首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trichogramma spp. (Hymenoptera: Trichogrammatidae) parasitoids have been commonly used as biological control agents in insect pest management. Host quality is believed to influence parasitism, host preference, and suitability for parasitoids. To date, limited studies have compared the parasitism of Trichogramma parasitoids on fertilized, unfertilized, and sterilized host eggs. Hence, we studied the performance of three Trichogramma egg parasitoids, Trichogramma japonicum Ashmead, Trichogramma chilonis Ishii, and Trichogramma leucaniae Pang & Chen, on fertilized, unfertilized, and ultraviolet (UV)‐irradiated fertilized (UVF) eggs of rice moth, Corcyra cephalonica (Stainton) (Lepidoptera: Pyralidae). In a no‐choice test, T. japonicum and T. leucaniae parasitized significantly more fertilized or UVF than unfertilized hosts, and T. chilonis parasitized significantly more UVF than either fertilized or unfertilized hosts. In a choice test, all three Trichogramma parasitoids parasitized UVF hosts the most, and unfertilized hosts the least. There were similar percentages of adult emergence and female progeny among fertilized, unfertilized, and UVF hosts for all three Trichogramma parasitoids, except that T. japonicum had significantly lower adult emergence on fertilized hosts. We also found that all three Trichogramma parasitoids developed slower on unfertilized hosts. Regardless of host treatments, T. leucaniae had the longest developmental time and T. chilonis had the shortest. We conclude that Trichogramma parasitoids prefer parasitizing UVF eggs of C. cephalonica without negative effects on their emergence and sex allocation.  相似文献   

2.
The beet armyworm Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) is a polyphagous insect that is distributed worldwide and was recently reported as an important pest on African indigenous vegetables. Cotesia icipe Fernandez‐Triana & Fiaboe (Hymenoptera: Braconidae) is a recently described parasitoid, reported from various Afrotropical countries. This work investigated the performance of C. icipe on S. exigua infesting Amaranthus dubius Mart. ex Thell. under laboratory conditions. Cotesia icipe was aggressive on the host and successfully oviposited on S. exigua with 70% of parasitoid females ovipositing after 2 hr of exposure. Parasitoid densities significantly affected the parasitism rate and the nonreproductive larval mortality. Parasitism rate was 9.7 ± 0.8% and 59.5 ± 3.1% for a single and cohort of five females released, respectively, when offered 50 host larvae. The cohort female release resulted in significantly higher larval nonreproductive mortality than the single release. However, there was no significant difference between parasitoid release densities in regard to pupal nonreproductive mortality. The larval and pupal mortalities in the presence of C. icipe were significantly higher than the natural mortalities at both parasitoid release densities. The parasitoid sex ratio was female‐biased for the cohort females but balanced when a single female was released. The hind tibia and forewing lengths were not affected by the density of female parasitoids but there were variations according to sex. The implication of these findings on the potential use of C. icipe for biological control of S. exigua in amaranth production systems is discussed.  相似文献   

3.
In this study we examined interactions between two solitary endoparasitoids, the braconid Chelonus insularis and the ichneumonid Campoletis sonorensis, and a multiple-enveloped nucleopolyhedrovirus infecting Spodoptera frugiperda larvae. We examined whether ovipositing females minimize interference by discriminating amongst hosts and examined the outcome of within-host competition between parasitoid species and between the parasitoids and the virus. The egg–larval parasitoid Ch. insularis did not discriminate between virus-contaminated and uncontaminated S. frugiperda eggs; all S. frugiperda larvae that emerged from surface-contaminated eggs died of viral infection prior to parasitoid emergence. The larval parasitoid C. sonorensis also failed to discriminate between healthy and virus-infected S. frugiperda larvae or between larvae unparasitized or parasitized by Ch. insularis. Host larvae parasitized in the egg stage by Ch. insularis were suitable for the development of C. sonorensis when they were multiparasitized by C. sonorensis as first, second, third, and fourth instars, whereas emergence of Ch. insularis was dramatically reduced (by 85 to 100%) in multiparasitized hosts. Nonspecific host mortality was significantly higher in multiparasitized hosts than in singly parasitized hosts. The development time and sex ratio of C. sonorensis in multiparasitized host larvae were unaffected by the presence of Ch. insularis larval stages. Both Ch. insularis parasitized and nonparasitized larvae of the same instar (second, third, or fourth instars) had a similar quantitative response to a challenge of virus inoculum. All host larvae that ingested a lethal dose of virus were unsuitable for Ch. insularis development. In contrast, C. sonorensis did not survive in hosts that ingested a lethal virus dose immediately after parasitism, but parasitoid survival was possible with a 2-day delay between parasitism and viral infection and the percentage of parasitoid emergence increased significantly as the interval between parasitism and viral infection increased. The development time of C. sonorensis was significantly reduced in virus-infected hosts compared to conspecifics that developed in healthy hosts. C. sonorensis females that oviposited in virus-infected hosts did not transmit the virus to healthy hosts that were parasitized subsequently. Field applications of virus for biocontrol of S. frugiperda may lead to substantial mortality of immature parasitoids, although field experiments have not yet demonstrated such an effect.  相似文献   

4.
The survival of a braconid parasitoid Habrobracon hebetor was investigated on nucleopolyhedrovirus (NPV)-infected Spodoptera exigua larvae. The second-instar larvae were exposed to 30, 51.4 and 180 PIB/mm2 of Mamestra brassicae NPV (MbMNPV) as under-LD50, LD50 and over-LD50 values, respectively. They were accessible to be parasitized by H. hebetor after 24, 48 and 72 h post-treatment. Infection of the larvae with MbNPV was deleterious to the survival and parasitism of H. hebetor. The survival of H. hebetor in MbNPV-infected S. exigua larvae was dependent on the interval between viral infection and parasitization, as well as on the treatment dose of MbMNPV; very few adults of parasitoid emerged from infected hosts when host larvae were exposed to 180 PIB/mm2 of MbNPV on 72-h interval treatment. The inoculation dose of MbNPV and the timing of parasitoid release had significant effect on the development of H. hebetor on virus-infected hosts. Field applications of virus for biocontrol of S. exigua may lead to substantial mortality of immature parasitoids.  相似文献   

5.
Organisms can either evade winter's unfavourable conditions by migrating or diapausing, or endure them and maintain their activities. When it comes to foraging during winter, a period of scarce resources, there is strong selective pressure on resource exploitation strategy. Generalist parasitoids are particularly affected by this environmental constraint, as their fitness is deeply linked to the profitability of the available hosts. In this study, we considered a cereal aphid–parasitoid system and investigated (1) the host–parasitoid community structure, host availability, and parasitism rate in winter, (2) the influence of host quality in terms of species and instars on the fitness of the aphid parasitoid Aphidius rhopalosiphi De Stefani‐Perez (Hymenoptera: Braconidae: Aphidiinae), and (3) whether there is a detectable impact of host fidelity on parasitism success of this parasitoid species. Host density was low during winter and the aphid community consisted of the species Rhopalosiphum padi L. and Sitobion avenae Fabricius (both Hemiptera: Aphididae), both parasitized by A. rhopalosiphi at non‐negligible rates. Aphidius rhopalosiphi produced more offspring when parasitizing R. padi compared with S. avenae, whereas bigger offspring were produced when parasitizing S. avenae. Although aphid adults and old larvae were significantly larger hosts than young larvae, the latter resulted in higher emergence rates and larger parasitoids. No impact of host fidelity on emergence rates or offspring size was detected. This study provides some evidence that winter A. rhopalosiphi populations are able to take advantage of an array of host types that vary in profitability, indicating that host selectivity may drop under winter's unfavourable conditions.  相似文献   

6.
Koinobiont parasitoids develop in hosts that continue feeding and growing during the course of parasitism. Here, we compared development of a solitary koinobiont endoparasitoid, Meteorus pulchricornis Westmael (Hymenoptera: Braconidae), in second (L2) and fourth (L4) instars of three host species that are closely related (Lepidoptera: Noctuidae) but which exhibit large variation in growth potential. Two hosts, Mamestra brassicae L. and Spodoptera littoralis Boisduval, may reach 1 g or more when the caterpillars are fully mature, whereas Spodoptera exigua Hübner is much smaller with mature caterpillars rarely exceeding 200 mg. Parasitoid survival (to pupation) in the two host instars was much higher on the larger hosts than on S. exigua. However, other fitness correlates in M. pulchricornis were very similar in the three host species. Development time was fairly uniform in L2 and L4 hosts of the three host species, whereas wasps were larger in L4 than in L2 hosts. However, M. pulchricornis developmentally arrested each of the hosts differently. The mass of dying L2 and L4 hosts after parasitoid larval egression (i.e., when they emerge from the dying caterpillar) varied significantly, with S. littoralis being by far the largest and S. exigua the smallest. These results reveal that M. pulchricornis is able to adjust its own development in response to species‐specific differences in host resources.  相似文献   

7.
In natural populations of insect herbivores, genetic differentiation is likely to occur due to variation in host plant utilization and selection by the local community of organisms with which they interact. In parasitoids, engaging in intimate associations with their host during immature development, local variation may exist in host quality for parasitoid development. We compared the development of a gregarious endoparasitoid, Cotesia glomerata L. (Hymenoptera: Braconidae), collected in The Netherlands, in three strains and three caterpillar instars (L1–L3) of its main host, Pieris brassicae L. (Lepidoptera: Pieridae). Hosts had been collected in The Netherlands and France, and were reared in the laboratory for one generation. We also used an established Dutch laboratory strain that had not been exposed to parasitoids for at least 24 generations. Parasitoid survival to adulthood was inversely correlated with host instar at parasitism. Adult parasitoid body mass was largest when hosts were parasitized as L1 and smallest when hosts were parasitized as L3, whereas egg‐to‐adult development time was quickest on L3 hosts and slowest on L1 hosts. Higher survival and faster development of C. glomerata on French L2 hosts also showed that there is variation in host‐instar‐related suitability. Many L2 and most L3 caterpillars that were parasitized exhibited signs of pathogen infection and perished within a few days of parasitism, whereas this never happened when hosts were parasitized as L1 or in non‐parasitized control caterpillars. Our results reveal that, irrespective of the host strain, L1 hosts are optimally synchronized with C. glomerata development. By contrast, the high precocious mortality of L3 larvae may be due to stress‐induced regulation by the parasitoid in order to ‘force’ its developmental program into synchrony with the developing parasitoid larvae. Our results underscore a potentially important role played by pathogens in mediating herbivore–parasitoid interactions that are host‐instar‐dependent in their expression.  相似文献   

8.
Ovipositional choice tests by Microplitis rufiventris females (Hym., Braconidae) between granulosis virus‐infected (GVI) and non‐infected (NI) Spodoptera littoralis larvae (Lep., Noctuidae), were assessed using discriminatory methods for re‐isolating the NI and virus‐infected hosts after removing the female parasitoid. When M. rufiventris females were given a choice between NI and GVI S. littoralis hosts, the adult females exhibited marked preference (P < 0.01) for the NI (i.e. higher quality) hosts. In this case, M. rufiventris females and S. littoralis GV (SlGV) did not significantly compete for the same type of host larvae and are, generally, compatible. However, when the choice was given between two low qualities of S. littoralis hosts, i.e. virus‐free previously parasitized hosts and viral‐infected hosts a significant preference (P < 0.01) of the parasitoid females for the GVI larvae was observed. In this case, the parasitoid would be at a disadvantage when competing with GV for the same host. However, the parasitoid could be used as an additional tool for the dissemination of biocontrol viruses within different pest populations, i.e. hosts other than S. littoralis. Importantly, the results showed different strategies of parasitoid female in egg‐laying management. When M. rufiventris female was given a choice between healthy and SlGVI hosts, the female deposited more eggs than when she was given a choice between two low qualities of host larvae. The results of the study may have implications in pest management strategies using M. rufiventris and SlGV against S. littoralis larvae.  相似文献   

9.
Following the consumption of baculovirus occlusion bodies (OBs), insects may succumb to lethal disease, but the survivors can harbour sublethal covert infections and may develop, reproduce and transmit the infection to their offspring. The use of different chemical and biological stressors was examined to determine whether they could be used to activate covert infections in populations of Spodoptera exigua larvae infected by the homologous nucleopolyhedrovirus (SeMNPV). Treatment of covertly infected S. exigua second instars with Tinopal UNPA‐GX, hydroxylamine, paraquat, Bacillus thuringiensis var. kurstaki crystals, spores or mixtures of crystals + spores, or a heterologous nucleopolyhedrovirus (Chrysodeixis chalcites SNPV) did not result in the activation of SeMNPV covert infections. Similarly, virus treatments involving permissive NPVs did not result in greater mortality in covertly infected insects compared with the virus‐free controls. In contrast, 0.1% copper sulphate, 1% iron (II) sulphate and 1 mg/l sodium selenite treatments resulted in 12–41% lethal polyhedrosis disease in covertly infected larvae. A greenhouse trial using copper sulphate and sodium selenite as activation factors applied to covertly infected S. exigua larvae on sweet pepper plants resulted in very low levels of SeMNPV activation (<3%). These results highlight the important roles of copper, iron and selenium in insect immunity and baculovirus‐induced disease. However, these substances seem unlikely to prove useful for the activation of covert SeMNPV infections in S. exigua larvae under greenhouse conditions.  相似文献   

10.
Parasitic organisms rely on the resources of their hosts to obtain nutrients essential for growth and reproduction. Insect parasitoids constitute an extreme condition since they develop in a single host from which they typically consume all available resources. As a result, the host is killed following parasitism. However, a few intriguing cases of host survival have been reported wherein hosts resume foraging and may even reproduce following parasitoid emergence. Yet, the ultimate and proximate mechanisms responsible for host recovery remain unresolved. We tested the impact of host nutrition on host fate and parasitoid fitness, using the association between Dinocampus coccinellae and the spotted lady beetle Coleomegilla maculata. Under laboratory conditions, we fed parasitized ladybirds on different aphid diets, with or without pollen. In the field, we followed the fate of parasitized ladybirds during seasonal variations in pollen and aphid abundance. We found that ladybirds fed on aphids or a combination of aphids and pollen recovered more frequently from parasitism (from 65 to 81%) than those eating only pollen (48%). Field data suggest that the fate of parasitized ladybirds is also related to food availability. On the other hand, when hosts fed on a combination of aphids and pollen, consequences for parasitoid fitness were often ‘all‐or‐nothing’: parasitoid emergence rate was the lowest of all host nutrition regimes (~50%), but parasitoids that did emerge were larger than individuals emerging from other host nutrition regimes. Laboratory and field results concur to show that host nutritional status during parasitoid development significantly influences both host fate and parasitoid fitness.  相似文献   

11.
Two parasitoids,Pteromalus cerealellae (Ashmead) andAnisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae), were compared for their ability to parasitize two important internally-developing insect pests of stored maize (Zea mays L.). Parasitism byP. cerealellae was greater on Angoumois grain moth,Sitotroga cerealella (Olivier), than on maize weevil,Sitophilus zeamais Motschulsky, in no-choice experiments.Anisopteromalus calandrae parasitized more maize weevils than didP. cerealellae. The former parasitoid parasitized only a few Angoumois grain moths successfully in maize, but parasitized many in wheat if the hosts were younger than 3 weeks old. Thus, both host age and type of grain affect suitability for parasitism. The effects of parental host (species on which the female developed) and experimental host (species exposed to parasitism) on parasitism rate ofP. cerealellae were tested in a host-switching experiment. Parasitism by parasitoids reared on maize weevils was 23% lower than that of parasitoids reared on Angoumois grain moth. This effect was independent of which host the filial generation of parasitoids was tested on. However, the experimental host species had a much greater effect on parasitoid fecundity than the parental host species. Female progeny had smaller body sizes when emerging from maize weevil than from Angoumois grain moth, which may explain the parental host effect on fecundity. There was also a slight intergenerational effect of host species on parasitoid body size.  相似文献   

12.
Optimal Foraging Theory predicts that parasitoid females should optimize their host selection to maximize their lifetime fitness gain and parasitize the most profitable hosts. In particular, in solitary parasitoids, females should avoid superparasitism, at least when sufficient unparasitized hosts are available. However, when unparasitized hosts are scarce, they should prefer, among already parasitized hosts, those that provide the best survival probability to their progeny, which depends on the age and the developmental stage of the first parasitoid. To test this hypothesis in a solitary ectoparasitoid, Pachycrepoideus vindemmiae Rondani (Hymenoptera: Pteromalidae), we first assessed the survival probability of a second parasitoid according to the time elapsed since initial parasitism. We then analyzed the female selection behavior in patches containing a mixture of hosts parasitized over various time intervals. Our results showed that the older the opponent larva was, the lower the survival probability of the second parasitoid was. However, when the first individual had reached the prepupal stage, both individuals could complete their development. At this stage, the survival probability of the second parasitoid was surprisingly high but such individuals were reduced in size. Our study also showed that host acceptance by females was strongly correlated with the survival probability of their progeny when the first parasitoid was from 0 to less than 10 days‐old. When the first parasitoid had reached the prepupal stage, females usually rejected these hosts, although the survival probability of the offspring was quite high. This discordance between female host selection behavior and progeny survival probability is discussed.  相似文献   

13.
Competition bioassays were conducted with the filth fly pupal parasitoids Muscidurax raptor (Girault & Sanders) and M. raptorellus (Kogan & Legner) (Hymenoptera: Pteromalidae) using house fly Musca domestica L. (Diptera: Muscidae) hosts at different host densities. Muscidifurax raptor had a significant impact on M. raptorellus when hosts were limiting in sequential parasitism tests. Fewer than six M. raptorellus adult progeny emerged from groups of 50 fly pupae that were parasitized by M. raptor at the same time or when M. raptor parasitism preceded M. raptorellus by 48 h, respectively, compared with 42–55 M. raptorellus progeny produced when this species was tested alone. Production of M. raptor was significantly lower when parasitism by this species was preceded by M. raptorellus (25) than when M. raptor was tested alone (43). When the two species parasitized hosts at the same time in different proportions at low host:parasitoid densities (5:1), M. raptorellus produced 13 progeny per parent female when it was the sole species present and fewer than two when M. raptor was present. No negative impact of M. raptorellus on M. raptor was observed. Neither species had a substantial effect on the success of the other at higher host:parasitoid densities.  相似文献   

14.
Sclerodermus pupariae Yang et Yao (Hymenoptera: Bethylidae) is used as a potential biocontrol agent for several buprestid and cerambycid larvae. This study aimed to enhance the efficiency of mass‐rearing of this parasitoid by investigating the fitness gain of this bethylid wasp, including the proportion of successful parasitism and development, brood size, sex ratio, proportion of winged female offspring, body size and longevity of female offspring, under eight different maternal parasitoid density treatments using Thyestilla gebleri Faldermann as host in the laboratory. The results indicated that the foundress densities did not affect the parasitism or emergence rate of this parasitoid. Brood size of the parasitoids increased significantly when the number of maternal wasps ranged from one to four. However, further increases in foundress number did not affect the parasitoid brood size. The sex ratios of S. pupariae were always female‐biased. The proportions of male in the progeny colonies were <10% throughout all experimental treatments. The percentage of winged female progeny was not significantly influenced by the density of adult maternal parasitoids. Body sizes of parasitoids significantly declined with increasing maternal parasitoid densities. Although the parasitoid body size reduced when maternal wasp number was higher, it could be compromised by the relatively higher number of female offspring produced. Further, more than 70% of the parasitoids remained alive when they were stored at 12°C for four months throughout the experiments. These findings suggest that exposure of four female wasps to a single host larva would result in the highest fitness of S. pupariae. Our findings might provide a new approach to enhance the efficiency of mass‐rearing of this bethylid wasp.  相似文献   

15.
  • 1 Parasitoids may often lack access to sugar (e.g. floral nectar) in agricultural settings. Strategically timed spraying of host plants with sugar solution may provide one means of enhancing parasitism at the same time as minimizing nontarget effects (e.g. benefiting the pest itself).
  • 2 Sucrose was sprayed in wheat fields of northern Utah (U.S.A.) to assess the effects on parasitism of the cereal leaf beetle Oulema melanopus by the larval parasitoid Tetrastichus julis.
  • 3 Early‐season sugar provisioning, when larvae of the pest were first hatching and parasitoid adults were newly emerged, did not affect the numbers of cereal leaf beetle larvae that matured in treated plots but increased parasitism rates of beetle larvae by four‐fold in 2006 and by seven‐fold in 2007.
  • 4 No net influx of adult parasitoids into plots was detected after the application of sugar. Locally‐emerging parasitoids may have spent less time searching for their own food needs versus hosts. A laboratory experiment also confirmed that access to sucrose significantly increased parasitoid longevity.
  • 5 The field experimental results obtained demonstrate that applications of sugar, implemented to target a key time of the growing season when benefits are maximized for parasitoids and minimized for their hosts, can strongly promote parasitism of the cereal leaf beetle in wheat fields.
  相似文献   

16.
This study examined the physiological effects of joint and separate parasitism and infection by the endoparasitoid Microplitis pallidipes Szépligeti and the nucleopolyhedrovirus (NPV), respectively, on haemolymph 20‐hydroxyecdysone (20‐E) titre in Spodoptera exigua (Hübner) larvae. The results indicated that in parasitized larvae, virus‐infected larvae (5.7 × 103 and 5.7 × 105 OB/ml) and parasitized larvae infected with virus at 5.7 × 105 OB/ml, compared to healthy larvae, the 20‐E all declined during the first 3 days but began to increase from day 4 after treatment, while in jointly parasitized and infected larvae (5.7 × 103 OB/ml), the 20‐E declined during the first 4 days but began to increase on day 5 after treatment. Meanwhile, compared to parasitized larvae, the 20‐E declined during the first 4 days but significantly increased on day 5 in jointly parasitized and infected larvae (5.7 × 103 OB/ml), while significantly increased during the first 2 days but began to decrease from day 3 after treatment in jointly parasitized and infected larvae (5.7 × 105 OB/ml). Finally, in larvae that were both parasitized and virus infected (5.7 × 103 OB/ml), compared to just virus‐infected larvae (5.7 × 103 OB/ml), the 20‐E was lower on days 3 and 4 but higher on other days after treatment; in larvae that were both parasitized and virus infected (5.7 × 105 OB/ml), compared to just virus‐infected larvae (5.7 × 105 OB/ml), the 20‐E was significantly higher at the first 2 days but lower from day 3 after treatment. Our results revealed that 2nd instar larval M. pallidipes in host bodies may release 20‐E into the haemolymph of S. exigua larvae and that NPV infection may stimulate S. exigua to release more 20‐E during its third to fourth instar larval moulting. We found that this stimulatory effect was greater with higher virus concentrations.  相似文献   

17.
闭弯尾姬蜂与菜蛾盘绒茧蜂寄生菜蛾幼虫时的种间竞争   总被引:5,自引:1,他引:4  
在室内25℃下,以菜蛾3龄初幼虫作寄主,研究了菜蛾盘绒茧蜂Cotesia plutellae和半闭弯尾姬蜂Diadegma semiclausum的种间竞争。当寄主供2种蜂同时产卵寄生时,2种蜂各自的寄生率与其单独寄生时无显著差异,合计寄生率比一种蜂单独存在时有所提高,但差异不显著。2种蜂均能产卵寄生已被另一种蜂寄生了的寄主幼虫。当寄主被2种蜂寄生的间隔时间很短(少于10 h)时,所育出的蜂绝大部分(80%以上)为绒茧蜂;当寄主先被绒茧蜂寄生,并饲养2天以上再供弯尾姬蜂寄生时,所育出的全为绒茧蜂;当寄主先被弯尾姬蜂寄生,并饲养2天以上再供绒茧蜂寄生时,寄主幼虫绝大部分不能存活,只有少部分能育出寄生蜂,且多为弯尾姬蜂。当2种蜂的幼虫存在于同一寄主体内时,2种蜂的发育均受到另一种蜂的抑制;绒茧蜂1龄幼虫具有物理攻击能力,能将弯尾姬蜂卵或幼虫致死。这些结果表明,菜蛾盘绒茧蜂与半闭弯尾姬蜂在同一寄主中发育时,前者具有明显的竞争优势。  相似文献   

18.
Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) and Microplitis pallidipes are both used as biocontrol agents of the beet armyworm (Spodoptera exigua). However, it has not been determined how beet armyworms respond when these agents interact. Here, we studied the effects of M. pallidipes on virus multiplication and transmission using quantitative detection of SeMNPV. Our results indicated that parasitoids promoted virus multiplication in caterpillars (105 copies per caterpillar) and that it was more advantageous when the M. pallidipes oviposited one day prior to infection with NPV. Interestingly, SeMNPV was transmitted by M. pallidipes in four ways. Transmission efficiency was higher for parasitoids whose body surfaces were contaminated with NPV, and for parasitoids ovipositing on NPV-infected caterpillars, than for those emerging from NPV-infected caterpillars, or feeding on mixtures of honey, water and NPV. Our study reveals that parasitoids do affect the proliferation and transmission of NPV in caterpillars and suggests that M. pallidipes could be used to strengthen the effectiveness of SeMNPV as a biocontrol agent.  相似文献   

19.
Abstract The parasitoids in the genera of Encarsia and Eretmocerus (Hymenoptera: Aphelinidae) are important biological control agents of whiteflies, and some of them not only parasitize hosts but also kill them with strong host‐feeding capacity. Two whitefly parasitoid species, Encarsia sophia and Eretmocerus melanoscutus were examined to determine if mating and host density affected their host feeding and parasitism. The whitefly host, Bemisia tabaci, was presented to these two wasp species in densities of 10, 20, 30, 40, 50 and 60 third‐instar nymphs per clip cage. Mated whitefly parasitoid females fed on more hosts than unmated females under a range of host densities (under all six host densities for En. sophia; under the densities of 40 nymphs or more for Er. melanoscutus). Meanwhile, mated females parasitized more whitefly nymphs than unmated females under all host densities for both species. With increase of host density, mated or unmated Er. melanoscutus females killed more hosts by host feeding and parasitism. Mated En. sophia females killed more hosts by host feeding with increase of host density, whereas unmated females did not parasitze whitefly nymphs at all. Our results suggest that only mated female parasitoids with host‐feeding behavior should be released in crop systems to increase their bio‐control efficiency.  相似文献   

20.
Variation in weather among years may affect biological control of insect pests by influencing how well matched in phenology specialist parasitoids are with their pest hosts. A 10‐year study in western North America (Utah) revealed greater change with warm versus cool springs in the life cycle timing of the cereal leaf beetle (CLB), Oulema melanopus (L.), than of its principal enemy, the parasitoid wasp Tetrastichus julis (Walker). The beetle laid eggs, and larval populations developed in crop fields earlier on a calendar‐day basis, but nonetheless after more degree‐days had accumulated, in warmer than in cooler springs. The phenology of parasitism by wasps, in contrast, varied little among springs in relation to accumulated degree‐days. Consequently, in warmer springs, larval phenology of the CLB was delayed relative to adult parasitoid activity, and parasitism was reduced. Presently, a significant degree of biological control of the CLB results from parasitism by T. julis. By promoting phenological mismatch between host and parasitoid, however, a warming climate could weaken this biological control of the insect pest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号