首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    

Aim

Despite recognition that realized distributions inherently underestimate species' physiological tolerances, we are yet to identify the extent of these differences within diverse taxonomic groups. The degree to which species could tolerate environmental conditions outside their observed distributions may have a significant impact on the perceived extinction risk in ecological models. More information on this potential error is required to improve our confidence in management strategies.

Location

Australia.

Time Period

1983–2012.

Major Taxa Studied

Plants.

Methods

To quantify the scale and spatial patterns of this disparity, we estimated the existing tolerance to thermal extremes of 7,124 Australian plants, more than one‐third of the native continental flora, using data from cultivated records at 128 botanical gardens and nurseries. Hierarchical Bayesian beta regression was used to assess whether factors such as realized niches, traits or phylogeny could predict the incidence or magnitude of niche truncation (underestimation of thermal tolerances), while controlling for sources of collection bias.

Results

Approximately half of the cultivated species analysed could tolerate temperature extremes beyond those experienced in their native range. Niche truncation was predictable from the breadth and extremes of their realized niches and by traits such as plant growth form. Phylogenetic relationships with niche truncation were weak and appeared more suited to predicting thermal tolerances directly.

Main conclusions

This study highlights a widespread disparity between realized and potential thermal limits that may have significant implications for species' capacity to persist in situ with a changing climate. Identifying whether thermal niche truncation is the result of biotic interactions, dispersal constraints or other environmental factors could provide significant insight into community assembly at macroecological scales. Estimating niche truncation may help to explain why certain ecological communities are more resilient to change and may potentially improve the reliability of model projections under climate change.  相似文献   

2.
    
  1. The white-clawed crayfish (Austropotamobius pallipes) is globally endangered due to the impacts of habitat modification and fragmentation, water pollution, climate change, and invasive species, particularly the signal crayfish (Pacifastacus leniusculus). These pressures have caused the decline of A. pallipes populations in Europe, demonstrating the importance of predicting the species' potential distribution under current and future conditions. Focusing on the watercourses of mainland France, we aimed to identify suitable areas for A. pallipes to guide the conservation of current populations and future introduction actions or protection measures.
  2. We applied ecological niche modelling to model the potential distribution of both A. pallipes and P. leniusculus and identified locations suitable for A. pallipes only. We also assessed the potential distribution of the species under two representative concentration pathway (RCP) scenarios: RCP 2.6 and RCP 8.5, respectively describing low-warming and high-warming conditions.
  3. We found that A. pallipes and P. leniusculus exploit equivalent niches in France. Despite this, under current conditions, about 5% of the study area simultaneously records a high suitability for A. pallipes and a low suitability for P. leniusculus and is therefore of significant conservation interest. This percentage remains relatively stable under RCP 2.6 for 2050 and 2100, but decreases to 2% under RCP 8.5 for 2100.
  4. Ecological niche modelling can supply crucial guidance for conservation actions aimed at protecting endangered species at a national scale by identifying sites most suitable for protection and sites where climate change and invasive species constitute a threat.
  相似文献   

3.
    
The vulnerability of rangeland beef cattle production to increasing climate variability in the US Great Plains has received minimal attention in spite of potentially adverse socioeconomic and ecological consequences. Vulnerability was assessed as the frequency and magnitude of years in which net primary production (NPP) deviated >±25% from mean values, to represent major forage surplus and deficit years, for a historic reference period (1981–2010), mid‐century (2041–2065), and late‐century (2075–2099) periods. NPP was simulated by MC2, a dynamic global vegetation model, driven by five climate projections for representative concentration pathway (RCP) 4.5 and 8.5. Historically, 4–4.7 years per decade showed either NPP surpluses or deficits. The future number of extreme years increased to 5.4–6.4 and 5.9–6.9 per decade for RCP 4.5 and 8.5, respectively, which represents an increase of 33%–56% and 38%–73%, respectively. Future simulations exhibited increases in surplus years to between 3 and 5 years in the Northern Plains and 3–3.5 in the Southern Plains. The number of deficit years remained near historic values of 2 in the Northern Plains, but increased in the Southern Plains from 2.5 to 3.3 per decade. Historically, NPP in extreme surplus and deficit years both deviated 40% from mean NPP in all three regions. The magnitude of deficit years increased by 6%–17% in future simulations for all three regions, while the magnitude of surplus years decreased 16% in the Northern Plains and increased 16% in the Southern Plains. The Southern Plains was the only region to exhibit an increase in the magnitude of both surplus and deficit years. Unprecedented future variability of NPP may surpass the existing adaptive capacity of beef producers and adversely impact the economic viability of rangeland cattle production and ecological sustainability of rangeland resources.  相似文献   

4.
    
Protected areas are essential conservation tools for mitigating the rapid decline of biodiversity. However, climate change represents one of the main challenges to their long-term effectiveness, as it induces rapid changes in the geographical distribution of many species. We used ecological niche modelling to predict the impacts of climate change on the distribution of five endemic owls in the Atlantic Forest and evaluated the effectiveness of the protected areas network for their conservation. The results indicate that the protected areas network is currently effective in terms of representativeness for most species; however, there will be a decline for all species in the coming decades because of climate change. We found that the ecoregions in the northern part of the Atlantic Forest will experience a higher loss of species, whereas those ecoregions in the southern part will be important stable climatic refuges in the future. Therefore, we emphasize the need to complement the network of protected areas to increase their representativeness in the distribution of species that will be affected by climate change, reducing species loss and increasing connectivity between suitable areas. We hope the results presented herein will serve as a basis for decision-makers to re-evaluate and improve current conservation policies and decisions in order to address the challenges posed by climate change and secure the survival of these species.  相似文献   

5.
6.
    
North American grasslands are one of the most threatened ecosystems in the world, and grassland bird populations have experienced drastic declines over the past half century. Land-use change is widely accepted as the most persistent threat, and climate change is expected to further compromise grassland integrity. The limited consideration of projected future threats is a significant gap in existing conservation priorities for North America's central grasslands. We identified Grassland Climate Strongholds (predicted to have high climate suitability for grassland birds both today and under 21st century climate change scenarios) and Grassland Climate and Land-use Strongholds (predicted to have high climate and land-use suitability for grassland birds today and under 21st century climate change scenarios). Strongholds were mainly distributed across southern Canada, the Dakotas, Montana, Wyoming, Colorado, New Mexico, the Oklahoma Panhandle, Texas, and the Chihuahuan Desert. Strongholds vulnerable to land-use conversion included the Prairie Pothole region and surrounding areas, much of the eastern-central Plains, the Texas Blackland Prairie, the Western Gulf Coastal Plain, and areas west of the Chihuahuan Desert. A maximum of only 9% of strongholds were protected. Strongholds are critical for full annual cycle conservation of declining grassland birds in North America and complement existing grassland priorities.  相似文献   

7.
李佳  刘芳  张宇  薛亚东  李迪强 《生态学报》2017,37(20):6656-6667
脆弱性评估是研究气候变化影响野生动物的重要内容,识别野生动物脆弱性,是适应和减缓气候变化影响的关键和基础。开展气候变化背景下野生动物的脆弱性评估工作,目的是为了确定易受气候变化影响的物种和明确导致物种脆弱性的因素,其评估结果有助于人类认识气候变化对野生动物的影响,为野生动物适应气候变化保护对策的制定提供科学依据。对野生动物而言(物种),脆弱性是物种受气候变化影响的程度,包括暴露度、敏感性和适应能力三大要素。其中,暴露度是由气候变化引起的外在因素,如温度、降雨量、极值天气等;敏感性是受物种自身因素影响,如种间关系、耐受性等;适应能力是物种通过自身调整来减小气候变化带来的影响,如迁移或扩散到适宜生境的能力、塑性反应和进化反应等。对近期有关气候变化背景下野生动物脆弱性评估方法予以综述,比较每种评估方法所选取指标的差异,总结在脆弱性评估中遇到的不确定性指标的处理方法,以及脆弱性评估结果在野生动物适应气候变化对策中的应用。通过总结野生动物脆弱性评估方法,以期为气候变化背景下评估我国野生动物资源的脆弱性提供参考方法。  相似文献   

8.
    
Sclerophrys perreti is a critically endangered Nigerian native frog currently imperilled by human activities. A better understanding of its potential distribution and habitat suitability will aid in conservation; however, such knowledge is limited for S. perreti. Herein, we used a species distribution model (SDM) approach with all known occurrence data (n = 22) from our field surveys and primary literature, and environmental variable predictors (19 bioclimatic variables, elevation and land cover) to elucidate habitat suitability and impact of climate change on this species. The SDM showed that temperature and precipitation were the predictors of habitat suitability for S. perreti with precipitation seasonality as the strongest predictor of habitat suitability. The following variable also had a significant effect on habitat suitability: temperature seasonality, temperature annual range, precipitation of driest month, mean temperature of wettest quarter and isothermality. The model predicted current suitable habitat for S. perreti covering an area of 1,115 km2. However, this habitat is predicted to experience 60% reduction by 2050 owing to changes in temperature and precipitation. SDM also showed that suitable habitat exists in south-eastern range of the inselberg with predicted low impact of climate change compared to other ranges. Therefore, this study recommends improved conservation measures through collaborations and stakeholder's meeting with local farmers for the management and protection of S. perreti.  相似文献   

9.
    
Climate connectivity, the ability of a landscape to promote or hinder the movement of organisms in response to a changing climate, is contingent on multiple factors including the distance organisms need to move to track suitable climate over time (i.e. climate velocity) and the resistance they experience along such routes. An additional consideration which has received less attention is that human land uses increase resistance to movement or alter movement routes and thus influence climate connectivity. Here we evaluate the influence of human land uses on climate connectivity across North America by comparing two climate connectivity scenarios, one considering climate change in isolation and the other considering climate change and human land uses. In doing so, we introduce a novel metric of climate connectivity, ‘human exposure’, that quantifies the cumulative exposure to human activities that organisms may encounter as they shift their ranges in response to climate change. We also delineate potential movement routes and evaluate whether the protected area network supports movement corridors better than non‐protected lands. We found that when incorporating human land uses, climate connectivity decreased; climate velocity increased on average by 0.3 km/year and cumulative climatic resistance increased for ~83% of the continent. Moreover, ~96% of movement routes in North America must contend with human land uses to some degree. In the scenario that evaluated climate change in isolation, we found that protected areas do not support climate corridors at a higher rate than non‐protected lands across North America. However, variability is evident, as many ecoregions contain protected areas that exhibit both more and less representation of climate corridors compared to non‐protected lands. Overall, our study indicates that previous evaluations of climate connectivity underestimate climate change exposure because they do not account for human impacts.  相似文献   

10.
  总被引:1,自引:0,他引:1  
  相似文献   

11.
12.
    
Knowledge of bryophyte diversity can be an important tool for identifying overall biodiversity hotspots. The distribution of red-listed species is an essential data for biodiversity conservation actions, and the assessment of species' response to climate change scenarios is also a key tool in future conservation strategies. In this study, we examine the response of four phytogeographic assemblages of all Portuguese red-listed bryophytes whose distributions are well documented in Portugal. The red-listed species were selected based on their vulnerability as listed in the new Atlas and Red Data book of Portuguese bryophytes according to the IUCN criteria. The main purpose of this study is to develop predictive distributions of threatened bryophytes grouped according to phytogeographic trends aiming to conserve this bryoflora in future. This is achieved by the identification of relationships between specimens' distributions and environmental ecologically meaningful data, which is known to influence different phytogeographic assemblages. Significant differences were found in all distribution models based on future climate scenarios. Several variables play a vital role in the species' distribution models in present and future environmental conditions.  相似文献   

13.
    

Aim

Abiotic conditions are key components that determine the distribution of species. However, co‐occurring species can respond differently to the same factors, and determining which climate components are most predictive of geographic distributions is important for understanding community response to climate change. Here, we estimate and compare climate niches of ten subdominant, herbaceous forb species common in sagebrush steppe systems, asking how niches differ among co‐occurring species and whether more closely related species exhibit higher niche overlap.

Location

Western United States.

Methods

We used herbarium records and ecological niche modelling to estimate area of occupancy, niche breadth and overlap, and describe characteristics of suitable climate. We compared mean values and variability in summer precipitation and minimum temperatures at occurrence locations among species, plant families, and growth forms, and related estimated phylogenetic distances to niche overlap.

Results

Species varied in the size and spatial distribution of suitable climate and in niche breadth. Species also differed in the variables contributing to their suitable climate and in mean values, spatial variation and interannual variation in highly predictive climate variables. Only two of ten species shared comparable climate niches. We found family‐level differences associated with variation in summer precipitation and minimum temperatures, as well as in mean minimum temperatures. Growth forms differed in their association with variability in summer precipitation and minimum temperatures. We found no relationship between phylogenetic distance and niche overlap among our species.

Main conclusions

We identified contrasting climate niches for ten Great Basin understorey forbs, including differences in both mean values and climate variability. These estimates can guide species selection for restoration by identifying species with a high tolerance for climate variability and large climatic niches. They can also help conservationists to understand which species may be least tolerant of climate variability, and potentially most vulnerable to climate change.
  相似文献   

14.
An Integrated Risk Assessment for Climate Change (IRACC) is developed and applied to assess the vulnerability of sharks and rays on Australia's Great Barrier Reef (GBR) to climate change. The IRACC merges a traditional climate change vulnerability framework with approaches from fisheries ecological risk assessments. This semi‐quantitative assessment accommodates uncertainty and can be applied at different spatial and temporal scales to identify exposure factors, at‐risk species and their key biological and ecological attributes, critical habitats a`nd ecological processes, and major knowledge gaps. Consequently, the IRACC can provide a foundation upon which to develop climate change response strategies. Here, we describe the assessment process, demonstrate its application to GBR shark and ray species, and explore the issues affecting their vulnerability to climate change. The assessment indicates that for the GBR, freshwater/estuarine and reef associated sharks and rays are most vulnerable to climate change, and that vulnerability is driven by case‐specific interactions of multiple factors and species attributes. Changes in temperature, freshwater input and ocean circulation will have the most widespread effects on these species. Although relatively few GBR sharks and rays were assessed as highly vulnerable, their vulnerability increases when synergies with other factors are considered. This is especially true for freshwater/estuarine and coastal/inshore sharks and rays. Reducing the impacts of climate change on the GBR's sharks and rays requires a range of approaches including mitigating climate change and addressing habitat degradation and sustainability issues. Species‐specific conservation actions may be required for higher risk species (e.g. the freshwater whipray, porcupine ray, speartooth shark and sawfishes) including reducing mortality, preserving coastal catchments and estuarine habitats, and addressing fisheries sustainability. The assessment identified many knowledge gaps concerning GBR habitats and processes, and highlights the need for improved understanding of the biology and ecology of the sharks and rays of the GBR.  相似文献   

15.
16.
The classical approach to predicting the geographical extent of species invasions consists of training models in the native range and projecting them in distinct, potentially invasible areas. However, recent studies have demonstrated that this approach could be hampered by a change of the realized climatic niche, allowing invasive species to spread into habitats in the invaded ranges that are climatically distinct from those occupied in the native range. We propose an alternative approach that involves fitting models with pooled data from all ranges. We show that this pooled approach improves prediction of the extent of invasion of spotted knapweed (Centaurea maculosa) in North America on models based solely on the European native range. Furthermore, it performs equally well on models based on the invaded range, while ensuring the inclusion of areas with similar climate to the European niche, where the species is likely to spread further. We then compare projections from these models for 2080 under a severe climate warming scenario. Projections from the pooled models show fewer areas of intermediate climatic suitability than projections from the native or invaded range models, suggesting a better consensus among modelling techniques and reduced uncertainty.  相似文献   

17.
Species migration in response to warming temperatures is expected to lead to ‘biotic attrition,’ or loss of local diversity, in areas where the number of species emigrating or going locally extinct exceeds the number immigrating. Biotic attrition is predicted be especially severe in the low‐lying hot tropics since elevated temperatures may surpass the observed tolerances of most extant species. It is possible, however, that the estimated temperature niches of many species are inaccurate and truncated with respect to their true tolerances due to the absence of hotter areas under current global climate. If so, these species will be capable of persisting in some areas where future temperatures exceed current temperatures, reducing rates of biotic attrition. Here, we use natural history collections data to estimate the realized thermal niches of > 2000 plant species from the tropical forests of South America. In accord with the truncation hypothesis, we find that the thermal niches of species from hot lowland areas are several degrees narrower than the thermal niches of species from cooler areas. We estimate rates of biotic attrition for South American tropical forests due to temperature increases ranging from 1 to 5 °C, and under two niche assumptions. The first is that the observed thermal niches truly reflect the plant's tolerances and that the reduction in niche breadth is due to increased specialization. The second is that lowland species have the same mean thermal niche breadth as nonlowland and nonequatorial species. The differences between these two models are dramatic. For example, using observed thermal niches we predict an almost complete loss of plant diversity in most South American tropical forests due to a 5 °C temperature increase, but correcting for possible niche truncation we estimate that most forests will retain > 50–70% of their current species richness. The different predictions highlight the importance of using fundamental vs. realized niches in predicting the responses of species to global climate change.  相似文献   

18.
    
Ongoing perturbations in the global climate have triggered changes in the frequency or magnitude of extreme climatic events, including drought. Increasingly common or intense droughts have threatened ungulates. Intensifying trend of drought has been observed in China since the 1980s. We assessed drought vulnerability of 60 ungulate taxa distributed in China by synthesizing information on drought exposure and intrinsic vulnerability related to biological traits. In total, 27 taxa were identified as vulnerable to drought, which represent over half of the taxa assessed as threatened in the IUCN Red List and China's National Red List. We identified hotspots where a high number of drought-vulnerable taxa are concentrated, including Northeast Himalayan subalpine conifer forests, alpine conifer and mixed forests of Nujiang-Lancang Gorge, and Qionglai-Minshan conifer forests, which are all located in Southwest China. We also assessed conservation efforts that China has allocated to ungulate taxa vulnerable to drought. Drought-vulnerable taxa that are endemic to China have significantly lower coverage in China's National Nature Reserve system compared with nonvulnerable taxa. These findings reveal the gaps in existing conservation efforts and indicate possible improvements that might be needed to maintain species resistance in the face of increasing and intensifying drought impacts.  相似文献   

19.
20.
    
A transnational network of genetic conservation units for forest trees was recently documented in Europe aiming at the conservation of evolutionary processes and the adaptive potential of natural or man‐made tree populations. In this study, we quantified the vulnerability of individual conservation units and the whole network to climate change using climate favourability models and the estimated velocity of climate change. Compared to the overall climate niche of the analysed target species populations at the warm and dry end of the species niche are underrepresented in the network. However, by 2100, target species in 33–65 % of conservation units, mostly located in southern Europe, will be at the limit or outside the species' current climatic niche as demonstrated by favourabilities below required model sensitivities of 95%. The highest average decrease in favourabilities throughout the network can be expected for coniferous trees although they are mainly occurring within units in mountainous landscapes for which we estimated lower velocities of change. Generally, the species‐specific estimates of favourabilities showed only low correlations to the velocity of climate change in individual units, indicating that both vulnerability measures should be considered for climate risk analysis. The variation in favourabilities among target species within the same conservation units is expected to increase with climate change and will likely require a prioritization among co‐occurring species. The present results suggest that there is a strong need to intensify monitoring efforts and to develop additional conservation measures for populations in the most vulnerable units. Also, our results call for continued transnational actions for genetic conservation of European forest trees, including the establishment of dynamic conservation populations outside the current species distribution ranges within European assisted migration schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号