands.  相似文献   

8.
Difficulty in balancing the global carbon budget has lead to increased attention on tropical forests, which have been estimated to account for up to one third of global gross primary production. Whether tropical forests are sources, sinks, or neutral with respect to their carbon balance with the atmosphere remains unclear. To address this issue, estimates of net ecosystem exchange of carbon (NEE) were made for 3 years (1998–2000) using the eddy‐covariance technique in a tropical wet forest in Costa Rica. Measurements were made from a 42 m tower centred in an old‐growth forest. Under unstable conditions, the measurement height was at least twice the estimated zeroplane height from the ground. The canopy at the site is extremely rough; under unstable conditions the median aerodynamic roughness length ranged from 2.4 to 3.6 m. No relationship between NEE and friction velocity (u*) was found using all of the 30‐min averages. However, there was a linear relationship between the nighttime NEE and averaged u* (R2 = 0.98). The diurnal pattern of flux was similar to that found in other tropical forests, with mean daytime NEE ca. ? 18 μ mol CO2 m?2 s?1 and mean nighttime NEE 4.6 μ mol CO2 m?2 s?1. However, because ~ 80% of the nighttime data in this forest were collected during low u* conditions ( < 0.2 m s?1), nighttime NEE was likely underestimated. Using an alternative analysis, mean nighttime NEE increased to 7.05 μ mol CO2 m?2 s?1. There were interannual differences in NEE, but seasonal differences were not apparent. Irradiance accounted for ~ 51% of the variation in the daytime fluxes, with temperature and vapour pressure deficit together accounting for another ~ 20%. Light compensation points ranged from 100 to 207 μ mol PPFD m?2 s?1. No was relationship was found between 30‐min nighttime NEE and tower‐top air temperature. A weak relationship was found between hourly nighttime NEE and canopy air temperature using data averaged hourly over the entire sampling period (Q10 = 1.79, R2 = 0.17). The contribution of below‐sensor storage was fairly constant from day to day. Our data indicate that this forest was a slight carbon source in 1998 (0.05 to ?1.33 t C ha?1 yr?1), a moderate sink in 1999 (?1.53 to ?3.14 t C ha?1 yr?1), and a strong sink in 2000 (?5.97 to ?7.92 t C ha?1 yr?1). This trend is interpreted as relating to the dissipation of warm‐phase El Niño effects over the course of this study.  相似文献   

9.
The net exchange of CO2 (NEE) between a Scots pine (Pinus sylvestris L.) forest ecosystem in eastern Finland and the atmosphere was measured continuously by the eddy covariance (EC) technique over 4 years (1999–2002). The annual temperature coefficient (Q10) of ecosystem respiration (R) for these years, respectively, was 2.32, 2.66, 2.73 and 2.69. The light‐saturated rate of photosynthesis (Amax) was highest in July or August, with an annual average Amax of 10.9, 14.6, 15.3 and 17.1 μmol m?2 s?1 in the 4 years, respectively. There was obvious seasonality in NEE, R and gross primary production (GPP), exhibiting a similar pattern to photosynthetically active radiation (PAR) and air temperature. The integrated daily NEE ranged from 2.59 to ?4.97 g C m?2 day?1 in 1999, from 2.70 to ?4.72 in 2000, from 2.61 to ?4.71 in 2001 and from 5.27 to ?4.88 in 2002. The maximum net C uptake occurred in July, with the exception of 2000, when it was in June. The interannual variation in ecosystem C flux was pronounced. The length of the growing season, based on net C uptake, was 179, 170, 175 and 176 days in 1999–2002, respectively, and annual net C sequestration was 152, 101, 172 and 205 g C m?2 yr?1. It is estimated that ecosystem respiration contributed 615, 591, 752 and 879 g C m?2 yr?1 to the NEE in these years, leading to an annual GPP of ?768, ?692, ?924 and ?1084 g C m?2 yr?1. It is concluded that temperature and PAR were the main determinants of the ecosystem CO2 flux. Interannual variations in net C sequestration are predominantly controlled by average air temperature and integrated radiation in spring and summer. Four years of EC data indicate that boreal Scots pine forest ecosystem in eastern Finland acts as a relatively powerful carbon sink. Carbon sequestration may benefit from warmer climatic conditions.  相似文献   

10.
13C natural abundance variations were measured in peat soil and vegetation from two contrasting boreal forest wetlands: an upland watershed basin and a permanently saturated lowland mire. Evidence of methane oxidation was shown in the permanently saturated wetland with δ13C values as low as -97 ‰ in carbonate minerals found in floating peat mats. It is postulated that13C depleted CH4 is oxidized in the mat and reacts with calcium ions to form calcite (identified through x-ray diffraction). Methane flux measurements during the summer of 1992 showed much lower fluxes in areas with floating peat mats relative to open water. Secondary carbonates in the basin peat have isotope compositions close to the δ13C values of the peat organic carbon (-25 ‰), indicating their origin from fermentation and possibly from sulfate-reduction. In the upland basin peat deposits, the δ13CPDB values of organic C were constant with depth, while the permanently saturated mire had localities of13C enrichment in deeper layers of the peat. The13C enrichment may reflect areas of intense CH4 production in which13C enriched residual substrate is left behind during the production of highly13C depleted CH4.  相似文献   

11.
An Ameriflux site was established in mid 1996 to study the exchange of CO2 in a native tallgrass prairie of north‐central Oklahoma, USA. Approximately the first 20 months of measurements (using eddy covariance) are described here. This prairie, dominated by warm season C4 grasses, is typical of the central Kansas/northern Oklahoma region. During the first three weeks of the measurement period (mid‐July–early August 1996), moisture‐stress conditions prevailed. For the remainder of the period (until March 1998), however, soil moisture was nonlimiting. Mid‐day net ecosystem CO2 exchange (NEE), under well‐watered conditions, reached a maximum magnitude of 1.4 mg CO2 m?2 s?1 (flux toward the surface is positive) during peak growth (mid‐July 1997), with green leaf area index of 2.8. In contrast, under moisture‐stress conditions in the same growth stage in 1996, mid‐day NEE was reduced to near‐zero. Average night NEE ranged from near‐zero, during winter dormancy, to ? 0.50 mg CO2 m?2 s?1, during peak growth. Most of the variance in average night NEE was explained by changes in soil temperature (0.1 m depth) and green leaf area. The daytime NEE measurements were examined in terms of a rectangular hyperbolic relationship with incident photosynthetically active radiation. The analysis showed that the quantum yield during peak growth was similar to those measured in other prairies and the y‐intercept, so obtained, can be potentially used as an estimate of night‐time CO2 emissions when eddy covariance data are unavailable. Daily integrated NEE reached its peak magnitude of 30.8 g CO2 m?2 d?1 (8.4 g C m?2 d?1) in mid‐July when the green LAI was the largest (about 2.8). In general, the seasonal trend of daily NEE (on relatively clear days) followed that of green LAI. Annually integrated carbon exchange, between prescribed burns in 1997 and 1998, was 268 g C m?2 y?1. After incorporating carbon loss during the prescribed burn , the net annual carbon exchange in this prairie was near‐zero in 1998.  相似文献   

12.
Continuous measurements of the net CO2 flux exchanged in a mixed forest with the atmosphere were performed over 5 years at the Vielsalm experimental site. The carbon sequestration at the site was deduced by a summation of the measurements. Problems associated with this summation procedure were discussed. The carbon sequestration in the ecosystem was presented and its interannual variability was discussed. An estimation of the night flux correction was given. The correction was applied by replacing measurements made during quiet nights by a parameterization. The impact of the correction was shown to vary between 10 and 20% of the uncorrected flux, according to the year. The need to include the storage flux during turbulent periods was emphasized: its neglect leads to an error which will be greater than the one it tries to correct. It was also shown that the heterogeneity of the site made it necessary to split the data into separate series corresponding to the different vegetation patches and to fill the data gaps by using an algorithm that takes account of the weather conditions. Two series were defined, one corresponding to a beech subplot, the other to a conifer subplot. The uncertainty owing to the data split and the data gap‐filling was about 15–20% annually. The carbon sequestration was then analysed in both the subplots. The length of the growing season was about 210 days in the beech and 240 days in the conifer. The carbon sequestration over 5 years was 2.28 kg C m2?2 in the beech and 3.58 kg C m2?2 in the conifer. The main difference between the species appeared in spring, between March and May, when the beeches were leafless. Significant interannual variations were observed in both the subplots. They appeared mainly in summer and were primarily because of the variations in the radiation and air humidity regimes. In addition, an impact of the interannual variation of the vegetation area index (VAI) and of the leaf initiation date was observed in the beech. Finally, a decline of the carbon sequestration efficiency of the ecosystem during the season was observed in both the subplots. It was because of neither the variation in any climatic variables nor VAI variation.  相似文献   

13.
The persistent terrestrial carbon sink regulates long‐term climate change, but its size, location, and mechanisms remain uncertain. One of the most promising terrestrial biogeochemical carbon sequestration mechanisms is the occlusion of carbon within phytoliths, the silicified features that deposit within plant tissues. Using phytolith content–biogenic silica content transfer function obtained from our investigation, in combination with published silica content and aboveground net primary productivity (ANPP) data of leaf litter and herb layer in China's forests, we estimated the production of phytolith‐occluded carbon (PhytOC) in China's forests. The present annual phytolith carbon sink in China's forests is 1.7 ± 0.4 Tg CO2 yr ? 1, 30% of which is contributed by bamboo because the production flux of PhytOC through tree leaf litter for bamboo is 3–80 times higher than that of other forest types. As a result of national and international bamboo afforestation and reforestation, the potential of phytolith carbon sink for China's forests and world's bamboo can reach 6.8 ± 1.5 and 27.0 ± 6.1 Tg CO2 yr?1, respectively. Forest management practices such as bamboo afforestation and reforestation may significantly enhance the long‐term terrestrial carbon sink and contribute to mitigation of global climate warming.  相似文献   

14.
黄河口湿地有机碳来源及其对碳埋藏提升策略的启示   总被引:6,自引:0,他引:6  
滨海湿地是地球上具有多种独特功能的生态系统,是地球上重要的碳库之一,其在全球碳循环中的作用在近年来越来越受到人们的重视。总结了用C/N、稳定碳同位素和生物标志物等方法追踪黄河口湿地有机碳来源的研究成果,并据此探讨了黄河口湿地的固碳提升策略。黄河口湿地是我国典型的滨海湿地,碳来源复杂,但各种示踪方法均表明有机碳的来源中陆源输入较海源输入优势明显,而且陆源输入以地表径流和植被为主,但海源输入从内陆向近海逐渐增强,碳的来源有明显的时空变化并且受到人类活动的强烈干扰。从有机质来源看,提升黄河口湿地的碳埋藏能力应该从合理调配河流淡水资源、保护植被、加快植物群落演替等方面入手。目前有机碳来源的研究还存在覆盖区域有限、碳源区分粗略、影响因子研究较少等问题,缺乏系统性,多限于观测,对机制的理解十分薄弱,因此难以对碳埋藏能力的提升提供定量化的指导。今后的研究要从以下几个方面加强:1)不同区域和不同环境条件之间的比较研究;2)探寻更具特异性的生物指标、优化数据模型,使来源区分更细致;3)不同来源有机质在沉积物中埋藏效率的对比研究;4)构建湿地碳埋藏能力评估体系,综合考虑各方面因素研发和集成能够最大限度提高滨海湿地碳埋藏能力的技术。  相似文献   

15.
Carbon dioxide, water vapour, and sensible heat fluxes were measured above and within a spruce dominated forest near the southern ecotone of the boreal forest in Maine, USA. Summer, mid-day carbon dioxide uptake was higher than at other boreal coniferous forests, averaging about – 13 μmol CO2 m–2 s–1. Nocturnal summer ecosystem respiration averaged ≈ 6 μmol CO2 m–2 s–1 at a mean temperature of ≈ 15 °C. Significant ecosystem C uptake began with the thawing of the soil in early April and was abruptly reduced by the first autumn frost in early October. Half-hourly forest CO2 exchange was regulated mostly by the incident photosynthetically active photon flux density (PPFD). In addition to the threshold effects of freezing temperatures, there were seasonal effects on the inferred photosynthetic parameters of the forest canopy. The functional response of this forest to environmental variation was similar to that of other spruce forests. In contrast to reports of carbon loss from northerly boreal forest sites, in 1996 the Howland forest was a strong carbon sink, storing about 2.1 t C ha–1.  相似文献   

16.
Wetlands are important sources of methane (CH4) and sinks of carbon dioxide (CO2). However, little is known about CH4 and CO2 fluxes and dynamics of seasonally flooded tropical forests of South America in relation to local carbon (C) balances and atmospheric exchange. We measured net ecosystem fluxes of CH4 and CO2 in the Pantanal over 2014–2017 using tower‐based eddy covariance along with C measurements in soil, biomass and water. Our data indicate that seasonally flooded tropical forests are potentially large sinks for CO2 but strong sources of CH4, particularly during inundation when reducing conditions in soils increase CH4 production and limit CO2 release. During inundation when soils were anaerobic, the flooded forest emitted 0.11 ± 0.002 g CH4‐C m?2 d?1 and absorbed 1.6 ± 0.2 g CO2‐C m?2 d?1 (mean ± 95% confidence interval for the entire study period). Following the recession of floodwaters, soils rapidly became aerobic and CH4 emissions decreased significantly (0.002 ± 0.001 g CH4‐C m?2 d?1) but remained a net source, while the net CO2 flux flipped from being a net sink during anaerobic periods to acting as a source during aerobic periods. CH4 fluxes were 50 times higher in the wet season; DOC was a minor component in the net ecosystem carbon balance. Daily fluxes of CO2 and CH4 were similar in all years for each season, but annual net fluxes varied primarily in relation to flood duration. While the ecosystem was a net C sink on an annual basis (absorbing 218 g C m?2 (as CH4‐C + CO2‐C) in anaerobic phases and emitting 76 g C m?2in aerobic phases), high CH4 effluxes during the anaerobic flooded phase and modest CH4 effluxes during the aerobic phase indicate that seasonally flooded tropical forests can be a net source of radiative forcings on an annual basis, thus acting as an amplifying feedback on global warming.  相似文献   

17.
Chen Y  Wen Y  Cheng J  Xue C  Yang D  Zhou Q 《Bioresource technology》2011,102(3):2433-2440
Dissolved oxygen (DO) concentrations have often been shown to be important to decomposition rates of plant litter and thus may be a key factor in determining the supply of dissolved organic carbon (DOC) and carbon-dependent denitrification in wetlands. During the 2 months operation, DOC accumulation in anaerobic condition was superior to aerobic condition due to higher activities of hydrolase enzymes and lower hydrolysates converted to gaseous C. Also, much higher denitrification rates were observed in wetland when using anaerobic litter leachate as the carbon source, and the available carbon source (ACS) could be used as a good predictor of denitrification rate in wetland. According to the results of this study, extracellular enzymes activities (EEAs) in wetland would change as a short-term consequence of DO. This may alter balance of litter carbon flux and the characteristics of DOC, which may, in turn, have multiple effects on denitrification in wetlands.  相似文献   

18.
The eutrophication of lowland lakes in Europe by excess nitrogen (N) and phosphorus (P) is severe because of the long history of land‐cover change and agricultural intensification. The ecological and socio‐economic effects of eutrophication are well understood but its effect on organic carbon (OC) sequestration by lakes and its change overtime has not been determined. Here, we compile data from ~90 culturally impacted European lakes [~60% are eutrophic, Total P (TP) >30 μg P l?1] and determine the extent to which OC burial rates have increased over the past 100–150 years. The average focussing corrected, OC accumulation rate (C ARFC) for the period 1950–1990 was ~60 g C m?2 yr?1, and for lakes with >100 μg TP l?1 the average was ~100 g C m?2 yr?1. The ratio of post‐1950 to 1900–1950 C AR is low (~1.5) indicating that C accumulation rates have been high throughout the 20th century. Compared to background estimates of OC burial (~5–10 g C m?2 yr?1), contemporary rates have increased by at least four to fivefold. The statistical relationship between C ARFC and TP derived from this study (r2 = 0.5) can be used to estimate OC burial at sites lacking estimates of sediment C‐burial. The implications of eutrophication, diagenesis, lake morphometry and sediment focussing as controls of OC burial rates are considered. A conservative interpretation of the results of the this study suggests that lowland European meso‐ to eutrophic lakes with >30 μg TP l?1 had OC burial rates in excess of 50 g C m?2 yr?1 over the past century, indicating that previous estimates of regional lake OC burial have seriously underestimated their contribution to European carbon sequestration. Enhanced OC burial by lakes is one positive side‐effect of the otherwise negative impact of the anthropogenic disruption of nutrient cycles.  相似文献   

19.
Continuous and direct measurements of ecosystem carbon dioxide and water vapour fluxes can improve our ability to close regional and global carbon and hydrological budgets. On this behalf, an international and multidisciplinary group of scientists (micrometeorologists, ecophysiologists and biogeochemists) assembled at La Thuile, Italy to convene a workshop on ‘Strategies for Monitoring and Modelling CO2 and Water Vapour Fluxes over Terrestrial Ecosystems’. Over the course of the week talks and discussions focused on: (i) the results from recent field studies on the annual cycle of carbon dioxide and water vapour fluxes over terrestrial ecosystems; (ii) the problems and pitfalls associated with making long-term flux measurements; (iii) alternative methods for assessing ecosystem carbon dioxide and water vapour fluxes; (iv) how direct and continuous carbon dioxide and water vapour flux measurements could be used by the ecological and biogeochemical modelling communities; and (v) if, how and where to proceed with establishing a network of long-term flux measurement sites. This report discusses the purpose of the meeting and summarizes the conclusions drawn from the discussions by the attending scientists. There was a consensus that recent advances in instrumentation and software make possible long-term measurements of carbon dioxide and water vapour fluxes over terrestrial ecosystems. At this writing, eight research teams have conducted long-term carbon dioxide and water vapour flux experiments and more long-term studies are anticipated. The participants advocated an experimental design that would make long-term flux measurement valuable to a wider community of modelers, biogeochemists and ecologists. A network of carbon dioxide and water vapour flux measurement stations should include ancillary measurements of meteorological, ecological and biological variables. To assess spatial representativeness of the long term and tower-based flux measurements, periodic aircraft-based flux experiments and satellite-based assessments of land cover were recommended. Occasional cuvette-based measurements of leaf-level carbon dioxide and water vapour fluxes were endorsed to provide information on the biological control of surface fluxes. They can also provide data to parameterize ecophysiological models. Flask sampling of stable carbon isotopes was advocated to extend the flux measurements to the global scale.  相似文献   

20.
In the sporadic permafrost zone of northwestern Canada, boreal forest carbon dioxide (CO2) fluxes will be altered directly by climate change through changing meteorological forcing and indirectly through changes in landscape functioning associated with thaw‐induced collapse‐scar bog (‘wetland’) expansion. However, their combined effect on landscape‐scale net ecosystem CO2 exchange (NEELAND), resulting from changing gross primary productivity (GPP) and ecosystem respiration (ER), remains unknown. Here, we quantify indirect land cover change impacts on NEELAND and direct climate change impacts on modeled temperature‐ and light‐limited NEELAND of a boreal forest–wetland landscape. Using nested eddy covariance flux towers, we find both GPP and ER to be larger at the landscape compared to the wetland level. However, annual NEELAND (?20 g C m?2) and wetland NEE (?24 g C m?2) were similar, suggesting negligible wetland expansion effects on NEELAND. In contrast, we find non‐negligible direct climate change impacts when modeling NEELAND using projected air temperature and incoming shortwave radiation. At the end of the 21st century, modeled GPP mainly increases in spring and fall due to reduced temperature limitation, but becomes more frequently light‐limited in fall. In a warmer climate, ER increases year‐round in the absence of moisture stress resulting in net CO2 uptake increases in the shoulder seasons and decreases during the summer. Annually, landscape net CO2 uptake is projected to decline by 25 ± 14 g C m?2 for a moderate and 103 ± 38 g C m?2 for a high warming scenario, potentially reversing recently observed positive net CO2 uptake trends across the boreal biome. Thus, even without moisture stress, net CO2 uptake of boreal forest–wetland landscapes may decline, and ultimately, these landscapes may turn into net CO2 sources under continued anthropogenic CO2 emissions. We conclude that NEELAND changes are more likely to be driven by direct climate change rather than by indirect land cover change impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号