首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When the ambient temperature is lowered to an insect's lower thermal limit, the insect enters into chill coma. Chill coma temperature and chill coma recovery can vary within species as a result of thermal acclimation, although the physiological basis of the onset of chill coma remains poorly understood. The present study investigates how the temperature of acclimation (0, 5, 10, 15 and 20 °C for 2 or 7 days) affects chill coma temperature and oxygen consumption in adult Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae). It is hypothesized that the threshold decline in metabolic rate corresponds to the entry into chill coma. Oxygen consumption (as a proxy of metabolism) is measured across the chill coma temperature threshold, and a strong decline in oxygen consumption is expected at entry into chill coma. The acclimation decreases the chill coma temperature significantly from 6.6 ± 1.1 °C in control insects to 3.1 ± 0.7 °C in those acclimated to 10 °C. The change in metabolic rate (Q10) after acclimation to temperatures ranging from 10 to 20 °C is 3.7. Despite acclimation, the metabolic rate of A. diaperinus conforms to Arrhenius kinetics, suggesting that the response of this beetle does not show metabolic compensation. The data suggest the existence of a threshold decline in metabolic rate during cooling that coincides with the temperature at which an insect goes into chill coma.  相似文献   

2.
Adult parasitoids Lysiphlebus testaceipes Cresson (Hymenoptera: Aphidiidae) lose locomotory function and enter chill coma at significantly lower temperatures (?0.1 and ?8.0 °C, respectively) than their second‐instar hosts, the black bean aphid Aphis fabae Scop. (Hemiptera: Aphididae) (5.6 and 2.3 °C, respectively). Parasitoids are also more heat tolerant, stop walking at 41.4 °C, with heat coma at 44.1 °C, than the aphid (39.1 and 43.0 °C, respectively). Furthermore, across a range of temperatures (0–20 °C), L. testaceipes has considerably faster walking speeds than A. fabae. These data are discussed in relation to the climatic conditions under which L. testaceipes would be an effective control agent, and the likelihood of establishment and spread in northern European climates.  相似文献   

3.
In the Maritime Antarctic and High Arctic, soil microhabitat temperatures throughout the year typically range between ?10 and +5 °C. However, on occasion, they can exceed 20 °C, and these instances are likely to increase and intensify as a result of climate warming. Remaining active under both cool and warm conditions is therefore important for polar terrestrial invertebrates if they are to forage, reproduce and maximise their fitness. In the current study, lower and upper thermal activity thresholds were investigated in the polar Collembola, Megaphorura arctica and Cryptopygus antarcticus, and the mite, Alaskozetes antarcticus. Specifically, the effect of acclimation on these traits was explored. Sub-zero activity was exhibited in all three species, at temperatures as low as ?4.6 °C in A. antarcticus. At high temperatures, all three species had capacity for activity above 30 °C and were most active at 25 °C. This indicates a comparable spread of temperatures across which activity can occur to that seen in temperate and tropical species, but with the activity window shifted towards lower temperatures. In all three species following one month acclimation at ?2 °C, chill coma (=the temperature at which movement and activity cease) and the critical thermal minimum (=low temperature at which coordination is no longer shown) occurred at lower temperatures than for individuals maintained at +4 °C (except for the CTmin of M. arctica). Individuals acclimated at +9 °C conversely showed little change in their chill coma or CTmin. A similar trend was demonstrated for the heat coma and critical thermal maximum (CTmax) of all species. Following one month at ?2 °C, the heat coma and CTmax were reduced as compared with +4 °C reared individuals, whereas the heat coma and CTmax of individuals acclimated at +9 °C showed little adjustment. The data obtained suggest these invertebrates are able to take maximum advantage of the short growing season and have some capacity, in spite of limited plasticity at high temperatures, to cope with climate change.  相似文献   

4.
5.
  • 1 Aphids, similar to all insects, are ectothermic and, consequently, are greatly affected by environmental conditions. The peach potato aphid Myzus persicae (Sulzer) has a global distribution, although it is not known whether populations display regional adaptations to distinct climatic zones along its distribution and vary in their ability to withstand and acclimate to temperature extremes. In the present study, lethal temperatures were measured in nine anholocyclic clones of M. persicae collected along a latitudinal cline of its European distribution from Sweden to Spain. The effects of collection origin and intra‐ and intergenerational acclimation on cold and heat tolerance, as determined by upper and lower lethal temperatures (ULT50 and LLT50, respectively), were investigated.
  • 2 Lethal temperatures of M. persicae were shown to be plastic and could be altered after acclimation over just one generation. Lower lethal temperatures were significantly depressed in eight of nine clones after acclimation for one generation at 10°C (range: ?13.3 to ?16.2°C) and raised after acclimation at 25°C (range: ?10.7 to ?11.6°C) compared with constant 20°C (range: ?11.9 to ?12.9°C). Upper lethal temperatures were less plastic, although significantly increased after one generation at 25°C (range: 41.8–42.4°C) and in five of nine clones after acclimation at 10°C. There was no evidence of intergenerational acclimation over three generations.
  • 3 Thermal tolerance ranges were expanded after acclimation at 10 and 25°C compared with constant 20°C, resulting in aphids reared at 10°C surviving over a temperature range that was approximately 2–6°C greater than those reared at 25°C.
  • 4 There was no clear relationship between lethal temperatures and latitude. Large scale mixing of clones may occur across Europe, thus limiting local adaption in thermal tolerance. Clonal type, as identified by microsatellite analysis, did show a relationship with thermal tolerance, notably with Type O clones being the most thermal tolerant. Clonal types may respond independently to climate change, affecting the relative proportions of clones within populations, with consequent implications for biodiversity and agriculture.
  相似文献   

6.
The lower and upper thermal activity thresholds of adult and larval Balaustium hernandezi von Heyden (Acari: Erythraeidae) are compared with those of its prey Tetranychus urticae Koch (Acari: Tetranychidae). Adult female B. hernandezi retain ambulatory function (CTmin) and movement of appendages (chill coma) at significantly lower temperatures (5.9 and ?2.1 °C, respectively) than those of larval B. hernandezi (8.1 and ?1.7 °C) and T. urticae (10.6 and 10.3 °C). There is no significant difference between the temperature at which adult and larval B. hernandezi and T. urticae cease walking as the temperature is raised (CTmax) (46.7, 46.3 and 47.3 °C, respectively). However, both life stages of B. hernandezi cease movement (heat coma) below the upper locomotory limits of T. urticae (46.8, 46.7 and 48.7 °C, respectively). Adult B. hernandezi have significantly faster walking speeds than larvae and T. urticae across a range of temperatures. The lower thermal activity threshold data indicate that B. hernandezi would make an effective biological control agent in temperate climates; however, the extent of the low temperature tolerances of the species suggests the potential to establish in a northern European climate.  相似文献   

7.
Walking speeds were calculated for nine clones of the peach potato aphid Myzus persicae collected from three countries along a latitudinal cline of its European distribution from Sweden to Spain (Sweden, UK and Spain), and the effects of collection origin and intra and intergenerational acclimation were investigated. Walking speeds declined with decreasing temperature, with maximum performance at temperatures closest to acclimation temperature (fastest median walking speed of 5.8 cm min(-1) was recorded for clone UK 3, collected from the UK, at 25°C after acclimating to 25°C for one generation). Following acclimation at both 20°C and 25°C, walking ceased (as indicated by median walking speeds of 0.0 cm min(-1)) at temperatures as high as 7.5°C and 12.5°C. However, acclimation at 10°C enabled mobility to occur to temperatures as low as 0°C. There was no relationship between mobility and latitude of collection, suggesting that large scale mixing of aphids may occur across Europe. However, clonal variation was suggested, with clone UK 3 outperforming the majority of other clones across all temperatures at which mobility was maintained following acclimation at 10°C for one and three generations and at 25°C for one generation. The Scandinavian clones consistently outperformed their temperate and Mediterranean counterparts at the majority of temperatures following acclimation for three generations at 25°C.  相似文献   

8.
Thermal phenotypic plasticity, otherwise known as acclimation, plays an essential role in how organisms respond to short‐term temperature changes. Plasticity buffers the impact of harmful temperature changes; therefore, understanding variation in plasticity in natural populations is crucial for understanding how species will respond to the changing climate. However, very few studies have examined patterns of phenotypic plasticity among populations, especially among ant populations. Considering that this intraspecies variation can provide insight into adaptive variation in populations, the goal of this study was to quantify the short‐term acclimation ability and thermal tolerance of several populations of the winter ant, Prenolepis imparis. We tested for correlations between thermal plasticity and thermal tolerance, elevation, and body size. We characterized the thermal environment both above and below ground for several populations distributed across different elevations within California, USA. In addition, we measured the short‐term acclimation ability and thermal tolerance of those populations. To measure thermal tolerance, we used chill‐coma recovery time (CCRT) and knockdown time as indicators of cold and heat tolerance, respectively. Short‐term phenotypic plasticity was assessed by calculating acclimation capacity using CCRT and knockdown time after exposure to both high and low temperatures. We found that several populations displayed different chill‐coma recovery times and a few displayed different heat knockdown times, and that the acclimation capacities of cold and heat tolerance differed among most populations. The high‐elevation populations displayed increased tolerance to the cold (faster CCRT) and greater plasticity. For high‐temperature tolerance, we found heat tolerance was not associated with altitude; instead, greater tolerance to the heat was correlated with increased plasticity at higher temperatures. These current findings provide insight into thermal adaptation and factors that contribute to phenotypic diversity by revealing physiological variance among populations.  相似文献   

9.
Complexity of the cold acclimation response in Drosophila melanogaster   总被引:1,自引:0,他引:1  
Insects can increase their resistance to cold stress when they are exposed to non-lethal conditions prior to the stress; these plastic responses are normally described only in terms of immediate effects on mortality. Here we examine in Drosophila melanogaster the short- and longer-term effects of different conditions on several measures of cold resistance, but particularly chill coma recovery. Short-term exposure to sublethal temperature (cold hardening) did not decrease chill coma recovery times even though it decreased mortality. Exposure to 12 degrees C for 2 days (acclimation) decreased chill coma recovery times for a range of stressful temperatures when flies were cultured at 25 degrees C, but did not usually affect recovery times when flies were cultured at 19 degrees C. In contrast, 2-day exposure to 12 degrees C decreased mortality regardless of rearing temperature. Rearing at 19 degrees C decreased mortality and chill coma recovery time relative to rearing at 25 degrees C. Acclimation increased the eclosion rate of eggs from stressed females, but did not affect development time or size of the offspring. These results indicate that plastic responses to cold in D. melanogaster are complex when resistance is scored in different ways, and that effects can extend across generations.  相似文献   

10.
Although the impact of warming on winter limitation of aphid populations is reasonably well understood, the impacts of hot summers and heat wave events are less clear. In this study, we address this question through a detailed analysis of the thermal ecology of three closely related aphid species: Myzus persicae, a widespread, polyphagous temperate zone pest, Myzus polaris, an arctic aphid potentially threatened by climate warming, and, Myzus ornatus, a glasshouse pest that may benefit from warming. The upper lethal limits (ULT50) and heat coma temperatures of the aphid species reared at both 15 and 20 °C did not differ significantly, suggesting that heat coma is a reliable indicator of fatal heat stress. Heat coma and CTmax were also measured after aphids were reared at 10 and 25 °C for one and three generations. The extent of the acclimation response was not influenced by the number of generations. Acclimation increased CTmax with rearing temperature for all species. The acclimation temperature also influenced heat coma; this relationship was linear for M. ornatus and M. polaris but non-linear for M. persicae (increased tolerance at 10 and 25 °C). Bacteria known generically as secondary symbionts can promote thermal tolerance of aphids, but they were not detected in the aphids studied here. Assays of optimum development temperature were also performed for each species. All data indicate that M. persicae has the greatest tolerance of high temperatures.  相似文献   

11.
CHILL-COMA TOLERANCE, A MAJOR CLIMATIC ADAPTATION AMONG DROSOPHILA SPECIES   总被引:1,自引:1,他引:1  
Abstract.— Most drosophilid species can be classified either as temperate or tropical. Adults of species were submitted to a cold treatment (0°C) and then brought back to ambient temperature. They generally exhibited a chill coma and the time needed to recover was measured. We found in a set of 26 temperate species that recovery was rapid (average 1.8 min, range 0.15–4.9). In contrast, a long recovery time (average 56 min, range 24–120) was observed for 48 tropical species. A few species, like Drosophila melanogaster, are cosmopolitan and can proliferate under temperate and tropical climates. In 9 of 10 such species, slight genetic differences were found: a shorter recovery in temperate than in tropical populations. Comparing physiological data to phylogeny suggests that chill‐coma tolerance has been a recurrent adaptation that is selected for in cold climates but tends to disappear under a permanently warm environment. This major climatic adaptation, evidenced in drosophilids, seems to occur in other insect groups also.  相似文献   

12.
The study of thermal tolerance and acclimation capacity in Jack Beardsley mealybug, Pseudococcus jackbeardsleyi Gimpel and Miller is the crucial step in determining their abilities to cope with climate change. Thus, the aim of this research was to determine the effects of acclimation temperatures on the changes in thermal tolerance of P. jackbeardsleyi. The influences of acclimation temperature at moderate (25?°C) and high (35?°C) temperatures on their lower and upper thermal limits were measured composed of critical thermal minimum (CTmin), maximum (CTmax), chill coma temperature (CCT) and heat coma temperature (HCT) for first instar nymphs and adults. The important information derived from this study revealed that the upper thermal limits of adults are constrained to a relative narrow range that will make them sensitive to relative small changes in temperatures, whilst all mean upper thermal indices at 35?°C were significantly higher than at 25?°C for nymphs. For this highlight notice, nymphs have more potential to change their upper thermal limits which will allow them to withstand high temperatures in the field. These results are a sign to warn us that P. jackbeardsleyi could become highly noxious which cause severe outbreaks damage to the crops in the tropics under global warming.  相似文献   

13.
The survival of aphids exposed to low temperatures is strongly influenced by their ability to move within and between plants and to survive exposure to potentially lethal low temperatures. Little is known about the physiological and behavioural limitations on aphid movement at low temperatures or how they may relate to lethal temperature thresholds. These questions are addressed here through an analysis of the thermal ecology of three closely related aphid species: Myzus persicae, a ubiquitous temperate zone pest, Myzus polaris, an arctic species, and Myzus ornatus, a sub-tropical species. Lower lethal temperatures (LLT50) of aphids reared at 15 °C were similar for M. persicae and M. polaris (range: −12.7 to −13.9 °C), but significantly higher for M. ornatus (−6.6 °C). The temperature thresholds for activity and chill coma increased with rearing temperature (10, 15, 20, and 25 °C) for all clones. For M. polaris and M. ornatus the slopes of these relationships were approximately parallel; by contrast, for M. persicae the difference in slopes meant that the difference between the temperatures at which aphids cease walking and enter coma increased by approximately 0.5 °C per 1 °C increase in rearing temperature. The data suggest that all three species have the potential to increase population sizes and expand their ranges if low temperature limitation is relaxed.  相似文献   

14.
Male and female D. oleae have similar powers of acclimation when exposed to low temperatures. Their torpor thresholds depend upon the temperature to which they have been acclimatised. During slow cooling (i.e. less than 1°C per min) they are capable of some rapid acclimation which enables them to lower their torpor threshold by almost 1°C degree, as compared with when they are chilled quickly. After abrupt transfer from 25°C to a different temperature, acclimation takes some time to be accomplished. At 15°C and above it occurs within 10 days but at temperatures below this, progressive acclimation lowers the torpor thresholds to the very low levels typical of flies overwintering under natural conditions. During this long term acclimation torpor thresholds may change by almost 0.5°C per 1°C change of acclimation temperature.No differences were observed in the ability of either flies from northern and southern Greece, or normal and γ-irradiated laboratory reared flies to acclimate to winter conditions in the field. In all cases, torpor thresholds were progressively lowered in advance of the decline in weekly minimum temperatures.  相似文献   

15.
The lower and upper thermal activity thresholds of the predatory mite Phytoseiulus macropilis Banks (Acari: Phytoseiidae) were compared with those of its prey Tetranychus urticae Koch (Acari: Tetranychidae) and one of the alternative commercially available control agents for T. urticae, Phytoseiulus persimilis Athias-Henriot. Adult female P. macropilis retained ambulatory function (CTmin) and movement of appendages (chill coma) at significantly lower temperatures (8.2 and 0.4 °C, respectively) than that of P. persimilis (11.1 and 3.3 °C) and T. urticae (10.6 and 10.3 °C). As the temperature was raised, P. macropilis ceased walking (CTmax) and entered heat coma (42.7 and 43.6 °C), beyond the upper locomotory limits of P. persimilis (40.0 and 41.1 °C), but before T. urticae (47.3 and 48.7 °C). Walking speeds were investigated and P. persimilis was found to have significantly faster ambulation than P. macropilis and T. urticae across a range of temperatures. The lower thermal activity threshold data indicate that P. macropilis will make an effective biological control agent in temperate climates.  相似文献   

16.
Under stressful thermal environments, insects adjust their behavior and physiology to maintain key life‐history activities and improve survival. For interacting species, mutual or antagonistic, thermal stress may affect the participants in differing ways, which may then affect the outcome of the ecological relationship. In agroecosystems, this may be the fate of relationships between insect pests and their antagonistic parasitoids under acute and chronic thermal variability. Against this background, we investigated the thermal tolerance of different developmental stages of Chilo partellus Swinhoe (Lepidoptera: Crambidae) and its larval parasitoid, Cotesia sesamiae Cameron (Hymenoptera: Braconidae) using both dynamic and static protocols. When exposed for 2 h to a static temperature, lower lethal temperatures ranged from ?9 to 6 °C, ?14 to ?2 °C, and ?1 to 4 °C while upper lethal temperatures ranged from 37 to 48 °C, 41 to 49 °C, and 36 to 39 °C for C. partellus eggs, larvae, and C. sesamiae adults, respectively. Faster heating rates improved critical thermal maxima (CTmax) in C. partellus larvae and adult C. partellus and C. sesamiae. Lower cooling rates improved critical thermal minima (CTmin) in C. partellus and C. sesamiae adults while compromising CTmin in C. partellus larvae. The mean supercooling points (SCPs) for C. partellus larvae, pupae, and adults were ?11.82 ± 1.78, ?10.43 ± 1.73 and ?15.75 ± 2.47, respectively. Heat knock‐down time (HKDT) and chill‐coma recovery time (CCRT) varied significantly between C. partellus larvae and adults. Larvae had higher HKDT than adults, while the latter recovered significantly faster following chill‐coma. Current results suggest developmental stage differences in C. partellus thermal tolerance (with respect to lethal temperatures and critical thermal limits) and a compromised temperature tolerance of parasitoid C. sesamiae relative to its host, suggesting potential asynchrony between host–parasitoid population phenology and consequently biocontrol efficacy under global change. These results have broad implications to biological pest management insect–natural enemy interactions under rapidly changing thermal environments.  相似文献   

17.
This study investigates the thermal activity thresholds of the predatory mirid Nesidiocoris tenuis Reuter (Hemiptera: Miridae) and two spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). Adult N. tenuis lost locomotory function and entered chill coma at significantly lower temperatures (4.0°C and 0.3°C, respectively) than adult T. urticae (7.0°C and 5.7°C, respectively). However, the mirids were more adversely affected by high temperatures, with T. urticae losing the ability to walk and entering heat coma at higher temperatures (47.3°C and 49.7°C, respectively) than N. tenuis (43.5°C and 46.6°C, respectively). Across a range of temperatures (2.5–20°C) adult N. tenuis had faster walking speeds than T. urticae. These data are discussed in relation to the climatic conditions under which N. tenuis would be an effective biocontrol agent.  相似文献   

18.
Abstract A technique for rapidly measuring non‐lethal thermal tolerance traits in small insects and terrestrial arthropods of similar size is described. Single or multiple individuals are heated or cooled in an arena milled into a temperature‐controlled aluminium block and their behaviour recorded continuously using a digital video camera. Data are collected retrospectively by playback of the stored images. To illustrate this technique measurement of six thermal tolerance traits using this method is described using first instar nymphs (body length = 0.66 mm) of the aphid Myzus persicae. These traits are high and low temperatures at which individual aphids cease walking, high and low temperatures at which aphids move for the final time, the temperature at which aphids begin to recover from chill coma, and the temperature at which they begin to walk again. The method is validated by comparing the results of multiple low temperature assays. No significant differences are detected between assays. Potential applications, limitations and technical problems are discussed.  相似文献   

19.
Knowledge regarding the reproductive status of spotted‐wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), is of critical importance in predicting potential infestations of this invasive pest, as eggs are laid in ripe or ripening fruit of several commercially important small‐fruit crops. Token environmental stimuli for the induction of reproductive diapause and improved cold tolerance were identified for D. suzukii. Diapause induction was evaluated by assessing, via dissection, the number of mature eggs carried by field‐captured D. suzukii and laboratory‐reared D. suzukii held under various temperature and photoperiod regimes. Egg load decreased over time in females trapped from July to December at sites in Benton County, OR, and Ontario County, NY, both USA, and reached zero eggs by December at all sites. Photoperiods below 14 h of day length led to reduced egg maturation in laboratory‐reared flies held at moderate temperatures (15 or 20 °C). Whereas very few mature eggs were found in females held at 10 °C under short‐ or long‐day photoperiods for several weeks after eclosion, a spontaneous return to ovarian maturity was observed in short‐day‐entrained females after 7 weeks. Diapause termination was investigated by evaluating fecundity in diapausing females returned to optimal environmental conditions. Whereas long‐day‐entrained flies began producing offspring immediately upon return to optimal conditions, short‐day‐entrained flies returned after 1 and 6 weeks at 10 °C were slower to produce offspring than colony flies or short‐day‐entrained flies returned after 7 weeks. Cold tolerance was evaluated by observing chill coma recovery rates after 24 h exposure to ?1 °C. Cold‐acclimated (diapausing) females recovered from chill coma faster than cold‐hardened or unacclimated females.  相似文献   

20.
To assess the trade‐offs associated with cold and heat tolerance, selection experiments were conducted on the rate of recovery from chill‐ and heat‐coma using Drosophila melanogaster. Flies were treated with cold and heat to induce coma, and those that showed rapid or slow recovery from coma were selected. The lines selected for rapid (or slow) recovery from chill‐coma also showed rapid (slow) recovery from heat‐coma, although such a correlation was not observed in the lines selected for the rate of recovery from heat‐coma. On the other hand, survival after cold was enhanced in both lines selected for rapid and slow recovery from chill‐coma, and survival after heat was enhanced in both lines selected for rapid and slow recovery from heat‐coma. It was assumed that cold and heat treatments to induce coma caused some damages to flies and those that were tolerant to cold or heat were unintentionally selected in the present coma‐based selection. Only a weak trade‐off was observed between survival‐based cold and heat tolerance. On the other hand, developmental time was prolonged and desiccation resistance, walking speed, and longevity were reduced in the lines selected for rapid and slow recovery from chill‐ and/or heat‐coma, suggesting that these resistance and life‐history traits are under trade‐offs with cold and/or heat tolerance. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 72–80.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号