首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cold-water corals, such as Lophelia pertusa, are key habitat-forming organisms found throughout the world''s oceans to 3000 m deep. The complex three-dimensional framework made by these vulnerable marine ecosystems support high biodiversity and commercially important species. Given their importance, a key question is how both the living and the dead framework will fare under projected climate change. Here, we demonstrate that over 12 months L. pertusa can physiologically acclimate to increased CO2, showing sustained net calcification. However, their new skeletal structure changes and exhibits decreased crystallographic and molecular-scale bonding organization. Although physiological acclimatization was evident, we also demonstrate that there is a negative correlation between increasing CO2 levels and breaking strength of exposed framework (approx. 20–30% weaker after 12 months), meaning the exposed bases of reefs will be less effective ‘load-bearers’, and will become more susceptible to bioerosion and mechanical damage by 2100.  相似文献   

2.
Cold‐water coral (CWC) reefs are recognized as ecologically and biologically significant areas that generate habitats and diversity. The interaction between hydrodynamics and CWCs has been well studied at the Mingulay Reef Complex, a relatively shallow area of reefs found on the continental shelf off Scotland, UK. Within ‘Mingulay Area 01’ a rapid tidal downwelling of surface waters, brought about as an internal wave, is known to supply warmer, phytoplankton‐rich waters to corals growing on the northern flank of an east‐west trending seabed ridge. This study shows that this tidal downwelling also causes short‐term perturbations in the inorganic carbon (CT) and nutrient dynamics through the water column and immediately above the reef. Over a 14 h period, corresponding to one semi‐diurnal tidal cycle, seawater pH overlying the reef varied by ca. 0.1 pH unit, while pCO2 shifted by >60 μatm, a shift equivalent to a ca. 25 year jump into the future, with respect to atmospheric pCO2. During the summer stratified period, these downwelling events result in the reef being washed over with surface water that has higher pH, is warmer, nutrient depleted, but rich in phytoplankton‐derived particles compared to the deeper waters in which the corals sit. Empirical observations, together with outputs from the European Regional Shelf Sea Ecosystem Model, demonstrate that the variability that the CWC reefs experience changes through the seasons and into the future. Hence, as ocean acidification and warming increase into the future, the downwelling event specific to this site could provide short‐term amelioration of corrosive conditions at certain times of the year; however, it could additionally result in enhanced detrimental impacts of warming on CWCs. Natural variability in the CT and nutrient conditions, as well as local hydrodynamic regimes, must be accounted for in any future predictions concerning the responses of marine ecosystems to climate change.  相似文献   

3.
The ecological impacts of long‐term elevated atmospheric CO2 (eCO2) levels on soil microbiota remain largely unknown. This is particularly true for the arbuscular mycorrhizal (AM) fungi, which form mutualistic associations with over two‐thirds of terrestrial plant species and are entirely dependent on their plant hosts for carbon. Here, we use high‐resolution amplicon sequencing (Illumina, HiSeq) to quantify the response of AM fungal communities to the longest running (>15 years) free‐air carbon dioxide enrichment (FACE) experiment in the Northern Hemisphere (GiFACE); providing the first evaluation of these responses from old‐growth (>100 years) semi‐natural grasslands subjected to a 20% increase in atmospheric CO2. eCO2 significantly increased AM fungal richness but had a less‐pronounced impact on the composition of their communities. However, while broader changes in community composition were not observed, more subtle responses of specific AM fungal taxa were with populations both increasing and decreasing in abundance in response to eCO2. Most population‐level responses to eCO2 were not consistent through time, with a significant interaction between sampling time and eCO2 treatment being observed. This suggests that the temporal dynamics of AM fungal populations may be disturbed by anthropogenic stressors. As AM fungi are functionally differentiated, with different taxa providing different benefits to host plants, changes in population densities in response to eCO2 may significantly impact terrestrial plant communities and their productivity. Thus, predictions regarding future terrestrial ecosystems must consider changes both aboveground and belowground, but avoid relying on broad‐scale community‐level responses of soil microbes observed on single occasions.  相似文献   

4.
Ocean acidification causes biodiversity loss, alters ecosystems, and may impact food security, as shells of small organisms dissolve easily in corrosive waters. There is a suggestion that photosynthetic organisms could mitigate ocean acidification on a local scale, through seagrass protection or seaweed cultivation, as net ecosystem organic production raises the saturation state of calcium carbonate making seawater less corrosive. Here, we used a natural gradient in calcium carbonate saturation, caused by shallow‐water CO2 seeps in the Mediterranean Sea, to assess whether seaweed that is resistant to acidification (Padina pavonica) could prevent adverse effects of acidification on epiphytic foraminifera. We found a reduction in the number of species of foraminifera as calcium carbonate saturation state fell and that the assemblage shifted from one dominated by calcareous species at reference sites (pH ~8.19) to one dominated by agglutinated foraminifera at elevated levels of CO2 (pH ~7.71). It is expected that ocean acidification will result in changes in foraminiferal assemblage composition and agglutinated forms may become more prevalent. Although Padina did not prevent adverse effects of ocean acidification, high biomass stands of seagrass or seaweed farms might be more successful in protecting epiphytic foraminifera.  相似文献   

5.
The scleractinian coral, Lophelia pertusa, is distributed globally on continental slopes, mid‐oceanic ridges and in fjords. This species forms cold‐water reefs, which are associated with a diverse animal community. These communities are poorly understood but are currently under threat from human activities. Molecular markers are required to assess the spatial genetic population structure of this key species for management and conservation purposes. Ten polymorphic microsatellite loci were isolated for Lophelia pertusa using an enriched partial library technique. Nine loci showed significant differences from Hardy–Weinberg expected genotype frequencies, eight of which showed heterozygote deficiencies.  相似文献   

6.
Due to anthropogenic CO2 emissions, our oceans have gradually become warmer and more acidic. To better understand the consequences of this, there is a need for long‐term (months) and multistressor experiments. Earlier research demonstrates that the effects of global climate change are specific to species and life stages. We exposed berried Norway lobsters (Nephrops norvegicus), during 4 months to the combination of six ecologically relevant temperatures (5–18°C) and reduced pH (by 0.4 units). Embryonic responses were investigated by quantifying proxies for development rate and fitness including: % yolk consumption, mean heart rate, rate of oxygen consumption, and oxidative stress. We found no interactions between temperature and pH, and reduced pH only affected the level of oxidative stress significantly, with a higher level of oxidative stress in the controls. Increased temperature and % yolk consumed had positive effects on all parameters except on oxidative stress, which did not change in response to temperature. There was a difference in development rate between the ranges of 5–10°C (Q10: 5.4) and 10–18°C (Q10: 2.9), implicating a thermal break point at 10°C or below. No thermal limit to a further increased development rate was found. The insensitivity of N. norvegicus embryos to low pH might be explained by adaptation to a pH‐reduced external habitat and/or internal hypercapnia during incubation. Our results thus indicate that this species would benefit from global warming and be able to withstand the predicted decrease in ocean pH in the next century during their earliest life stages. However, future studies need to combine low pH and elevated temperature treatments with hypoxia as hypoxic events are frequently and increasingly occurring in the habitat of benthic species.  相似文献   

7.
Ocean acidification is thought to be a major threat to coral reefs: laboratory evidence and CO2 seep research has shown adverse effects on many coral species, although a few are resilient. There are concerns that cold‐water corals are even more vulnerable as they live in areas where aragonite saturation (Ωara) is lower than in the tropics and is falling rapidly due to CO2 emissions. Here, we provide laboratory evidence that net (gross calcification minus dissolution) and gross calcification rates of three common cold‐water corals, Caryophyllia smithii, Dendrophyllia cornigera, and Desmophyllum dianthus, are not affected by pCO2 levels expected for 2100 (pCO1058 μatm, Ωara 1.29), and nor are the rates of skeletal dissolution in D. dianthus. We transplanted D. dianthus to 350 m depth (pHT 8.02; pCO448 μatm, Ωara 2.58) and to a 3 m depth CO2 seep in oligotrophic waters (pHT 7.35; pCO2879 μatm, Ωara 0.76) and found that the transplants calcified at the same rates regardless of the pCO2 confirming their resilience to acidification, but at significantly lower rates than corals that were fed in aquaria. Our combination of field and laboratory evidence suggests that ocean acidification will not disrupt cold‐water coral calcification although falling aragonite levels may affect other organismal physiological and/or reef community processes.  相似文献   

8.
Mäerl/rhodolith beds are protected habitats that may be affected by ocean acidification (OA), but it is still unclear how the availability of CO2 will affect the metabolism of these organisms. Some of the inconsistencies found among OA experimental studies may be related to experimental exposure time and synergetic effects with other stressors. Here, we investigated the long‐term (up to 20 months) effects of OA on the production and calcification of the most common mäerl species of southern Portugal, Phymatolithon lusitanicum. Both the photosynthetic and calcification rates increased with CO2 after the first 11 months of the experiment, whereas respiration slightly decreased with CO2. After 20 months, the pattern was reversed. Acidified algae showed lower photosynthetic and calcification rates, as well as lower accumulated growth than control algae, suggesting that a metabolic threshold was exceeded. Our results indicate that long‐term exposure to high CO2 will decrease the resilience of Phymatolithon lusitanicum. Our results also show that shallow communities of these rhodoliths may be particularly at risk, while deeper rhodolith beds may become ocean acidification refuges for this biological community.  相似文献   

9.
It is important to understand how marine calcifying organisms may acclimatize to ocean acidification to assess their survival over the coming century. We cultured the cold water coralline algae, Lithothamnion glaciale, under elevated pCO2 (408, 566, 770, and 1024 μatm) for 10 months. The results show that the cell (inter and intra) wall thickness is maintained, but there is a reduction in growth rate (linear extension) at all elevated pCO2. Furthermore a decrease in Mg content at the two highest CO2 treatments was observed. Comparison between our data and that at 3 months from the same long‐term experiment shows that the acclimation differs over time since at 3 months, the samples cultured under high pCO2 showed a reduction in the cell (inter and intra) wall thickness but a maintained growth rate. This suggests a reallocation of the energy budget between 3 and 10 months and highlights the high degree plasticity that is present. This might provide a selective advantage in future high CO2 world.  相似文献   

10.
To date, meta‐analyses of effects of acidification have focused on the overall strength of evidence for statistically significant responses; however, to anticipate likely consequences of ocean acidification, quantitative estimates of the magnitude of likely responses are also needed. Herein, we use random effects meta‐analysis to produce a systematically integrated measure of the distribution of magnitudes of the response of coral calcification to decreasing ΩArag. We also tested whether methodological and biological factors that have been hypothesized to drive variation in response magnitude explain a significant proportion of the among‐study variation. We found that the overall mean response of coral calcification is ~15% per unit decrease in ΩArag over the range 2 < ΩArag < 4. Among‐study variation is large (standard deviation of 8% per unit decrease in ΩArag). Neither differences in carbonate chemistry manipulation method, study duration, irradiance level, nor study species growth rate explained a significant proportion of the among‐study variation. However, studies employing buoyant weighting found significantly smaller decreases in calcification per unit ΩArag (~10%), compared with studies using the alkalinity anomaly technique (~25%). These differences may be due to the greater tendency for the former to integrate over light and dark calcification. If the existing body of experimental work is indeed representative of likely responses of corals in nature, our results imply that, under business as usual conditions, declines in coral calcification by end‐of‐century will be ~22%, on average, or ~15% if only studies integrating light and dark calcification are considered. These values are near the low end of published projections, but support the emerging view that variability due to local environmental conditions and species composition is likely to be substantial.  相似文献   

11.
It is essential to predict the impact of elevated Pco2 on marine organisms and habitats to anticipate the severity and consequences of future ocean chemistry change. Despite the importance of carry‐over effects in the evolutionary history of marine organisms, few studies have considered links between life‐history stages when determining how marine organisms will respond to elevated Pco2, and none have considered the link between adults and their offspring. Herein, we exposed adults of wild and selectively bred Sydney rock oysters, Saccostrea glomerata to elevated Pco2 during reproductive conditioning and measured the development, growth and survival response of their larvae. We found that elevated Pco2 had a negative impact on larvae of S. glomerata causing a reduction in growth, rate of development and survival. Exposing adults to elevated Pco2 during reproductive conditioning, however, had positive carry‐over effects on larvae. Larvae spawned from adults exposed to elevated Pco2 were larger and developed faster, but displayed similar survival compared with larvae spawned from adults exposed to ambient Pco2. Furthermore, selectively bred larvae of S. glomerata were more resilient to elevated Pco2 than wild larvae. Measurement of the standard metabolic rate (SMR) of adult S. glomerata showed that at ambient Pco2, SMR is increased in selectively bred compared with wild oysters and is further increased during exposure to elevated Pco2. This study suggests that sensitive marine organisms may have the capacity to acclimate or adapt to elevated Pco2 over the next century and a change in energy turnover indicated by SMR may be a key process involved.  相似文献   

12.
Increases in the concentration of dissolved organic matter (DOM) have been documented in many inland waters in recent decades, a process known as “browning”. Previous studies have often used space‐for‐time substitution to examine the direct consequences of increased DOM on lake ecosystems. However, browning often occurs concomitant with other ecologically important water chemistry changes that may interact with or overwhelm any potential ecological response to browning itself. Here we examine a long‐term (~20 year) dataset of 28 lakes in the Adirondack Park, New York, USA, that have undergone strong browning in response to recovery from acidification. With these data, we explored how primary producer and zooplankton consumer populations changed during this time and what physical and chemical changes best predicted these long‐term ecosystem changes. Our results indicate that changes in primary producers are likely driven by reduced water clarity due to browning, independent of changes in nutrients, counter to previously hypothesized primary producer response to browning. In contrast, declines in calcium concomitant with browning play an important role in driving long‐term declines in zooplankton biomass. Our results indicate that responses to browning at different trophic levels are decoupled from one another. Concomitant chemical changes have important implications for our understanding of the response of aquatic ecosystems to browning.  相似文献   

13.
Our understanding of how increasing atmospheric CO2 and climate change influences the marine CO2 system and in turn ecosystems has increasingly focused on perturbations to carbonate chemistry variability. This variability can affect ocean-climate feedbacks and has been shown to influence marine ecosystems. The seasonal variability of the ocean CO2 system has already changed, with enhanced seasonal variations in the surface ocean pCO2 over recent decades and further amplification projected by models over the 21st century. Mesocosm studies and CO2 vent sites indicate that diurnal variability of the CO2 system, the amplitude of which in extreme events can exceed that of mean seasonal variability, is also likely to be altered by climate change. Here, we modified a global ocean biogeochemical model to resolve physically and biologically driven diurnal variability of the ocean CO2 system. Forcing the model with 3-h atmospheric outputs derived from an Earth system model, we explore how surface ocean diurnal variability responds to historical changes and project how it changes under two contrasting 21st-century emission scenarios. Compared to preindustrial values, the global mean diurnal amplitude of pCO2 increases by 4.8 μatm (+226%) in the high-emission scenario but only 1.2 μatm (+55%) in the high-mitigation scenario. The probability of extreme diurnal amplitudes of pCO2 and [H+] is also affected, with 30- to 60-fold increases relative to the preindustrial under high 21st-century emissions. The main driver of heightened pCO2 diurnal variability is the enhanced sensitivity of pCO2 to changes in temperature as the ocean absorbs atmospheric CO2. Our projections suggest that organisms in the future ocean will be exposed to enhanced diurnal variability in pCO2 and [H+], with likely increases in the associated metabolic cost that such variability imposes.  相似文献   

14.
Cold‐water coral (CWC) mounds are build‐ups comprised of coral‐dominated intervals alternating with a mixed carbonate‐siliciclastic matrix. At some locations, CWC mounds are influenced by methane seepage, but the impact of methane on CWC mounds is poorly understood. To constrain the potential impact of methane on CWC mound growth, lipid biomarker investigations were combined with mineralogical and petrographic analyses to investigate the anaerobic oxidation of methane (AOM) and authigenic carbonate formation in sediment from a seep‐affected CWC mound in the Gulf of Cadiz. The occurrence of AOM was confirmed by characteristic lipids found within a semi‐lithified zone (SLZ) consisting of authigenic aragonite, high‐magnesium calcite and calcium‐excess dolomite. The formation of high‐Mg calcite is attributed to AOM, acting as a lithifying agent. Aragonite is only a minor phase. Ca‐excess dolomite in the SLZ and upper parts may be formed by organoclastic sulphate reduction, favouring precipitation by increased alkalinity. The AOM biomarkers in the SLZ include isoprenoid‐based archaeal membrane lipids, such as abundant glycerol dibiphytanyl glycerol tetraethers (GDGTs) dominated by GDGT‐2. The δ13C values of GDGT‐2, measured as ether‐cleaved monocyclic biphytanes, are as low as ?100‰ versus V‐PDB. Further, bacterial dialkyl glycerol diethers with two anteiso‐C15 alkyl chains and δ13C values of ?81‰ are interpreted as biomarkers of sulphate‐reducing bacteria. The lipid biomarker signatures and mineralogical patterns suggest that anaerobic methane‐oxidizing archaea of the ANME‐1 group thrived in the subsurface at times of slow and diffusive methane seepage. Petrographic analyses revealed that the SLZ was exhumed at some point (e.g. signs of bioerosion of the semi‐lithified sediment), providing a hard substrate for CWC larval settlement. In addition, this work reveals that AOM‐induced semi‐lithification likely played a role in mound stabilization. Lipid biomarker analysis proves to be a powerful tool to disentangle early diagenetic processes induced by microbial metabolisms.  相似文献   

15.
The secondary production of culturally acidified streams is low, with a few species of generalist detritivores dominating invertebrate assemblages, while decomposition processes are impaired. In a series of lowland headwater streams in southern England, we measured the rate of cellulolytic decomposition and compared it with values measured three decades ago, when anthropogenic acidification was at its peak. We hypothesized that, if acidity has indeed ameliorated, the rate of decomposition will have accelerated, thus potentially supporting greater secondary production and the longer food chains that have been observed in some well‐studied recovering freshwater systems. We used cellulose Shirley test cloth as a standardized bioassay to measure the rate of cellulolytic decomposition, via loss in tensile strength, for 31 streams in the Ashdown Forest over 7 days in summer 2011 and 49 days in winter 2012. We compared this with data from an otherwise identical study conducted in 1978 and 1979. In a secondary study, we determined whether decomposition followed a linear or logarithmic decay and, as Shirley cloth is no longer available, we tested an alternative in the form of readily available calico. Overall mean pH had increased markedly over the 32 years between the studies (from 6.0 to 6.7). In both the previous and contemporary studies, the relationship between decomposition and pH was strongest in winter, when pH reaches a seasonal minimum. As in the late 1970s, there was no relationship in 2011/2012 between pH and decay rate in summer. As postulated, decomposition in winter was significantly faster in 2011/2012 than in 1978/1979, with an average increase in decay rate of 18.1%. Recovery from acidification, due to decreased acidifying emissions and deposition, has led to an increase in the rate of cellulolytic decomposition. This response in a critical ecosystem process offers a potential explanation of one aspect of the limited biological recovery that has been observed so far, an increase in larger bodied predators including fish, which in turn leads to an increase in the length of food chains.  相似文献   

16.
In the face of rapid environmental and cultural change, long‐term ecological research (LTER) and social‐ecological research (LTSER) are more important than ever. LTER contributes disproportionately to ecology and policy, evidenced by the greater proportion of LTER in higher impact journals and the disproportionate representation of LTER in reports informing policymaking. Historical evidence has played a significant role in restoration projects and it will continue to guide restoration into the future, but its use is often hampered by lack of information, leading to considerable uncertainties. By facilitating the storage and retrieval of historical information, LTSER will prove valuable for future restoration.  相似文献   

17.
The impact of elevated CO2 and N‐fertilization on soil C‐cycling in Lolium perenne and Trifolium repens pastures were investigated under Free Air Carbon dioxide Enrichment (FACE) conditions. For six years, swards were exposed to ambient or elevated CO2 (35 and 60 Pa pCO2) and received a low and high rate of N fertilizer. The CO2 added in the FACE plots was depleted in 13C compared to ambient (Δ? 40‰) thus the C inputs could be quantified. On average, 57% of the C associated with the sand fraction of the soil was ‘new’ C. Smaller proportions of the C associated with the silt (18%) and clay fractions (14%) were derived from FACE. Only a small fraction of the total C pool below 10 cm depth was sequestered during the FACE experiment. The annual net input of C in the FACE soil (0–10 cm) was estimated at 4.6 ± 2.2 and 6.3 ± 3.6 (95% confidence interval) Mg ha? 1 for T. repens and L. perenne, respectively. The maximum amount of labile C in the T. repens sward was estimated at 8.3 ± 1.6 Mg ha? 1 and 7.1 ± 1.0 Mg ha? 1 in the L. perenne sward. Mean residence time (MRT) for newly sequestered soil C was estimated at 1.8 years in the T. repens plots and 1.1 years for L. perenne. An average of 18% of total soil C in the 0–10 cm depth in the T. repens sward and 24% in the L. perenne sward was derived from FACE after 6 years exposure. The majority of the change in soil δ13C occurred in the first three years of the experiment. No treatment effects on total soil C were detected. The fraction of FACE‐derived C in the L. perenne sward was larger than in the T. repens sward. This suggests a priming effect in the L. perenne sward which led to increased losses of the old C. Although the rate of C cycling was affected by species and elevated CO2, the soil in this intensively managed grassland ecosystem did not become a sink for additional new C.  相似文献   

18.
Changes in the seawater carbonate chemistry (ocean acidification) from increasing atmospheric carbon dioxide (CO2) concentrations negatively affect many marine calcifying organisms, but may benefit primary producers under dissolved inorganic carbon (DIC) limitation. To improve predictions of the ecological effects of ocean acidification, the net gains and losses between the processes of photosynthesis and calcification need to be studied jointly on physiological and population levels. We studied productivity, respiration, and abundances of the symbiont‐bearing foraminifer species Marginopora vertebralis on natural CO2 seeps in Papua New Guinea and conducted additional studies on production and calcification on the Great Barrier Reef (GBR) using artificially enhanced pCO2. Net oxygen production increased up to 90% with increasing pCO2; temperature, light, and pH together explaining 61% of the variance in production. Production increased with increasing light and increasing pCO2 and declined at higher temperatures. Respiration was also significantly elevated (~25%), whereas calcification was reduced (16–39%) at low pH/high pCO2 compared to present‐day conditions. In the field, M. vertebralis was absent at three CO2 seep sites at pHTotal levels below ~7.9 (pCO2 ~700 μatm), but it was found in densities of over 1000 m?2 at all three control sites. The study showed that endosymbiotic algae in foraminifera benefit from increased DIC availability and may be naturally carbon limited. The observed reduction in calcification may have been caused either by increased energy demands for proton pumping (measured as elevated rates of respiration) or by stronger competition for DIC from the more productive symbionts. The net outcome of these two competing processes is that M. vertebralis cannot maintain populations under pCO2 exceeding 700 μatm, thus are likely to be extinct in the next century.  相似文献   

19.
20.
Outbreaks of crown‐of‐thorns starfish (COTS), Acanthaster planci, contribute to major declines of coral reef ecosystems throughout the Indo‐Pacific. As the oceans warm and decrease in pH due to increased anthropogenic CO2 production, coral reefs are also susceptible to bleaching, disease and reduced calcification. The impacts of ocean acidification and warming may be exacerbated by COTS predation, but it is not known how this major predator will fare in a changing ocean. Because larval success is a key driver of population outbreaks, we investigated the sensitivities of larval A. planci to increased temperature (2–4 °C above ambient) and acidification (0.3–0.5 pH units below ambient) in flow‐through cross‐factorial experiments (3 temperature × 3 pH/pCO2 levels). There was no effect of increased temperature or acidification on fertilization or very early development. Larvae reared in the optimal temperature (28 °C) were the largest across all pH treatments. Development to advanced larva was negatively affected by the high temperature treatment (30 °C) and by both experimental pH levels (pH 7.6, 7.8). Thus, planktonic life stages of A. planci may be negatively impacted by near‐future global change. Increased temperature and reduced pH had an additive negative effect on reducing larval size. The 30 °C treatment exceeded larval tolerance regardless of pH. As 30 °C sea surface temperatures may become the norm in low latitude tropical regions, poleward migration of A. planci may be expected as they follow optimal isotherms. In the absence of acclimation or adaptation, declines in low latitude populations may occur. Poleward migration will be facilitated by strong western boundary currents, with possible negative flow‐on effects on high latitude coral reefs. The contrasting responses of the larvae of A. planci and those of its coral prey to ocean acidification and warming are considered in context with potential future change in tropical reef ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号