首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil erosion redistributes soil organic carbon (SOC) within terrestrial ecosystems, to the atmosphere and oceans. Dust export is an essential component of the carbon (C) and carbon dioxide (CO2) budget because wind erosion contributes to the C cycle by removing selectively SOC from vast areas and transporting C dust quickly offshore; augmenting the net loss of C from terrestrial systems. However, the contribution of wind erosion to rates of C release and sequestration is poorly understood. Here, we describe how SOC dust emission is omitted from national C accounting, is an underestimated source of CO2 and may accelerate SOC decomposition. Similarly, long dust residence times in the unshielded atmospheric environment may considerably increase CO2 emission. We developed a first approximation to SOC enrichment for a well‐established dust emission model and quantified SOC dust emission for Australia (5.83 Tg CO2‐e yr?1) and Australian agricultural soils (0.4 Tg CO2‐e yr?1). These amount to underestimates for CO2 emissions of ≈10% from combined C pools in Australia (year = 2000), ≈5% from Australian Rangelands and ≈3% of Australian Agricultural Soils by Kyoto Accounting. Northern hemisphere countries with greater dust emission than Australia are also likely to have much larger SOC dust emission. Therefore, omission of SOC dust emission likely represents a considerable underestimate from those nations’ C accounts. We suggest that the omission of SOC dust emission from C cycling and C accounting is a significant global source of uncertainty. Tracing the fate of wind‐eroded SOC in the dust cycle is therefore essential to quantify the release of CO2 from SOC dust to the atmosphere and the contribution of SOC deposition to downwind C sinks.  相似文献   

2.
The movement of soil organic carbon (SOC) during erosion and deposition events represents a major perturbation to the terrestrial carbon cycle. Despite the recognized impact soil redistribution can have on the carbon cycle, few major carbon accounting models currently allow for soil mass flux. Here, we modified a commonly used SOC model to include a soil redistribution term and then applied it to scenarios which explore the implications of unrecognized erosion and deposition for SOC accounting. We show that models that assume a static landscape may be calibrated incorrectly as erosion of SOC is hidden within the decay constants. This implicit inclusion of erosion then limits the predictive capacity of these models when applied to sites with different soil redistribution histories. Decay constants were found to be 15–50% slower when an erosion rate of 15 t soil ha?1 yr?1 was explicitly included in the SOC model calibration. Static models cannot account for SOC change resulting from agricultural management practices focused on reducing erosion rates. Without accounting for soil redistribution, a soil sampling scheme which uses a fixed depth to support model development can create large errors in actual and relative changes in SOC stocks. When modest levels of erosion were ignored, the combined uncertainty in carbon sequestration rates was 0.3–1.0 t CO2 ha?1 yr?1. This range is similar to expected sequestration rates for many management options aimed at increasing SOC levels. It is evident from these analyses that explicit recognition of soil redistribution is critical to the success of a carbon monitoring or trading scheme which seeks to credit agricultural activities.  相似文献   

3.
National estimates of changes in the amount of soil organic carbon (SOC) in cropland requires an assessment of uncertainty for accounting and reporting under the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol. Canada has data sets on SOC stocks in croplands, historical changes in SOC levels due to management practices, and historical changes in the area of land devoted to certain soil management practices. We conducted an analysis of uncertainty of the change in SOC levels due to management practices in Canada from 1991 to 2001 using Monte Carlo analysis and a simple model. Probability distribution functions were determined for each of the inputs of the model, enabling us to assess the uncertainty for the output. The storage rate of SOC in cropland soils of Canada for the 10‐year period ranged from 3.2 to 8.3 Mt C yr?1 at 95% confidence, with a mean of 5.7 Mt C yr?1. Approximately 67% (about 3.8 Mt C yr?1) of the increase in SOC storage in Canada occurred in Saskatchewan where the cropland area under no‐till increased from 10% to 35%, and the area of summer‐fallow declined from 43% to 20% during the study period. The large uncertainty in the effect of no‐till on SOC stock changes in the Gray‐Brown Luvisols of Ontario contributed most to the variance in the model output. If trends in agricultural management continue for the next 10‐year census period, the estimated SOC storage would comprise between 7% and 19% of the gap required to achieve the 6% reduction in 1990 greenhouse gas emission levels for Canada under the Kyoto Protocol.  相似文献   

4.
The idea of offsetting anthropogenic CO2 emissions by increasing global soil organic carbon (SOC), as recently proposed by French authorities ahead of COP21 in the ‘four per mil’ initiative, is notable. However, a high uncertainty still exits on land C balance components. In particular, the role of erosion in the global C cycle is not totally disentangled, leading to disagreement whether this process induces lands to be a source or sink of CO2. To investigate this issue, we coupled soil erosion into a biogeochemistry model, running at 1 km2 resolution across the agricultural soils of the European Union (EU). Based on data‐driven assumptions, the simulation took into account also soil deposition within grid cells and the potential C export to riverine systems, in a way to be conservative in a mass balance. We estimated that 143 of 187 Mha have C erosion rates <0.05 Mg C ha?1 yr?1, although some hot‐spot areas showed eroded SOC >0.45 Mg C ha?1 yr?1. In comparison with a baseline without erosion, the model suggested an erosion‐induced sink of atmospheric C consistent with previous empirical‐based studies. Integrating all C fluxes for the EU agricultural soils, we estimated a net C loss or gain of ?2.28 and +0.79 Tg yr?1 of CO2eq, respectively, depending on the value for the short‐term enhancement of soil C mineralization due to soil disruption and displacement/transport with erosion. We concluded that erosion fluxes were in the same order of current carbon gains from improved management. Even if erosion could potentially induce a sink for atmospheric CO2, strong agricultural policies are needed to prevent or reduce soil erosion, in order to maintain soil health and productivity.  相似文献   

5.
Anthropogenically induced change in soil redistribution plays an important role in the soil organic carbon (SOC) budget. Uncertainty of its impact is large because of the dearth of recent soil redistribution estimates concomitant with changing land use and management practices. An Australian national survey used the artificial radionuclide caesium‐137 (137Cs) to estimate net (1950s–1990) soil redistribution. South‐eastern Australia showed a median net soil loss of 9.7 t ha?1 yr?1. We resurveyed the region using the same 137Cs technique and found a median net (1990–2010) soil gain of 3.9 t ha?1 yr?1 with an interquartile range from ?1.6 t ha?1 yr?1 to +10.7 t ha?1 yr?1. Despite this variation, soil erosion across the region has declined as a likely consequence of the widespread adoption of soil conservation measures over the last ca 30 years. The implication of omitted soil redistribution dynamics in SOC accounting is to increase uncertainty and diminish its accuracy.  相似文献   

6.
Drainage has turned peatlands from a carbon sink into one of the world's largest greenhouse gas (GHG) sources from cultivated soils. We analyzed a unique data set (12 peatlands, 48 sites and 122 annual budgets) of mainly unpublished GHG emissions from grasslands on bog and fen peat as well as other soils rich in soil organic carbon (SOC) in Germany. Emissions and environmental variables were measured with identical methods. Site‐averaged GHG budgets were surprisingly variable (29.2 ± 17.4 t CO2‐eq. ha?1 yr?1) and partially higher than all published data and the IPCC default emission factors for GHG inventories. Generally, CO2 (27.7 ± 17.3 t CO2 ha?1 yr?1) dominated the GHG budget. Nitrous oxide (2.3 ± 2.4 kg N2O‐N ha?1 yr?1) and methane emissions (30.8 ± 69.8 kg CH4‐C ha?1 yr?1) were lower than expected except for CH4 emissions from nutrient‐poor acidic sites. At single peatlands, CO2 emissions clearly increased with deeper mean water table depth (WTD), but there was no general dependency of CO2 on WTD for the complete data set. Thus, regionalization of CO2 emissions by WTD only will remain uncertain. WTD dynamics explained some of the differences between peatlands as sites which became very dry during summer showed lower emissions. We introduced the aerated nitrogen stock (Nair) as a variable combining soil nitrogen stocks with WTD. CO2 increased with Nair across peatlands. Soils with comparatively low SOC concentrations showed as high CO2 emissions as true peat soils because Nair was similar. N2O emissions were controlled by the WTD dynamics and the nitrogen content of the topsoil. CH4 emissions can be well described by WTD and ponding duration during summer. Our results can help both to improve GHG emission reporting and to prioritize and plan emission reduction measures for peat and similar soils at different scales.  相似文献   

7.
Losses of soil organic carbon under wind erosion in China   总被引:7,自引:0,他引:7  
Soil organic carbon (SOC) storage generally represents the long‐term net balance of photosynthesis and total respiration in terrestrial ecosystems. However, soil erosion can affect SOC content by direct removal of soil and reduction of the surface soil depth; it also affects plant growth and soil biological activity, soil air CO2 concentration, water regimes, soil temperature, soil respiration, carbon flux to the atmosphere, and carbon deposition in soil. In arid and semi‐arid region of northern China, wind erosion caused soil degradation and desert expansion. This paper estimated the SOC loss of the surface horizon at eroded regions based on soil property and wind erosion intensity data. The SOC loss in China because of wind erosion was about 75 Tg C yr?1 in 1990s. The spatial pattern of SOC loss indicates that SOC loss of the surface horizon increases significantly with the increase of soil wind erosion intensity. The comparison of SOC loss and annual net primary productivity (NPP) of terrestrial ecosystem was discussed in wind erosion regions of China. We found that NPP is also low in the eroded regions and heavy SOC loss often occurs in regions where NPP is very small. However, there is potential to improve our study to resolve uncertainty on the soil organic matter oxidation and soil deposition processes in eroded and deposited sites.  相似文献   

8.
Uncertainty was quantified for an inventory estimating change in soil organic carbon (SOC) storage resulting from modifications in land use and management across US agricultural lands between 1982 and 1997. This inventory was conducted using a modified version of a carbon (C) accounting method developed by the Intergovernmental Panel on Climate Change (IPCC). Probability density functions (PDFs) were derived for each input to the IPCC model, including reference SOC stocks, land use/management activity data, and management factors. Change in C storage was estimated using a Monte‐Carlo approach with 50 000 iterations, by randomly selecting values from the PDFs after accounting for dependencies in the model inputs. Over the inventory period, mineral soils had a net gain of 10.8 Tg C yr?1, with a 95% confidence interval ranging from 6.5 to 15.3 Tg C yr?1. Most of this gain was due to setting‐aside lands in the Conservation Reserve Program. In contrast, managed organic soils lost 9.4 Tg C yr?1, with a 95% confidence interval ranging from 6.4 to 13.3 Tg C yr?1. Combining these gains and losses in SOC, US agricultural soils accrued 1.3 Tg C yr?1 due to land use and management change, with a 95% confidence interval ranging from a loss of 4.4 Tg C yr?1 to a gain of 6.9 Tg C yr?1. Most of the uncertainty was attributed to management factors for tillage, land use change between cultivated and uncultivated conditions, and C loss rates from managed organic soils. Based on the uncertainty, we are not able to conclude with 95% confidence that change in US agricultural land use and management between 1982 and 1997 created a net C sink for atmospheric CO2.  相似文献   

9.
Understanding soil organic carbon (SOC) sequestration is important to develop strategies to increase the SOC stock and, thereby, offset some of the increases in atmospheric carbon dioxide. Although the capacity of soils to store SOC in a stable form is commonly attributed to the fine (clay + fine silt) fraction, the properties of the fine fraction that determine the SOC stabilization capacity are poorly known. The aim of this study was to develop an improved model to estimate the SOC stabilization capacity of Allophanic (Andisols) and non‐Allophanic topsoils (0–15 cm) and, as a case study, to apply the model to predict the sequestration potential of pastoral soils across New Zealand. A quantile (90th) regression model, based on the specific surface area and extractable aluminium (pyrophosphate) content of soils, provided the best prediction of the upper limit of fine fraction carbon (FFC) (i.e. the stabilization capacity), but with different coefficients for Allophanic and non‐Allophanic soils. The carbon (C) saturation deficit was estimated as the difference between the stabilization capacity of individual soils and their current C concentration. For long‐term pastures, the mean saturation deficit of Allophanic soils (20.3 mg C g?1) was greater than that of non‐Allophanic soils (16.3 mg C g?1). The saturation deficit of cropped soils was 1.14–1.89 times that of pasture soils. The sequestration potential of pasture soils ranged from 10 t C ha?1 (Ultic soils) to 42 t C ha?1 (Melanic soils). Although meeting the estimated national soil C sequestration potential (124 Mt C) is unrealistic, improved management practices targeted to those soils with the greatest sequestration potential could contribute significantly to off‐setting New Zealand's greenhouse gas emissions. As the first national‐scale estimate of SOC sequestration potential that encompasses both Allophanic and non‐Allophanic soils, this serves as an informative case study for the international community.  相似文献   

10.
Harvesting corn stover for biofuel production may decrease soil organic carbon (SOC) and increase greenhouse gas (GHG) emissions. Adding additional organic matter into soil or reducing tillage intensity, however, could potentially offset this SOC loss. Here, using SOC and life cycle analysis (LCA) models, we evaluated the impacts of land management change (LMC), that is, stover removal, organic matter addition, and tillage on spatially explicit SOC level and biofuels’ overall life cycle GHG emissions in US corn–soybean production systems. Results indicate that under conventional tillage (CT), 30% stover removal (dry weight) may reduce baseline SOC by 0.04 t C ha?1 yr?1 over a 30‐year simulation period. Growing a cover crop during the fallow season or applying manure, on the other hand, could add to SOC and further reduce biofuels’ life cycle GHG emissions. With 30% stover removal in a CT system, cover crop and manure application can increase SOC at the national level by about 0.06 and 0.02 t C ha?1 yr?1, respectively, compared to baseline cases without such measures. With contributions from this SOC increase, the life cycle GHG emissions for stover ethanol are more than 80% lower than those of gasoline, exceeding the US Renewable Fuel Standard mandate of 60% emissions reduction in cellulosic biofuels. Reducing tillage intensity while removing stover could also limit SOC loss or lead to SOC gain, which would lower stover ethanol life cycle GHG emissions to near or under the mandated 60% reduction. Without these organic matter inputs or reduced tillage intensity, however, the emissions will not meet this mandate. More efforts are still required to further identify key practical LMCs, improve SOC modeling, and accounting for LMCs in biofuel LCAs that incorporate stover removal.  相似文献   

11.
The break‐up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large‐scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub‐Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land‐use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land‐use type had an effect on carbon accumulation in the topsoil (0–5 cm), no independent land‐use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha?1 yr?1 (1–20 years old, 0–5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1–10 years old, 1.04 Mg C ha?1 yr?1) compared to earlier abandoned crop fields (11–20 years old, 0.26 Mg C ha?1 yr?1). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model‐based continent‐wide SOC prediction.  相似文献   

12.
Minesoils are drastically influenced by anthropogenic activities. They are characterized by low soil organic matter (SOM) content, low fertility, and poor physicochemical and biological properties, limiting their quality, capability, and functions. Reclamation of these soils has potential for resequestering some of the C lost and mitigating CO2 emissions. Soil organic carbon (SOC) sequestration rates in minesoils are high in the first 20 to 30 years after reclamation in the top 15 cm soil depth. In general, higher rates of SOC sequestration are observed for minesoils under pasture and grassland management than under forest land use. Observed rates of SOC sequestration are 0.3 to 1.85 Mg C ha? 1 yr? 1 for pastures and rangelands, and 0.2 to 1.64 Mg C ha? 1 yr? 1 for forest land use. Proper reclamation and postreclamation management may enhance SOC sequestration and add to the economic value of the mined sites. Management practices that may enhance SOC sequestration include increasing vegetative cover by deep-rooted perennial vegetation and afforestation, improving soil fertility, and alleviation of physical, chemical and biological limitations by fertilizers and soil amendments such as biosolids, manure, coal combustion by-products, and mulches. Soil and water conservation are important to SOC sequestration. The potential of SOC sequestration in minesoils of the US is estimated to be 1.28 Tg C yr?1, compared to the emissions from coal combustion of 506 Tg C yr? 1.  相似文献   

13.
Permafrost‐affected soils of the northern circumpolar region represent 50% of the terrestrial soil organic carbon (SOC) reservoir and are most strongly affected by climatic change. There is growing concern that this vast SOC pool could transition from a net C sink to a source. But so far little is known on how the organic matter (OM) in permafrost soils will respond in a warming future, which is governed by OM composition and possible stabilization mechanisms. To investigate if and how SOC in the active layer and adjacent permafrost is protected against degradation, we employed density fractionation to separate differently stabilized SOM fractions. We studied the quantity and quality of OM in different compartments using elemental analysis, 13C solid‐phase nuclear magnetic resonance (13C‐NMR) spectroscopy, and 14C analyses. The soil samples were derived from 16 cores from drained thaw lake basins, ranging from 0 to 5500 years of age, representing a unique series of developing Arctic soils over time. The normalized SOC stocks ranged between 35.5 and 86.2 kg SOC m?3, with the major amount of SOC located in the active layers. The SOC stock is dominated by large amounts of particulate organic matter (POM), whereas mineral‐associated OM especially in older soils is of minor importance on a mass basis. We show that tremendous amounts of over 25 kg OC per square meter are stored as presumably easily degradable OM rich in carbohydrates. Only about 10 kg OC per square meter is present as presumably more stable, mineral‐associated OC. Significant amounts of the easily degradable, carbohydrate‐rich OM are preserved in the yet permanently frozen soil below the permafrost table. Forced by global warming, this vast labile OM pool could soon become available for microbial degradation due to the continuous deepening of the annually thawing active layer.  相似文献   

14.
The global magnitude (Pg) of soil organic carbon (SOC) is 677 to 0.3‐m, 993 to 0.5‐m, and 1,505 to 1‐m depth. Thus, ~55% of SOC to 1‐m lies below 0.3‐m depth. Soils of agroecosystems are depleted of their SOC stock and have a low use efficiency of inputs of agronomic yield. This review is a collation and synthesis of articles published in peer‐reviewed journals. The rates of SOC sequestration are scaled up to the global level by linear extrapolation. Soil C sink capacity depends on depth, clay content and mineralogy, plant available water holding capacity, nutrient reserves, landscape position, and the antecedent SOC stock. Estimates of the historic depletion of SOC in world soils, 115–154 (average of 135) Pg C and equivalent to the technical potential or the maximum soil C sink capacity, need to be improved. A positive soil C budget is created by increasing the input of biomass‐C to exceed the SOC losses by erosion and mineralization. The global hotspots of SOC sequestration, soils which are farther from C saturation, include eroded, degraded, desertified, and depleted soils. Ecosystems where SOC sequestration is feasible include 4,900 Mha of agricultural land including 332 Mha equipped for irrigation, 400 Mha of urban lands, and ~2,000 Mha of degraded lands. The rate of SOC sequestration (Mg C ha?1 year?1) is 0.25–1.0 in croplands, 0.10–0.175 in pastures, 0.5–1.0 in permanent crops and urban lands, 0.3–0.7 in salt‐affected and chemically degraded soils, 0.2–0.5 in physically degraded and prone to water erosion, and 0.05–0.2 for those susceptible to wind erosion. Global technical potential of SOC sequestration is 1.45–3.44 Pg C/year (2.45 Pg C/year).  相似文献   

15.
The high uncertainty in land‐based CO2 fluxes estimates is thought to be mainly due to uncertainty in not only quantifying historical changes among forests, croplands, and grassland, but also due to different processes included in calculation methods. Inclusion of a nitrogen (N) cycle in models is fairly recent and strongly affects carbon (C) fluxes. In this study, for the first time, we use a model with C and N dynamics with three distinct historical reconstructions of land‐use and land‐use change (LULUC) to quantify LULUC emissions and uncertainty that includes the integrated effects of not only climate and CO2 but also N. The modeled global average emissions including N dynamics for the 1980s, 1990s, and 2000–2005 were 1.8 ± 0.2, 1.7 ± 0.2, and 1.4 ± 0.2 GtC yr?1, respectively, (mean and range across LULUC data sets). The emissions from tropics were 0.8 ± 0.2, 0.8 ± 0.2, and 0.7 ± 0.3 GtC yr?1, and the non tropics were 1.1 ± 0.5, 0.9 ± 0.2, and 0.7 ± 0.1 GtC yr?1. Compared to previous studies that did not include N dynamics, modeled net LULUC emissions were higher, particularly in the non tropics. In the model, N limitation reduces regrowth rates of vegetation in temperate areas resulting in higher net emissions. Our results indicate that exclusion of N dynamics leads to an underestimation of LULUC emissions by around 70% in the non tropics, 10% in the tropics, and 40% globally in the 1990s. The differences due to inclusion/exclusion of the N cycle of 0.1 GtC yr?1 in the tropics, 0.6 GtC yr?1 in the non tropics, and 0.7 GtC yr?1 globally (mean across land‐cover data sets) in the 1990s were greater than differences due to the land‐cover data in the non tropics and globally (0.2 GtC yr?1). While land‐cover information is improving with satellite and inventory data, this study indicates the importance of accounting for different processes, in particular the N cycle.  相似文献   

16.
The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha?1 yr?1. Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine‐earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period.  相似文献   

17.
Evaluations of soil organic carbon (SOC) stocks are often based on assigning a carbon density to each one of a number of ecosystems or soil classes considered, using data from soil profiles within these categories. A better approach, in which the use of classification methods by which extrapolation of SOC data to larger areas is avoided, can only be used if enough data are available at a sufficiently small scale. Over 190 000 SOC measurements (0–24 cm) have been made in the Flemish cropland (the Northern part of Belgium) in the 1989–2000 period. These SOC data were grouped into 3‐year periods and as means plus standard deviation per (part of) community (polygons). This large dataset was used to calculate SOC stocks and their evolution with time, without data extrapolation. Using a detailed soil map, larger spatial groups of polygons were created based on soil texture and spatial location. Linear regression analysis showed that in the entire study area, SOC stocks had decreased or at best had remained stable. In total, a yearly decrease of 354 kton OC yr?1 was calculated, which corresponds with a net CO2 emission of 1238 kton CO2 yr?1. Specific regions with a high carbon sequestration potential were identified, based on SOC losses during the 1989–2000 period and the mean 1999 SOC content, compared to the average SOC content of soils in Flanders with a similar soil texture. When restoring the SOC stocks to their 1990 level, we estimated the carbon sequestration potential of the Flemish cropland soils to be some 300 kton CO2 yr?1 at best, which corresponds to a 40‐year restoration period. In conclusion, we can say that in regions where agricultural production is very intense, carbon sequestration in the cropland may make only a very modest contribution to a country's effort to reduce greenhouse gas emissions.  相似文献   

18.
Legacy effects of land cover/use on carbon fluxes require considering both present and past land cover/use change dynamics. To assess past land use dynamics, model‐based reconstructions of historic land cover/use are needed. Most historic reconstructions consider only the net area difference between two time steps (net changes) instead of accounting for all area gains and losses (gross changes). Studies about the impact of gross and net land change accounting methods on the carbon balance are still lacking. In this study, we assessed historic changes in carbon in soils for five land cover/use types and of carbon in above‐ground biomass of forests. The assessment focused on Europe for the period 1950 to 2010 with decadal time steps at 1‐km spatial resolution using a bookkeeping approach. To assess the implications of gross land change data, we also used net land changes for comparison. Main contributors to carbon sequestration between 1950 and 2010 were afforestation and cropland abandonment leading to 14.6 PgC sequestered carbon (of which 7.6 PgC was in forest biomass). Sequestration was highest for old‐growth forest areas. A sequestration dip was reached during the 1970s due to changes in forest management practices. Main contributors to carbon emissions were deforestation (1.7 PgC) and stable cropland areas on peaty soils (0.8 PgC). In total, net fluxes summed up to 203 TgC yr?1 (98 TgC yr?1 in forest biomass and 105 TgC yr?1 in soils). For areas that were subject to land changes in both reconstructions (35% of total area), the differences in carbon fluxes were about 68%. Overall for Europe the difference between accounting for either gross or net land changes led to 7% difference (up to 11% per decade) in carbon fluxes with systematically higher fluxes for gross land change data.  相似文献   

19.
Agricultural management has received increased attention over the last decades due to its central role in carbon (C) sequestration and greenhouse gas mitigation. Yet, regardless of the large body of literature on the effects of soil erosion by tillage and water on soil organic carbon (SOC) stocks in agricultural landscapes, the significance of soil redistribution for the overall C budget and the C sequestration potential of land management options remains poorly quantified. In this study, we explore the role of lateral SOC fluxes in regional scale modelling of SOC stocks under three different agricultural management practices in central Belgium: conventional tillage (CT), reduced tillage (RT) and reduced tillage with additional carbon input (RT+i). We assessed each management scenario twice: using a conventional approach that did not account for lateral fluxes and an alternative approach that included soil erosion‐induced lateral SOC fluxes. The results show that accounting for lateral fluxes increased C sequestration rates by 2.7, 2.5 and 1.5 g C m?2 yr?1 for CT, RT and RT+i, respectively, relative to the conventional approach. Soil redistribution also led to a reduction of SOC concentration in the plough layer and increased the spatial variability of SOC stocks, suggesting that C sequestration studies relying on changes in the plough layer may underestimate the soil's C sequestration potential due to the effects of soil erosion. Additionally, lateral C export from cropland was in the same of order of magnitude as C sequestration; hence, the fate of C exported from cropland into other land uses is crucial to determine the ultimate impact of management and erosion on the landscape C balance. Consequently, soil management strategies targeting C sequestration will be most effective when accompanied by measures that reduce soil erosion given that erosion loss can balance potential C uptake, particularly in sloping areas.  相似文献   

20.
Agricultural lands occupy about 40–50% of the Earth's land surface. Agricultural practices can make a significant contribution at low cost to increasing soil carbon sinks, reducing greenhouse gas (GHG) emissions and contributing biomass feedstocks for energy use. Considering all gases, the global technical mitigation potential from agriculture (excluding fossil fuel offsets from biomass) by 2030 is estimated to be ca. 5500–6000 Mt CO2‐eq. yr?1. Economic potentials are estimated to be 1500–1600, 2500–2700 and 4000–4300 Mt CO2‐eq. yr?1 at carbon prices of up to $US20, 50 and 100 t CO2‐eq.?1, respectively. The value of the global agricultural GHG mitigation at the same three carbon prices is $US32 000, 130 000 and 420 000 million yr?1, respectively. At the European level, early estimates of soil carbon sequestration potential in croplands were ca. 200 Mt CO2 yr?1, but this is a technical potential and is for geographical Europe as far east as the Urals. The economic potential is much smaller, with more recent estimates for the EU27 suggesting a maximum potential of ca. 20 Mt CO2‐eq. yr?1. The UK is small in global terms, but a large part of its land area (11 Mha) is used for agriculture. Agriculture accounts for about 7% of total UK GHG emissions. The mitigation potential of UK agriculture is estimated to be ca. 1–2 Mt CO2‐eq. yr?1, accounting for less than 1% of UK total GHG emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号