首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sex allocation theory has been a remarkably productive field in behavioral ecology with empirical evidence regularly supporting quantitative theoretical predictions. Across mammals in general and primates in particular, however, support for the various hypotheses has been more equivocal. Population‐level sex ratio biases have often been interpreted as supportive, but evidence for small‐scale facultative adjustment has rarely been found. The helper repayment (HR) also named the local resource enhancement (LRE) hypothesis predicts that, in cooperatively breeding species, mothers invest more in the sex which assists with rearing future offspring and that this bias will be more pronounced in mothers who require extra assistance (i.e., due to inexperience or a lack of available alloparents). We tested these hypotheses in captive cotton‐top tamarins (Saguinus oedipus) utilizing the international studbook and birth records obtained through a questionnaire from ISIS‐registered institutions. Infant sex, litter size, mother's age, parity, and group composition (presence of nonreproductive subordinate males and females) were determined from these records. The HR hypothesis was supported over the entire population, which was significantly biased toward males (the “helpful” sex). We found little support for helper repayment at the individual level, as primiparous females and those in groups without alloparents did not exhibit more extreme tendencies to produce male infants. Primiparous females were, however, more likely to produce singleton litters. Singleton births were more likely to be male, which suggests that there may be an interaction between litter size adjustment and sex allocation. This may be interpreted as supportive of the HR hypothesis, but alternative explanations at both the proximate and ultimate levels are possible. These possibilities warrant further consideration when attempting to understand the ambiguous results of primate sex ratio studies so far.  相似文献   

2.
Sexually selected infanticide (SSI) is often presumed to be rare among seasonal breeders, because it would require a near immediate return to estrus after the loss of an entire litter during the mating season. We evaluated changes in reproductive strategies and the reproductive fate of females that experienced litter loss during the mating season in a seasonal breeder with strong evidence for SSI, the brown bear. First, we used a long‐term demographic dataset (1986–2011) to document that a large majority of females (>91%) that lose their entire litter during the mating season in fact do enter estrus, mate, and give birth during the subsequent birthing season. Second, we used high‐resolution movement data (2005–2011) to evaluate how females changed reproductive strategies after losing their entire litter during the mating season. We hypothesized that females would shift from the sedentary lifestyle typical for females with cubs‐of‐the‐year to a roam‐to‐mate behavior typical for receptive females in no more than a few (~3) days after litter loss. We found that females with cubs‐of‐the‐year moved at about 1/3 of the rate and in a less bimodal diurnal pattern than receptive females during the mating season. The probability of litter loss was positively related with movement rate, suggesting that being elusive and sedentary is a strategy to enhance cub survival rather than a relic of cub mobility itself. The movement patterns of receptive females and females after litter loss were indistinguishable within 1–2 days after the litter loss, and we illustrate that SSI can significantly reduce the female interbirth interval (50–85%). Our results suggest that SSI can also be advantageous for males in seasonally breeding mammals. We propose that infanticide as a male reproductive strategy is more prevalent among mammals with reproductive seasonality than observed or reported.  相似文献   

3.
In polygynous mammals, males generally benefit more from extra allocation of maternal resources than females. However, limitations to sex-specific allocation are usually ignored. We propose the 'allocation constraint' hypothesis, whereby maternal resource allocation is more likely to follow life-history predictions in single sex litters than in mixed sex litters, due to limitations in prenatal resource targeting. Consequently, for polygynous species, males in mixed litters are likely to receive suboptimal maternal investment, which may have a negative effect on lifetime reproductive success. We test this hypothesis for the saiga antelope (Saiga tatarica), a highly polygynous species with the highest level of maternal allocation reported among ungulates. At such high reproductive output levels, the limitations on additional investment in males are likely to be particularly acute. However, we demonstrate high levels of sexual dimorphism in both late-stage foetuses and newborn calves, including within the same litter. Male twins with a brother tended to be heavier than those with a sister. This may be due to allocation constraints or differences in maternal quality. We conclude that an explicit focus on potential constraints can enhance the progress in the field of sex-specific maternal allocation in polytocous species.  相似文献   

4.
In many birds and mammals, the size and sex composition of litters can have important downstream effects for individual offspring. Primates are model organisms for questions of cooperation and conflict, but the factors shaping interactions among same‐age siblings have been less‐studied in primates because most species bear single young. However, callitrichines (marmosets, tamarins, and lion tamarins) frequently bear litters of two or more, thereby providing the opportunity to ask whether variation in the size and sex composition of litters affects development, survival, and reproduction. To investigate these questions, we compiled a large dataset of nine species of callitrichines (n = 27,080 individuals; Callithrix geoffroyi, Callithrix jacchus, Cebuella pygmaea, Saguinus imperator, Saguinus oedipus, Leontopithecus chrysomelas, Leontopithecus chrysopygus, Leontopithecus rosalia, and Callimico goeldii) from zoo and laboratory populations spanning 80 years (1938–2018). Through this comparative approach, we found several lines of evidence that litter size and sex composition may impact fitness. Singletons have higher survivorship than litter‐born peers and they significantly outperform litter‐born individuals on two measures of reproductive performance. Further, for some species, individuals born in a mixed‐sex litter outperform isosexually‐born individuals (i.e., those born in all‐male or all‐female litters), suggesting that same‐sex competition may limit reproductive performance. We also document several interesting demographic trends. All but one species (C. pygmaea) has a male‐biased birth sex ratio with higher survivorship from birth to sexual maturity among females (although this was significant in only two species). Isosexual litters occurred at the expected frequency (with one exception: C. pygmaea), unlike other animals, where isosexual litters are typically overrepresented. Taken together, our results indicate a modest negative effect of same‐age sibling competition on reproductive output in captive callitrichines. This study also serves to illustrate the value of zoo and laboratory records for biological inquiry.  相似文献   

5.
1.  Optimal parental sex allocation depends on the balance between the costs of investing into sons vs. daughters and the benefits calculated as fitness returns. The outcome of this equation varies with the life history of the species, as well as the state of the individual and the quality of the environment.
2.  We studied maternal allocation and subsequent fecundity costs of bank voles, Myodes glareolus , by manipulating both the postnatal sex ratio (all-male/all-female litters) and the quality of rearing environment (through manipulation of litter size by −2/+2 pups) of their offspring in a laboratory setting.
3.  We found that mothers clearly biased their allocation to female rather than male offspring regardless of their own body condition. Male pups had a significantly lower growth rate than female pups, so that at weaning, males from enlarged litters were the smallest. Mothers produced more milk for female litters and also defended them more intensively than male offspring.
4.  The results agree with the predictions based on the bank vole life history: there will be selection for greater investment in daughters rather than sons, as a larger size seems to be more influencial for female reproductive success in this species. Our finding could be a general rule in highly polygynous, but weakly dimorphic small mammals where females are territorial.
5.  The results disagree with the narrow sense Trivers & Willard hypothesis, which states that in polygynous mammals that show higher variation in male than in female reproductive success, high-quality mothers are expected to invest more in sons than in daughters.  相似文献   

6.
Mast‐seeding is the synchronized and intermittent production of a large seed crop by a population of plants. The cascading effects of masting on wildlife have been well documented in granivorous rodents. Yet, the effects of mast‐seeding are potentially further reaching, since a number of generalist species can take advantage of mast years. We employed a full‐text search algorithm to identify all papers that discussed effects of mast‐seeding on wildlife, in addition to typical searches of titles and abstracts. We aimed to evaluate the breadth of wildlife species for which mast years are thought to be important drivers. In addition, we tested three hypotheses derived from past reviews: 1) species with lower reproductive potential (lower average litter size) are more likely to show aggregative responses to mast‐seeding, 2) species with lower body sizes (lower mobility) are more likely to show reproductive responses, and 3) indirect consumers of mast (predators) are more likely to show aggregative responses than direct consumers. We found 186 articles including reports of response of 122 species of vertebrates to mast‐seeding. Expectations were partly confirmed: relationships 1) and 2) held for mammals, but not for birds. However, 3) direct consumers were more likely than indirect consumers to show aggregative responses. Our tests of the first two hypotheses question the generality of past predictions for taxa other than mammals. Our test of the third hypothesis suggests that responses of direct and indirect consumers might depend on the type of resource pulse. Many of the examples in our analysis come from systems in which wildlife responses to mast have been less rigorously documented than the examples in past reviews. They suggest the range of wildlife responses to mast‐seeding are more taxonomically and ecologically diverse than past reviews have widely recognized and point to directions for future research. Synthesis Mast seeding is a pulsed resource with numerous cascading effects on wildlife. Yet, because masting is largely unpredictable, it is inherently difficult to study. We developed a full‐text search algorithm to identify incidental reports as well as deliberate studies of vertebrate reactions to masting. We found that the type of response to mast seeding (reproductive or through immigration) varies predictably as a function of life history traits (litter size and body mass) in mammals, but not in birds. Our literature search also shows that responses to mast‐seeding are more taxonomically and ecologically diverse than past reviews have recognized.  相似文献   

7.
The presence of male siblings in utero influences female morphology and life-history traits because testosterone transferred among foetuses may masculinize females. Similarly, litter sex composition might alter the display of sexually dimorphic behaviour, such as play and allogrooming, since they are modulated by androgens. We explored whether masculinization alters the frequency of play and sociopositive behaviour in female yellow-bellied marmots (Marmota flaviventris). We found that masculinized juvenile females were more likely to initiate play and allogrooming, but yearling females exhibited higher levels of oestrogen-modulated sociopositive behaviours. Additionally, the more they interacted, the greater number of different partners they interacted with. Our results suggest that masculinization increases the rate of age-dependent social behaviour. This probably works by increasing exploration that predisposes individuals to higher encounter rates. Further support comes from previous findings showing that masculinized females were more likely to disperse. Our study stresses the importance of considering litter sex composition as a fitness modulator.  相似文献   

8.
Inbreeding depression has become a central theme in evolutionary biology and is considered to be a driving force for the evolution of reproductive morphology, physiology, behavior, and mating systems. Despite the overwhelming body of empirical work on the reproductive consequences of inbreeding, relatively little is known on whether inbreeding depresses male and female fitness to the same extent. However, sex‐specific inbreeding depression has been argued to affect the evolution of selfing rates in simultaneous hermaphrodites and provides a powerful approach to test whether selection is stronger in males than in females, which is predicted to be the consequence of sexual selection. We tested for sex‐specific inbreeding depression in the simultaneously hermaphroditic freshwater snail Physa acuta by comparing the reproductive performance of both sex functions between selfed and outcrossed focal individuals under different levels of male–male competition. We found that inbreeding impaired both male and female reproductive success and that the magnitude of male inbreeding depression exceeded female inbreeding depression when the opportunity for sperm competition was highest. Our study provides the first evidence for sex‐specific inbreeding depression in a hermaphroditic animal and highlights the importance of considering the level of male–male competition when assessing sex differences in inbreeding depression.  相似文献   

9.
Reproductive synchrony tends to be widespread in diverse species of plants and animals, especially at higher latitudes. However, for long‐lived mammals, birth dates for different individuals can vary by weeks within a population. A mother's birth timing can reveal useful information about her reproductive abilities and have important implications for the characteristics and survival of her offspring. Despite this, our current knowledge of factors associated with variation in birth dates is modest. We used long‐term data for known‐age Weddell seals in Antarctica and a Bayesian hierarchical modeling approach to study how birth dates varied with fixed and temporally varying features of mothers, whether sex allocation varied with birth timing, and annual variation in birth dates. Based on birth dates for 4465 pups born to 1117 mothers aged 4–31, we found that diverse features of mothers were associated with variation in birth dates. Maternal identity was the most important among these. Unlike most studies, which have reported that birth dates occur earlier as mothers age, we found that birth dates progressively occurred earlier in the year in the early part of a mother's reproductive life, reached a minimum at age 16, and then occurred later at later ages. Birth dates were positively related to a mother's age at primiparity and recent reproductive effort. The earliest birth dates were for pups born to prime‐age mothers who did not reproduce in the previous year but began reproduction early in life, suggesting that females in the best condition gave birth earlier than others. If so, our finding that male pups tended to be born earlier than females provides support for the Trivers–Willard sex‐allocation model. Average birth dates were quite consistent across years, except for 2 years that had notable delays and occurred during the period when massive icebergs were present and disrupted the ecosystem.  相似文献   

10.
Variation in intrauterine exposure to hormones associated with variation in the sex of litter mates has well-established and far-reaching effects on sexual development in some mammals. Research on this phenomenon in reptiles is scant, but suggests that lizards may follow the mammalian model whereas snakes may be affected differently. We examined sex-specific expression of four sexually dimorphic traits (tail length, head length, ventral scale count, swimming speed) in three species of snakes (Nerodia sipedon, Thamnophis sirtalis, T. sauritus) relative to litter sex ratios. We found little evidence that traits in either sex were masculinized or feminized in response to variation in litter sex ratio. The one significant result appeared best explained as a statistical artifact attributable to a single litter. Our results indicate that snakes are different from the one lizard studied to date. Unlike previous suggestions that prenatal hormonal mechanisms operate differently in snakes and lizards, however, the difference appears to be that development of sexually dimorphic traits in lizards is affected by litter sex ratios whereas in snakes it is not.  相似文献   

11.
Detailed knowledge of the variation in demographic rates is central for our ability to understand the evolution of life history strategies and population dynamics, and to plan for the conservation of endangered species. We studied variation in reproductive output of 61 radio-collared Eurasian lynx females in four Scandinavian study sites spanning a total of 223 lynx-years. Specifically, we examined how the breeding proportion and litter size varied among study areas and age classes (2-year-old vs. >2-year-old females). In general, the breeding proportion varied between age classes and study sites, whereas we did not detect such variation in litter size. The lack of differences in litter sizes among age classes is at odds with most findings in large mammals, and we argue that this is because the level of prenatal investment is relatively low in felids compared to their substantial levels of postnatal care.  相似文献   

12.
Sex allocation theory predicts that a female should produce the offspring of the sex that most increases her own fitness. For polygynous species, this means that females in superior condition should bias offspring production toward the sex with greater variation in lifetime reproductive success, which is typically males. Captive mammal populations are generally kept in good nutritional condition with low levels of stress, and thus populations of polygynous species might be expected to have birth sex ratios biased toward males. Sex allocation theory also predicts that when competition reduces reproductive success of the mother, she should bias offspring toward whichever sex disperses. These predicted biases would have a large impact on captive breeding programs because unbalanced sex ratios may compromise use of limited space in zoos. We examined 66 species of mammals from three taxonomic orders (primates, ungulates, and carnivores) maintained in North American zoos for evidence of birth sex ratio bias. Contrary to our expectations, we found no evidence of bias toward male births in polygynous populations. We did find evidence that birth sex ratios of primates are male biased and that, within primates, offspring sex was biased toward the naturally dispersing sex. We also found that most species experienced long contiguous periods of at least 7 years with either male‐ or female‐biased sex ratios, owing in part to patterns of dispersal (for primates) and/or to stochastic causes. Population managers must be ready to compensate for significant biases in birth sex ratio based on dispersal and stochasticity. Zoo Biol 19:11–25, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

13.
The disposable soma theory of ageing predicts that when organisms invest in reproduction they do so by reducing their investment in body maintenance, inducing a trade‐off between reproduction and survival. Experiments on invertebrates in the lab provide support for the theory by demonstrating the predicted responses to manipulation of reproductive effort or lifespan. However, experimental studies in birds and evidence from observational (nonmanipulative) studies in nature do not consistently reveal trade‐offs. Most species studied previously in the wild are mammals and birds that reproduce over multiple discrete seasons. This contrasts with temperate invertebrates, which typically have annual generations and reproduce over a single season. We expand the taxonomic range of senescence study systems to include life histories typical of most temperate invertebrates. We monitored reproductive effort, ageing, and survival in a natural field cricket population over ten years to test the prediction that individuals investing more in early‐reproduction senesce faster and die younger. We found no evidence of a trade‐off between early‐life reproductive effort and survival, and only weak evidence for a trade‐off with phenotypic senescence. We discuss the possibility that organisms with multiple discrete breeding seasons may have greater opportunities to express trade‐offs between reproduction and senescence.  相似文献   

14.
It was shown in the tissue culture experiments that the human hypophysis secreted autonomously the thyrotrophin during the last three fourths of the prenatal life. The intensity of secretion is the highest in the end of the first third of this period, then it decreases, but during the last third it increases reliably again. During the second half of development the level of thyrotrophin in female foetuses in reliably higher than in the male ones. In the beginning of the second third of prenatal life, the hypothalamic factors decrease the autonomous thyrotrophin secretion twice in foetuses of both the sexes. In the end of the second third, sexual differences appear in their effect; they decrease reliably the autonomous thyrotrophin secretion in the male foetuses, whereas no such effect is observed in the female ones. The stimulating effect of the hypothalamic thyrotrophin releasing hormone manifests itself during the last third of prenatal life in foetuses of both the sexes. During the second half of prenatal life, the thyrotrophin concentration in blood of female foetuses is also reliably higher than in male foetuses. There is a positive correlation in female foetuses between the thyrotrophin concentration in blood and the level of hypophysial secretion under the effect of hypothalamic factors. Thyrotrophin is found in the cranial fluid of foetuses. In some cases its concentration in the cranial fluid is higher than in the blood. No correlation was found between the levels of the hormone in fluid and blood in female foetuses; a positive correlation was found in male foteuses.  相似文献   

15.
Maternal reproductive investment includes both the energetic costs of gestation and lactation. For most humans, the metabolic costs of lactation will exceed those of gestation. Mothers must balance reproductive investment in any single offspring against future reproductive potential. Among mammals broadly, mothers may differentially invest in offspring based on sex and maternal condition provided such differences investment influence future offspring reproductive success. For humans, there has been considerable debate if there are physiological differences in maternal investment by offspring sex. Two recent studies have suggested that milk composition differs by infant sex, with male infants receiving milk containing higher fat and energy; prior human studies have not reported sex‐based differences in milk composition. This study investigates offspring sex‐based differences in milk macronutrients, milk energy, and nursing frequency (per 24 h) in a sample of 103 Filipino mothers nursing infants less than 18 months of age. We found no differences in milk composition by infant sex. There were no significant differences in milk composition of mothers nursing first‐born versus later‐born sons or daughters or between high‐ and low‐income mothers nursing daughters or sons. Nursing frequency also showed no significant differences by offspring sex, sex by birth order, or sex by maternal economic status. In the Cebu sample, there is no support for sex‐based differences in reproductive investment during lactation as indexed by milk composition or nursing frequency. Further investigation in other populations is necessary to evaluate the potential for sex‐based differences in milk composition among humans. Am J Phys Anthropol 152:209–216, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Intergenerational effects can have either adaptive or nonadaptive impacts on offspring performance. Such effects are likely to be of ecological and evolutionary importance in animals with extended parental care, such as birds, mammals and some insects. Here, we studied the effects of exposure to microbial competition during early development on subsequent reproductive success in the burying beetle Nicrophorus vespilloides, an insect with elaborate parental care. We found that exposure to high levels of microbial competition both during a female's larval development and during her subsequent reproduction resulted in females rearing smaller broods than those exposed to lower levels of microbial competition. To determine whether these differences arose before or after offspring hatching, a cross‐fostering experiment was conducted. Our results demonstrate that the impact of larval competition with microbes for resources extends into adult life and can negatively affect subsequent generations via impacts on the quality of parental care provided after hatching. However, we also find evidence for some positive effects of previous microbial exposure on prehatch investment, suggesting that the long‐term results of competition with microbes may include altering the balance of parental investment between prehatch and post‐hatch care.  相似文献   

17.
Sexually selected infanticide has been the subject of intense empirical and theoretical study for decades; a related phenomenon, male‐mediated prenatal loss, has received much less attention in evolutionary studies. Male‐mediated prenatal loss occurs when inseminated or pregnant females terminate reproductive effort following exposure to a nonsire male, either through implantation failure or pregnancy termination. Male‐mediated prenatal loss encompasses two sub‐phenomena: sexually selected feticide and the Bruce effect. In this review, we provide a framework that explains the relationship between feticide and the Bruce effect and describes what is known about the proximate and ultimate mechanisms involved in each. Using a simple model, we demonstrate that male‐mediated prenatal loss can provide greater reproductive benefits to males than infanticide. We therefore suggest that, compared to infanticide, male‐mediated prenatal loss may be more prevalent in mammalian species and may have played a greater role in their social evolution than has previously been documented.  相似文献   

18.
Evolutionary transitions among maternal, paternal, and bi‐parental care have been common in many animal groups. We use a mathematical model to examine the effect of male and female life‐history characteristics (stage‐specific maturation and mortality) on evolutionary transitions among maternal, paternal, and bi‐parental care. When males and females are relatively similar – that is, when females initially invest relatively little into eggs and both sexes have similar mortality and maturation – transitions among different patterns of care are unlikely to be strongly favored. As males and females become more different, transitions are more likely. If females initially invest heavily into eggs and this reduces their expected future reproductive success, transitions to increased maternal care (paternal → maternal, paternal → bi‐parental, bi‐parental → maternal) are favored. This effect of anisogamy (i.e., the fact that females initially invest more into each individual zygote than males) might help explain the predominance of maternal care in nature and differs from previous work that found no effect of anisogamy on the origin of different sex‐specific patterns of care from an ancestral state of no care. When male mortality is high or male egg maturation rate is low, males have reduced future reproductive potential and transitions to increased paternal care (maternal → paternal, bi‐parental → paternal, maternal → bi‐parental) are favored. Offspring need (i.e., low offspring survival in the absence of care) also plays a role in transitions to paternal care. In general, basic life‐history differences between the sexes can drive evolutionary transitions among different sex‐specific patterns of care. The finding that simple life‐history differences can alone lead to transitions among maternal and paternal care suggests that the effect of inter‐sexual life‐history differences should be considered as a baseline scenario when attempting to understand how other factors (mate availability, sex differences in the costs of competing for mates) influence the evolution of parental care.  相似文献   

19.
Understanding the effects of male and female age on reproductive success is vital to explain the evolution of life history traits and sex‐specific aging. A general prediction is that pre‐/postmeiotic aging processes will lead to a decline in the pre‐ and postcopulatory abilities of both males and females. However, in as much the sexes have different strategies to optimize their fitness, the decline of reproductive success late in life can be modulated by social context, such as sex ratio, in a sex‐specific manner. In this study, we used Drosophila melanogaster to investigate whether sex ratio at mating modulates age effects on male and female reproductive success. As expected, male and female age caused a decrease in reproductive success across male‐biased and female‐biased social contexts but, contrary to previous findings, social context did not modulate age‐related fitness decline in either of the two sexes. We discuss these results in the light of how sex ratio might modulate pre‐/postcopulatory abilities and the opportunity for inter‐ and intrasexual competition in D. melanogaster, and generally suggest that social context effects on these processes are likely to be species specific.  相似文献   

20.
Responses to sexually antagonistic selection are thought to be constrained by the shared genetic architecture of homologous male and female traits. Accordingly, adaptive sexual dimorphism depends on mechanisms such as genotype‐by‐sex interaction (G×S) and sex‐specific plasticity to alleviate this constraint. We tested these mechanisms in a population of Xiphophorus birchmanni (sheepshead swordtail), where the intensity of male competition is expected to mediate intersexual conflict over age and size at maturity. Combining quantitative genetics with density manipulations and analysis of sex ratio variation, we confirm that maturation traits are dimorphic and heritable, but also subject to large G×S. Although cross‐sex genetic correlations are close to zero, suggesting sex‐linked genes with important effects on growth and maturation are likely segregating in this population, we found less evidence of sex‐specific adaptive plasticity. At high density, there was a weak trend towards later and smaller maturation in both sexes. Effects of sex ratio were stronger and putatively adaptive in males but not in females. Males delay maturation in the presence of mature rivals, resulting in larger adult size with subsequent benefit to competitive ability. However, females also delay maturation in male‐biased groups, incurring a loss of reproductive lifespan without apparent benefit. Thus, in highly competitive environments, female fitness may be limited by the lack of sex‐specific plasticity. More generally, assuming that selection does act antagonistically on male and female maturation traits in the wild, our results demonstrate that genetic architecture of homologous traits can ease a major constraint on the evolution of adaptive dimorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号