首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The geometry of search movements of insects in plant canopies   总被引:1,自引:0,他引:1  
The aim of this study was to provide a framework for describingand understanding the geometry of movement of insects foragingwithin complex plant canopies where the insect is exposed tovarying stimuli. We used the apple maggot fly, Rhagoletis pomonella(Walsh) (Diptera: Tephritidae), foraging in apple trees devoidof fruit as our model system. The framework provides the nullhypothesis required for inferring the influence of externalstimuli, such as fruit color and odor, on the paths of foragingflies. We mapped trees into cells, released preconditioned fliesin caged trees, and recorded their behavior and location. Fliesmoved mainly to the nearest neighbor cells, but displacementwithin a wide range of distances was observed. The model closestto observations is a random walk with a position-dependent biasin the vertical component of movement. Four other models werebuilt, spanning a range of simplifications in the rules determiningthe vertical component of movement We used the concept of avoidanceof self-crossing in a searching path for defining efficiencyof movement Flies were quite efficient at visiting almost asmany different cells as possible. Comparisons of assumptionsand predictions of the five models revealed that this efficiencyis due to the small number of steps, the location of the startingcell, and a strong tendency to move upward in its vicinity.We discuss the selection pressures on movement rules: pressurefrom predators may explain the short hops, while the sensoryecology of fruit finding and the avoidance of sites alreadyvisited by other flies or by the same fly may explain the position-dependentupward bias. Strong similarities between the rules for the verticalcomponent of movement of one simplified model and the observationslead us to believe that canopy architecture influences insectmovement not only by defining the set of locations that theinsect can visit using predefined rules for movement but alsoby defining the rules of movement  相似文献   

2.
为了更好地了解全球变暖对草地生态系统的影响机制, 该文介绍了红外加热技术的原理、增温效应及其优缺点, 重点从植物物候、光合生理、生长发育、群落结构和功能、土壤特性, 特别是植物群落地下过程方面, 系统综述了基于红外加热技术模拟气候变暖对草地生态系统影响的最新研究进展, 在此基础上探讨了未来草地生态系统响应全球变暖研究拟重视的研究领域。  相似文献   

3.
抽穗期不同灌水深度下水稻群体与大气的温度差异   总被引:6,自引:0,他引:6  
于2005年选用3个水稻品种(扬稻6号、扬粳9538和武香粳14)在抽穗开花期设置无水(0 cm)、浅水(2~4 cm)和深水(10 cm以上)3个水分处理,研究水分管理对水稻不同部位温度的影响.结果表明,在10:30-15:00,田间灌水深度显著影响水稻植株不同部位的温度.田间水位越高,水稻各部位的温度越低,大气温度与植株不同部位的温度的差值越高.深水管理下,3个品种大气与水稻穗部、植株中部和田面温差的平均值分别比无水管理高1.37、2.98和4.12 ℃,比浅水管理高0.67、1.59和2.17 ℃;而浅水管理大气与下穗部、植株中部和田面温差的平均值分别比无水管理高0.71、1.39和1.95 ℃.不同品种大气与水稻各部位的温度差值也存在差异.对田面-植株中部-穗部温度传递特性的分析表明,不同水深管理下的水稻群体内部温度的变化梯度符合热学传递原理,说明在抽穗期高温来临之前提高田间水深对降低或缓解水稻高温热害具有明显作用.  相似文献   

4.
Soil and plant resistance to water flow under field conditions in pea (Pisum sativum L.) plants were measured at six ages. Transpiration flux, leaf and soil water potentials were used to calculate the total resistance to water flow using the Ohm's law analogy. Plant resistance was estimated from the slope of the water potential difference () vs. transpiration (Q) relationship. Plant growth, root density and soil water content distribution were measured. Leaf area and root length both increased until the end of seed filling and decreased during seed maturation. Total resistance decreased with the transpiration flux in a non-linear relationship. Plant resistance estimated as the slope of the vs. Q regression line increased until pod filling and then decreased. The increased resistance to water flow during pod filling was associated with a 10% increase in cell wall thickness.  相似文献   

5.
We investigated the occurrence of and mechanisms responsible for acclimation of fine‐root respiration of mature sugar maple (Acer saccharum) after 3+ years of experimental soil warming (+4 to 5 °C) in a factorial combination with soil moisture addition. Potential mechanisms for thermal respiratory acclimation included changes in enzymatic capacity, as indicated by root N concentration; substrate limitation, assessed by examining nonstructural carbohydrates and effects of exogenous sugar additions; and adenylate control, examined as responses of root respiration to a respiratory uncoupling agent. Partial acclimation of fine‐root respiration occurred in response to soil warming, causing specific root respiration to increase to a much lesser degree (14% to 26%) than would be expected for a 4 to 5 °C temperature increase (approximately 55%). Acclimation was greatest when ambient soil temperature was warmer or soil moisture availability was low. We found no evidence that enzyme or substrate limitation caused acclimation but did find evidence supporting adenylate control. The uncoupling agent caused a 1.4 times greater stimulation of respiration in roots from warmed soil. Sugar maple fine‐root respiration in warmed soil was at least partially constrained by adenylate use, helping constrain respiration to that needed to support work being performed by the roots.  相似文献   

6.
The response of plants to a warming climate could have a large feedback on further climatic change. This feedback is especially important for tropical forests, where the global peak in plant productivity and biodiversity occurs. Here we test the response of tropical forest tree seedling growth, photosynthesis and herbivory to 3 years of in situ full-soil profile warming. We studied six species, three of which are known nitrogen-fixers and we hypothesized that the warming response of growth will be mediated by nutrient availability to plants. Across species, growth was significantly lower in warmed soil compared to soil at ambient temperature, and the same pattern was observed for light-saturated photosynthesis, pointing toward a growth decline associated with decreased C fixation. Within species, the relative growth decline was significant for two species, Inga laurina and Tachigali versicolor, both of which are N-fixers. Together our results suggest a growth decline may have resulted from a negative effect of warming on N-fixation, rather than via changes in nutrient mineralization from soil organic matter, which was unchanged for N and increased for P during the dry-to-wet season transition. Overall, our study demonstrates that belowground warming causes species-specific declines in the growth and photosynthesis of seedlings, with a suggestion—requiring further investigation—that this growth decline is larger in N-fixing species.  相似文献   

7.
During long-term monitoring (more than 20 years) of the hydrologic regime at 20 mountainous sites in the Czech Republic (altitude 600–1400 m a.s.l.; vegetation season April-September; mean air temperature 8–10°C; mean total precipitation 400–700 mm; mean duration of sunshine 1100–1300 hours; mean potential transpiration 200–250 mm) it was found that plant temperature does not rise above about 25°C when plants transpire. According to the ecological optimality theory, the phytocenosis that is able to survive unfavourable conditions and produce the biggest amount of phytomass will prevail at sites occurring in long-term stable natural conditions. Simulation of phytomass productivity based on the optimum temperature for plant growth showed that plants with an optimum leaf temperature of about 25°C can survive the unfavourable conditions and produce the largest amount of phytomass at the site studied in the long-term.  相似文献   

8.
民勤荒漠区植物物候对气候变暖的响应   总被引:8,自引:0,他引:8  
近几十年来,全球气候普遍变暖.那么,荒漠地区的气候是不是响应了全球气候的这种变化?在全球气候变化过程中,荒漠区植物物候又是如何响应这种气候变化的呢?显然,研究荒漠地区植物物候对气候变化的响应对于深入研究荒漠植物物候与气候因子的关系以及荒漠地区的植物保护都具有重要意义.运用位于中国西北典型荒漠地区的民勤沙生植物园1974~2007年42种中生、旱生植物的物候观测资料进行分析.结果表明:研究区1974年以来气温抬升幅度大于其他文献的研究报道,春季物候期提前幅度明显大于其他国家文献报道;在气温变暖的过程中,不同月份的气温变化与年平均气温的变化趋势并不完全对应,物候期发生当月的平均气温对该物候期的影响>物候期发生上月平均气温>年平均气温;研究区位于中国典型荒漠化地区,属于干旱荒漠气候,春季气温升高较其他地区更加明显,这就是当地春季物候期提前幅度相对较大的原因所在,也是当地以及中国西北沙区近几十年来沙尘暴天气增多和沙尘暴发生日期提前的原因.植物物候变化既是植物对气候变化的综合反应过程,又是植物适应气候变化的过程,尤其是荒漠植物.因此,物候研究将会成为今后气候学和植物生态学研究的一个重要内容.  相似文献   

9.
气候变化对长白山阔叶红松林冠层蒸腾影响的模拟   总被引:2,自引:0,他引:2  
应用基于过程的碳水耦合多层模型对长白山阔叶红松林冠层蒸腾量进行了模拟和模型验证,并模拟了冠层蒸腾量对未来气候变化的响应.结果表明:多层模型可以较好地模拟长白山阔叶红松林冠层蒸腾量,模拟值与涡动相关技术观测的实测值拟合较好.冠层蒸腾对气候变化响应的模拟显示,气温升高,潜热通量(LE)增加;土壤含水量减少,LE减少;大气CO2浓度增加,LE减少.在研究假定的气候变化情景下,LE对0~20 cm土壤含水量减少10%、CO2浓度增加190μmol·mol-1的联合变化的响应最敏感,对气温增加3.6℃、土壤含水量减少10%的联合变化的响应不敏感.  相似文献   

10.
Sphagnum mosses are keystone components of peatland ecosystems. They facilitate the accumulation of carbon in peat deposits, but climate change is predicted to expose peatland ecosystem to sustained and unprecedented warming leading to a significant release of carbon to the atmosphere. Sphagnum responses to climate change, and their interaction with other components of the ecosystem, will determine the future trajectory of carbon fluxes in peatlands. We measured the growth and productivity of Sphagnum in an ombrotrophic bog in northern Minnesota, where ten 12.8‐m‐diameter plots were exposed to a range of whole‐ecosystem (air and soil) warming treatments (+0 to +9°C) in ambient or elevated (+500 ppm) CO2. The experiment is unique in its spatial and temporal scale, a focus on response surface analysis encompassing the range of elevated temperature predicted to occur this century, and consideration of an effect of co‐occurring CO2 altering the temperature response surface. In the second year of warming, dry matter increment of Sphagnum increased with modest warming to a maximum at 5°C above ambient and decreased with additional warming. Sphagnum cover declined from close to 100% of the ground area to <50% in the warmest enclosures. After three years of warming, annual Sphagnum productivity declined linearly with increasing temperature (13–29 g C/m2 per °C warming) due to widespread desiccation and loss of Sphagnum. Productivity was less in elevated CO2 enclosures, which we attribute to increased shading by shrubs. Sphagnum desiccation and growth responses were associated with the effects of warming on hydrology. The rapid decline of the Sphagnum community with sustained warming, which appears to be irreversible, can be expected to have many follow‐on consequences to the structure and function of this and similar ecosystems, with significant feedbacks to the global carbon cycle and climate change.  相似文献   

11.
The ecophysiology of tropical montane cloud forest (TMCF) trees is influenced by crown‐level microclimate factors including regular mist/fog water inputs, and large variations in evaporative demand, which in turn can significantly impact water balance. We investigated the effect of such microclimatic factors on canopy ecophysiology and branch‐level water balance in the dry season of a seasonal TMCF in Veracruz, Mexico, by quantifying both water inputs (via foliar uptake, FU) and outputs (day‐ and night‐time transpiration, NT). Measurements of sap flow, stomatal conductance, leaf water potential and pressure–volume relations were obtained in Quercus lanceifolia, a canopy‐dominant tree species. Our results indicate that FU occurred 34% of the time and led to the recovery of 9% (24 ± 9.1 L) of all the dry‐season water transpired from individual branches. Capacity for FU was independently verified for seven additional common tree species. NT accounted for approximately 17% (46 L) of dry‐season water loss. There was a strong correlation between FU and the duration of leaf wetness events (fog and/or rain), as well as between NT and the night‐time vapour pressure deficit. Our results show the clear importance of fog and NT for the canopy water relations of Q. lanceifolia.  相似文献   

12.
Aims Quantifying changes in plant growth and interspecific interactions, both of which can alter dominance of plant species, will facilitate explanation and projection of the shifts in species composition and community structure in terrestrial biomes expected under global warming. We used an experimental warming treatment to examine the potential influence of global warming on plant growth and interspecific interactions in a temperate steppe in northern China.Materials and Methods Six dominant plant species were grown in monoculture and all 15 two-species mixtures for one growing season under ambient and elevated temperatures in the field. Temperature was manipulated with infrared radiators.Important findings Total biomass of all the six plant species was increased by 34–63% in monocultures and 20–76% in mixtures. The magnitude of the warming effect on biomass was modified by plant interactions. Experimental warming changed the hierarchies of both competitive response and competitive effect. The competitive ability (in terms of response and effect) of one C4 grass (Pennisetum centrasiaticum) was suppressed, while the competitive abilities of one C3 forb (Artemisia capillaris) and one C3 grass (Stipa krylovii) were enhanced by experimental warming. The demonstrated alterations in growth and plant interactions may lead to changes in community structure and biodiversity in the temperate steppe in a warmer world in the future.  相似文献   

13.
Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open‐air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal‐temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear‐cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7 °C, +3.4 °C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72‐7.0 m2 plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (?Tbelow) of +1.84 °C and +3.66 °C at 10 cm soil depth and (?Tabove) of +1.82 °C and +3.45 °C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small‐statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall).  相似文献   

14.
北方土石山区典型树种耗水特征及环境影响因子   总被引:7,自引:0,他引:7  
研究北方土石山区植物耗水特征和环境影响因子对于构建稳定的植被生态系统具有重要意义,能够为当地植被恢复策略提供科学指导。在北京林业大学西山试验林场于2016年7月至10月利用热扩散探针的方法,结合同步观测的土壤含水率和气象因子,对刺槐和油松人工混交林进行蒸腾观测和分析。结果表明:(1)尽管刺槐和油松蒸腾的日变化规律相近,但二者蒸腾的季节变化规律不同;(2)两个树种蒸腾与VPD(饱和水汽压差)成顺时针时滞。刺槐蒸腾与太阳辐射成顺时针时滞,油松则成逆时针时滞;(3)二者与大气环境的耦合程度均较高(Ω0.1),其气孔活动能够有效地控制蒸腾;(4)影响植物蒸腾的主要环境因子为太阳辐射(P0.01)、VPD(P0.01)和风速(P0.01),其中由VPD引起的蒸腾量高于太阳辐射;(5)浅层土壤(0—50cm)的水分条件可能并不是影响植物蒸腾的重要因素。研究表明,在实际管理中可以采取调控气孔导度的手段来减少刺槐和油松人工林的耗水量,来降低水分这一人工林成活的限制因子,从而提高造林成活率。  相似文献   

15.
高原湿地湖滨带植物对气候变暖表现出强烈的功能响应,是全球气候变化的主要现象之一。植物解剖性状直接关系到植物的生态功能,为探讨气候变暖对湿地植物茎解剖结构的影响,该研究利用开顶式生长室分析了模拟增温对滇西北纳帕海湿地湖滨带挺水植物茭草茎解剖结构的影响。结果表明:(1)茭草地上茎在增温4 ℃的范围内,主要通过增加表皮结构厚度以增加表皮失水来响应增温; 地下茎在增温2 ℃的轻度增温条件下与地上茎的响应策略相同,而在增温4 ℃时主要通过减小维管结构大小以降低气穴化风险来响应增温。(2)年最高温度和夜间积温是影响茭草茎解剖结构性状的关键因子,但该两个温度因子仅对地下茎筛管大小的影响达到显著水平(R2=0.838, P<0.01)。(3)内表皮细胞厚度是地上茎响应增温的最主要性状,并与温度因子呈显著正相关。地下茎导管和筛管大小是地下茎响应温度升高的主要性状,二者与温度变量呈负相关关系。综上表明,茭草地上茎和地下茎对增温响应策略存在差异,为揭示高原湿地植物应对气候变暖的响应规律以及生态适应策略提供了科学依据。基于当前气候变暖的背景,建议未来采用更科学的实验方法对更多高原湿地植物的生态响应过程及规律进一步深入研究。  相似文献   

16.
Boreal peatlands may be particularly vulnerable to climate change, because temperature regimes that currently constrain biological activity in these regions are predicted to increase substantially within the next century. Changes in peatland plant community composition in response to climate change may alter nutrient availability, energy budgets, trace gas fluxes, and carbon storage. We investigated plant community response to warming and drying in a field mesocosm experiment in northern Minnesota, USA. Large intact soil monoliths removed from a bog and a fen received three infrared warming treatments crossed with three water‐table treatments (n = 3) for five years. Foliar cover of each species was estimated annually. In the bog, increases in soil temperature and decreases in water‐table elevation increased cover of shrubs by 50% and decreased cover of graminoids by 50%. The response of shrubs to warming was distinctly species‐specific, and ranged from increases (for Andromeda glaucophylla) to decreases (for Kalmia polifolia). In the fens, changes in plant cover were driven primarily by changes in water‐table elevation, and responses were species‐ and lifeform‐specific: increases in water‐table elevation increased cover of graminoids – in particular Carex lasiocarpa and Carex livida– as well as mosses. In contrast, decreases in water‐table elevation increased cover of shrubs, in particular A. glaucophylla and Chamaedaphne calyculata. The differential and sometimes opposite response of species and lifeforms to the treatments suggest that the structure and function of both bog and fen plant communities will change – in different directions or at different magnitudes – in response to warming and/or changes in water‐table elevation that may accompany regional or global climate change.  相似文献   

17.
Veneklaas  Erik J.  Poot  Pieter 《Plant and Soil》2003,257(2):295-304
Woodlands in south-western Australia are evergreen and transpire throughout the year despite the long, hot and dry summers of the Mediterranean climate. Results from a case study in a species-rich Banksia woodland are used to discuss the ecological and physiological properties that appear to be essential features of this and similar communities. Tree, shrub and perennial herbaceous species with long-lived leaves dominate the community, whereas winter-green herbaceous species with short-lived leaves constitute a minor group. The total leaf area index is therefore reasonably constant in all seasons. Leaf area index is low and canopies are open, causing good coupling between the vegetation and the atmosphere, and making stomatal control an effective regulator of transpiration. Mean maximum (winter) stomatal conductances were high at approximately 300 mmol m–2 s–1. Deep-rootedness allows the dominant species to access soil moisture throughout the unsaturated zone, and down to the capillary fringe of the saturated zone. Shrubs and herbs with shallow roots experience greater drought stress during summer. Rates of community evapotranspiration are limited by leaf area index in the wet season, and further reduced by stomatal closure in the dry season. Deep-rooted plants appear to decrease their stomatal conductance before the development of severe drought stress. Such conservative behaviour, possibly related to plant hydraulic constraints, is a contributing factor to the limited seasonality in community water use.  相似文献   

18.
Climate change will alter both the amount and pattern of precipitation and soil water availability, which will directly affect plant growth and nutrient acquisition, and potentially, ecosystem functions like nutrient cycling and losses as well. Given their role in facilitating plant nutrient acquisition and water stress resistance, arbuscular mycorrhizal (AM) fungi may modulate the effects of changing water availability on plants and ecosystem functions. The well‐characterized mycorrhizal tomato (Solanum lycopersicum L.) genotype 76R (referred to as MYC+) and the mutant mycorrhiza‐defective tomato genotype rmc were grown in microcosms in a glasshouse experiment manipulating both the pattern and amount of water supply in unsterilized field soil. Following 4 weeks of differing water regimes, we tested how AM fungi affected plant productivity and nutrient acquisition, short‐term interception of a 15 NH 4 + pulse, and inorganic nitrogen (N) leaching from microcosms. AM fungi enhanced plant nutrient acquisition with both lower and more variable water availability, for instance increasing plant P uptake more with a pulsed water supply compared to a regular supply and increasing shoot N concentration more when lower water amounts were applied. Although uptake of the short‐term 15 NH 4 + pulse was higher in rmc plants, possibly due to higher N demand, AM fungi subtly modulated NO 3 ? leaching, decreasing losses by 54% at low and high water levels in the regular water regime, with small absolute amounts of NO 3 ? leached (<1 kg N/ha). Since this study shows that AM fungi will likely be an important moderator of plant and ecosystem responses to adverse effects of more variable precipitation, management strategies that bolster AM fungal communities may in turn create systems that are more resilient to these changes.  相似文献   

19.
Atmospheric nitrogen (N) deposition across Europe increased substantially from the 1950s to the 1990s. Targeted surveys suggest a negative correlation between N deposition and species richness within quadrats in sensitive habitats. However, it remains unclear whether plant species losses at national recording scales are correlated with nitrogen deposition. We relate plant species losses before 1987 in Great Britain to reduced and oxidized N deposition, land use change and climate change. The mean Ellenberg fertility (N) indices of plant species lost in each 100 km2 cell before 1987 was compared with those of species that were recorded between 1987 and 1999. In 45% of squares, indices of species lost were significantly lower than those for species present after 1986. For 17%, primarily upland, squares, the opposite effect was found. A generalized least squares regression model, with difference in the mean Ellenberg N index between samples as the dependent variable, showed that higher deposition of reduced N was significantly associated with selective loss of species with a lower index. Arable land use and change in arable land use also demonstrated this positive relationship. Rough grazing, change in rough grazing, change in pasture and change in annual precipitation showed negative effects. Difference in Ellenberg R index was highly correlated with difference in Ellenberg N and was negatively correlated with oxidized N deposition, suggesting that the lack of a significant effect of oxidized N deposition on Ellenberg N was because it had effects through both acidification and eutrophication, while the effect of reduced N deposition was primarily through eutrophication. Our results suggest that N deposition, along with land use and precipitation changes, has been a significant driver of local plant extinctions. With N deposition increasing in many parts of the world, local extinctions of plant species may be experienced in other regions.  相似文献   

20.
A small imbalance in plant productivity and decomposition accounts for the carbon (C) accumulation capacity of peatlands. As climate changes, the continuity of peatland net C storage relies on rising primary production to offset increasing ecosystem respiration (ER) along with the persistence of older C in waterlogged peat. A lowering in the water table position in peatlands often increases decomposition rates, but concurrent plant community shifts can interactively alter ER and plant productivity responses. The combined effects of water table variation and plant communities on older peat C loss are unknown. We used a full-factorial 1-m3 mesocosm array with vascular plant functional group manipulations (Unmanipulated Control, Sedge only, and Ericaceous only) and water table depth (natural and lowered) treatments to test the effects of plants and water depth on CO2 fluxes, decomposition, and older C loss. We used Δ14C and δ13C of ecosystem CO2 respiration, bulk peat, plants, and porewater dissolved inorganic C to construct mixing models partitioning ER among potential sources. We found that the lowered water table treatments were respiring C fixed before the bomb spike (1955) from deep waterlogged peat. Lowered water table Sedge treatments had the oldest dissolved inorganic 14C signature and the highest proportional peat contribution to ER. Decomposition assays corroborated sustained high rates of decomposition with lowered water tables down to 40 cm below the peat surface. Heterotrophic respiration exceeded plant respiration at the height of the growing season in lowered water table treatments. Rates of gross primary production were only impacted by vegetation, whereas ER was affected by vegetation and water table depth treatments. The decoupling of respiration and primary production with lowered water tables combined with older C losses suggests that climate and land-use-induced changes in peatland hydrology can increase the vulnerability of peatland C stores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号