首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tolerance to copper ions of three diatoms, namely, Skeletonema costatum, (Grev.) Cleve, Thalassiosira pseudonana (Hust.) Hasle and Phaeodactylum tricornutum Bohlin grown in dialysis and batch cultures in the local fjord water has been established. Reduction of growth rates was observed by the addition of 10, 25 and 400 μg/1 of copper ions, respectively for the three species investigated. At the higher levels of copper addition (400 and 700 MS/1) cells of P. tricornutum in dialysis culture increased their copper content to more than 200 times over those of the controls, the ratio of copper to chlorophyll in the cells increasing 150 times.All three species showed marked increases in copper content when a copper salt was added to batch cultures of the algae. The two clones of Skeletonema costatum tested showed nearly identical sensitivity to copper ions, but they differed markedly in their zinc tolerance.  相似文献   

2.
N-limited growth of Skeletonema costatum (Grev.) Cleve in dialysis culture has been studied. The division rate of exponentially growing cells was independent of the nitrate concentration in the growth medium in the range from 886 down to 0.25 μM N-salt, while no growth beyond one division took place in cultures to which no nitrogen salt was added. The half saturation constant, K3, for growth must, therefore, be in the range 0–0.13 μM, provided the growth-nutrient relationship is hyperbolic for S. costatum.Contrary to growth rate, cellular chlorophyll and protein were markedly reduced in media poor in nitrogen salts. A dialysis culture chamber was used to demonstrate that the measurement of half saturation constants for S. costatum was influenced by stirring, the stirred culture growing almost twice as fast as the unstirred control under identical conditions. The ability of diatoms to grow rapidly at low nitrogen levels was used to remove nutrients from sewage enriched media. Removal efficiencies corresponding to 80 and 90 % were obtained for nitrate and ammonia, respectively, using the diatom Phaeodactylum tricornutum Bohlin. It was found that both this diatom and S. costatum as well as Thalassiosira pseudonana Hust (Hasle) tolerated ammonia up to at least 450 μM with no deleterious effects on growth rate.  相似文献   

3.
浒苔干粉末提取物对东海原甲藻和中肋骨条藻的克生作用   总被引:4,自引:0,他引:4  
韩秀荣  高嵩  侯俊妮  李鸿妹  石晓勇 《生态学报》2013,33(23):7417-7429
研究不同溶剂的浒苔干粉末组织提取液对两种赤潮藻—东海原甲藻和中肋骨条藻生长的克生效应。结果表明, 浒苔提取物中确实含有可以影响赤潮藻类生长的克生物质,克生作用具有较明显的浓度效应,添加浓度低时可能会表现为一定的促进生长的作用,添加浓度较高时表现为抑制作用,添加浓度越大,抑制作用越强,即“低促高抑”的特点,这与浒苔提取物对其他微藻的作用相似。其中,蒸馏水提取物对这两种赤潮藻的克生作用小于有机溶剂提取物,有机溶剂中,甲醇和乙酸乙酯提取物对这两种赤潮藻的克生效果最好,正己烷相对较差。根据相似相溶原理,可以初步推断最有效的克生物质应为具有相对较高的极性的有机物。两种赤潮藻对克生物质的敏感程度不同。东海原甲藻对克生物质的敏感性高于中肋骨条藻。蒸馏水、甲醇、乙酸乙酯、正己烷的浒苔干粉末提取物影响东海原甲藻生长的致死作用阈值浓度分别为5.00 g/L、0.50 g/L、0.50 g/L、0.63 g/L(相当于浒苔新鲜藻体浓度为22.00 g-wet/L、2.20 g-wet/L、2.20 g-wet/L、2.75 g-wet/L);影响中肋骨条藻生长的致死作用阈值浓度则分别为20.00 g/L、1.25 g/L、1.25 g/L、2.50 g/L(相当于新鲜藻体浓度为88.00 g-wet/L、5.50 g-wet/L、5.50 g-wet/L、11.00 g-wet/L)。  相似文献   

4.
The combined effects of copper and zinc ions on the growth of three marine diatoms and one dinoflagellate in culture have been studied. The two metals were found to act synergistically to all algae except Phaeodactylum tricornutum Bohlin. With this species an antagonistic effect was observed. Addition of zinc ions reduced the inhibition of growth caused by the more toxic copper ions. Zinc toxicity to this alga increased at low concentration of magnesium, indicating a common route for divalent metal ions in general.  相似文献   

5.
The population growth patterns of Skeletonema costatum and nutrient levels in the lower East River were examined through field measurements and laboratory experimentation. Maximum growth rates of this diatom (approximately 1.8 divisions per day) were obtained in water samples from the late winter-early spring months. Summer water samples supported little or no growth of this diatom. Measurements of NH3-N, PO4,-P, and Si in water samples from the lower East River indicated that nutrient saturated conditions exist year round in this area. The effect of toxic substances in the water column may be responsible for limiting S. costatum growth during the summer months.  相似文献   

6.
Skeletonema costatum (Grev.) Cleve emend. Zingone et Sarno and S. grevillei Sarno et Zingone were known only from the type material collected from Hong Kong waters more than a century ago. Both species have now been collected as live material, and their morphology and phylogenetic position are investigated in this study. Eight Skeletonema strains isolated from Florida, USA; Uruguay; and Brazil are attributed to S. costatum, while one strain from Oman is ascribed to S. grevillei based on morphological similarity to the type material of these species. In addition, a new Skeletonema species, S. ardens Sarno et Zingone, is described for a strain from Singapore and two from northern Australian waters. Skeletonema ardens has terminal fultoportula processes ending in a tapered, undulate protrusion and long intercalary fultoportulae with 1:1 junctions. The rimoportula of terminal valves is located at the margin of the valve face. No major morphological variations were observed within S. grevillei and S. ardens along a salinity gradient, whereas in S. costatum, the processes shortened and the valves came into close contact at low salinities, as already described for S. subsalsum (Cleve) Bethge. Consistent with their morphology, Skeletonema costatum and Skeletonema subsalsum also had similar rDNA sequences. Skeletonema grevillei and S. ardens were distinct in the large subunit (LSU) phylogeny. Skeletonema ardens exhibited consistent intraspecific genetic differences in both the LSU and small subunit (SSU) rDNA.  相似文献   

7.
Two replicate experiments were conducted to investigate the effect of light intensity on the growth and nutrient uptake of Skeletonema costatum (Grev.) Cleve in silicate-limited continuous culture. Each experiment began with 4 identical chemostat cultures of S. costatum growing at the normal laboratory light (0.14 ly · min?1, continuous illumination) under strong silicate limitation. Screens were placed over 3 cultures reducing them to light intensities of 0.042, 0.021 and 0.0018 ly · min?1. Based on growth rules, nutrient uptake rates, cell morphology and chemical composition, the cultures receiving 0.021, and 0.0018 ly · min?1 appeared to he light-limited, whereas the culture receiving 0.14 ly.  相似文献   

8.
We investigated growth interactions between the dinophyte Prorocentrum minimum and the bacillariophyte Skeletonema costatum using bi-algal cultures under axenic conditions. When low cell densities of P. minimum and high cell densities of S. costatum were inoculated into the same medium, growth of P. minimum was suppressed. Other inoculum combinations resulted in reduced S. costatum maximum cell densities. A mathematical model was used to simulate growth and interactions of P. minimum and S. costatum in bi-algal cultures. The model indicated that P. minimum always outcompeted S. costatum over time. Enriched filtrate from low-density P. minimum cultures significantly stimulated S. costatum growth, but enriched filtrate from high-density P. minimum cultures notably inhibited the growth of S. costatum. Growth of P. minimum was not affected by enriched filtrate from cultures of P. minimum at any density. Filtrates of P. minimum cultures were fractionated by ultrafiltration (molecular weight cutoff >3000 Da), and retentate that included polysaccharide(s) significantly inhibited the growth of S. costatum.  相似文献   

9.
Electron microscope investigations of the siliceous frustule show that the diatom described by Hustedt as Stephanodiscus subsalsus (A. Cleve) Hust. is not Skeletonema subsalsum (A. Cleve) Bethge (Melosira subsalsa A. Cleve) but is Microsiphona potamos Weber. This species is so similar to Skeletonema costatum (Grev.) Cleve and Skeletonema subsalsum that the combination Skeletonema potamos (Weber) Hasle is suggested. Present records classify Skeletonema potamos as a freshwater species of lakes and rivers. In Sandusky Bay, Lake Erie (U.S.A.) and in River Wümme, a tributary of the River Weser (Germany) it grows with Skeletonema subsalsum. In nature, and when grown in cultures at a salinity of 0%, the processes are extremely short; when grown at salinities of 2% or more, the processes are much longer.  相似文献   

10.
In the present study, we evaluated the allelopathic effects of three macroalgae, namely Ulva pertusa Kjellml, Corallina pilufifera Postl et Ruprl, and Sargassum thunbergii Mertl O. Kuntze, on the growth of the microalga Skeletonema costaturn (Grev.) Creve using culture systems in which the algae coexisted. The effects of the macroalgal culture medium filtrate on S. costatum were also investigated. Moreover, isolated co-culture systems were built to confirm the existence of allelochemicals and preclude growth inhibition by direct contact. The coexistence assay data demonstrated that the growth of S. costaturn was strongly inhibited when fresh tissues, dry powder and aqueous extracts were used; the allelochemicals were lethal to S. costatum at relatively higher concentrations. The effects of the macroalgal culture medium filtrate on the microalga showed both species specificity and complexity. The inhibitory effect of fresh macroalgal tissue and culture medium filtrate on the microalga was due to the alleochemicals released by the macroalgae. The results of the present study show that the allelopathic effects of macroalgae on the microalga are complex. The present study could shed light onto the basis of the interaction between macro- and microalgae.  相似文献   

11.
Variations of cellular total lipid, total carbohydrate and total protein content of two dominant bloom-forming species (Skeletonema costatum and Prorocentrum donghaiense) isolated from the Yangtze River Estuary were examined under six different nutrient conditions in batch cultures. Daily samples were collected to estimate the cell growth, nutrient concentration and three biochemical compositions content during 7 days for S. costatum and the same sampling procedure was done every other day during 10 days for P. donghaiense. Results showed that for S. costatum, cellular total lipid content increased under phosphorus (P) limitation, but not for nitrogen (N) limitation; cellular carbohydrate were accumulated under both N and P limitation; cellular total protein content of low nutrient concentration treatments were significantly lower than that of high nutrient concentration treatments. For P. donghaiense, both cellular total lipid content and total carbohydrate content were greatly elevated as a result of N and P exhaustion, but cellular total protein content had no significant changes under nutrient limitation. In addition, the capability of accumulation of three biochemical constituents of P. donghaiense was much stronger than that of S. costatum. Pearson correlation showed that for both species, the biochemical composition of three constituents (lipid, carbohydrate and protein) had no significant relationship with extracellular N concentration, but had positive correlation with extracellular and intracellular P concentration. The capability of two species to accumulate cellular total lipid and carbohydrate under nutrient limitation may help them accommodate the fluctuating nutrient condition of the Yangtze River Estuary. The different responses of two species of cellular biochemical compositions content under different nutrient conditions may provide some evidence to explain the temporal characteristic of blooms caused by two species in the Yangtze River Estuary.  相似文献   

12.
Bowes GW 《Plant physiology》1972,49(2):172-176
The effects of DDT (2,2-bis-(p-chlorophenyl)-1, 1, 1-trichloroethane) on the growth of seven marine phytoplankters, representative of five algal divisions, were studied. At a concentration of 80 parts per billion (0.23 μm) DDT, growth of Dunaliella tertiolecta was unaffected, and there was slight, if any, influence on the development of Cyclotella nana, Thalassiosira fluviatilis, Amphidinium carteri, Coccolithus huxleyi, and Porphyridium sp. Skeletonema costatum exhibited a 9 day lag before cell division commenced, the rate of growth subsequently being the same as in the control (no DDT). A further inoculation of this culture of S. costatum into 80 parts per billion DDT gave another 9-day lag before initiation of normal growth.  相似文献   

13.
Glycollic acid, supplied at a concentration of 1 mg l?1, increased the relative growth rate of Skeletonema costatum (Grev.) Cleve growing in bacterized culture at limiting light intensities. There was little or no such effect at intensities approaching saturation. The presence in the medium of alumina, an adsorbent for glycollate, prolonged the lag phase, the cells remaining viable for up to 5 days. Uptake of glycollate was not appreciably affected by the bicarbonate concentration of the medium. After 3 h, 80–92% of the glycollate carbon assimilated was found in the alcohol and benzene insoluble fraction of the cells. This is in agreement with the supposition that glycollate carbon is as-similated directly by the diatom rather than after degradation by bacteria to carbon dioxide.  相似文献   

14.
Nitrate utilization has been characterized in nitrogen-deficient cells of the marine diatom Skeletonema costatum. In order to separate nitrate uptake from nitrate reduction, nitrate reductase activity was suppressed with tungstate. Neither nitrite nor the presence of amino acids in the external medium or darkness affects nitrate uptake kinetics. Ammonium strongly inhibits carrier-mediated nitrate uptake, without affecting diffusion transfer. A model is proposed for the uptake and assimilation of nitrate in S. costatum and their regulation by ammonium ions.  相似文献   

15.
Exploiting the negative biochemical interference between plants and algal species has been suggested as a method to control harmful algal blooms. In this work, we investigated the inhibitory effect of the salt marsh halophyte Salicornia europaea against the marine alga Skeletonema costatum. S. europaea suppressed the growth of S. costatum in a nutrient-sufficient co-culture system, indicating that the inhibition of algal growth was because of the phytotoxic effect of S. europaea, rather than nutrient competition. We tested aqueous and organic extracts from S. europaea roots against S. costatum. The organic extracts inhibited growth and affected the cell size and chlorophyll a content of S. costatum in a dose-dependent manner. Among the three tested organic extracts, the methanol extract had the greatest effects on S. costatum, followed by butanol extract, and then the chloroform extract. Two flavonoids, rutin and quercetin-3-??-D-glucoside, were identified in the methanol extract by high performance liquid chromatography. The concentration of rutin was much higher than that of quercetin-3-??-D-glucoside. In an algal bioassay, rutin inhibited the growth of S. costatum and the inhibitory effect increased with increasing rutin concentration and with decreasing initial algal density. Therefore, we concluded that S. europaea negatively affects the growth of S. costatum, and that rutin, a metabolite of S. europaea, may play a role in this inhibitory effect.  相似文献   

16.
17.
We have examined growth responses of several species of marine phytoplankton, cultured with and without heavy metal stress, to supplements of polymeric polyphenols from the brown algae Ascophyllum nodosum (L.) Le Jol. and Fucus vesiculosus L. In the absence of additional heavy metals. supplements of up to 4000 μg. 1 of polyphenols had a small effect on initial growth rates for three of these microalgae and had no effect on maximum cell densities for four species. One very common, heavy metal-sensitive diatom, Skeletonema costatum (Grev.) Cl., showed significantly increasing maximum cell density in the cultures, with increasing addition of polyphenols to the medium. The toxicity of Zn2+ (0.5–2.0 mg·1 1) to cultures of the diatom Phaeodactylum tricornutum Bohlin was relieved by supplements (100–200 μg·1 1) of the brown algal polyphenols. Exudation of these polyphenols from brown seaweeds may contribute to the natural chelating capacity of inshore sea water.  相似文献   

18.
Competition experiments betweenPhaeodactylum tricornutum andSkeletonema costatum showed that even at temperatures higher than 10°C (i.c. 14°C), the development ofSkeletonema can be favoured by adjusting nutrient levels and nutrient ratios. Low NSi ratios were found to favourSkeletonema. Additionally, high NP ratios further enhanced the ability ofSkeletonema to dominate the cuftures. Contrary to some statements in literature, it seems that high concentrations of silicates are more important for the dominance ofSkeletonema costatum in large-scale cultures than just low temperatures. This finding is important with regard to stimulating the blooming ofSkeletonema costatum in natural phytoplankton populations as food for bivalve molluscs.  相似文献   

19.
The capacity of marine phytoplankton to change their cellular content of nitrate, ammonium, amino acids, and protein in response to different growth conditions was systematically investigated. Cellular concentrations of these compounds were measured in N-starved, N-deficient, and N-sufficient Skeletonema costatum (Grev.) Cleve and in N-deficient Chaetoceros debilis Cleve and Thalassiosira gravida Cleve, both before and after the addition of a pulse of nitrogen.N-sufficient Skeletonema costatum contains high concentrations of protein, large persistent pools of amino acids, and, if it is growing on nitrate, sizeable amounts of nitrate. As it becomes N-starved, the total cellular nitrogen decreases, the internal nitrate and amino acids become entirely depleted, and the protein content is drastically reduced. After nitrogen additions to N-deficient and N-starved cultures, transient pools of unassimilated nitrogen form which can account for a large fraction of newly taken up nitrogen. The size and kind of pool which accumulates is determined by the preconditioning of the cells, the nitrogen compound which is added, and the species identity. The pools which form in S. costatum indicate that nitrate reduction is the slowest step in nitrogen assimilation, the synthesis of protein from amino acids is the next slowest, and the incorporation of ammonium into amino acid is the fastest. However, the rate limiting steps may vary between diatom species.For the first time, measurements of the variation in cellular nitrogen compounds over a wide range of environmental conditions reveal the ability of some phytoplankton to buffer the effects of a changing, and sometimes growth-limiting, nitrogen supply. They accomplish this by utilizing stored internal nitrogen for growth when the external supply is low and by quickly storing unassimilated nitrogen when the external supply is suddenly increased beyond their ability to immediately assimilate it. The accumulation of large pools of unassimilated nitrogen compounds can explain the often observed difference between nitrogen uptake rates and growth rates.  相似文献   

20.
Measurements of uptake rates, intracellular nitrogen pools, and other key intracellular constituents were made during exponential growth in Skeletonema costatum (Grev.) Cleve under varying pH levels. An understanding of the overall effects of extracellular pH on the above mentioned cellular parameters is crucial in order to ascertain the degree to which pH must be regulated and monitored in laboratory experiments with marine phytoplankton.It was found that uptake rates and intracellular pool sizes of NO?3 were directly influenced by the extracellular pH level, whereas, other cellular compounds remained relatively unchanged. Therefore, nitrogen uptake and intracellular nitrogen storage are dependent on key H+ and OH? ion transport mechanisms that are associated with phytoplankton metabolism. These findings reiterate the fact that investigators examining nitrogen uptake and assimilatory mechanisms in marine phytoplankton must be conscious of cellular H + and OH? fluxes that contribute to intracellular pH regulation and changes in extracellular pH levels, both of which interact to affect phytoplankton metabolic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号