首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a hypothesis for the loss of acetylcholine in Alzheimer's disease that is based on two recent experimental results: that beta-amyloid causes leakage of choline across cell membranes and that decreased production of acetylcholine increases the production of beta-amyloid. According to the hypothesis, an increase in beta-amyloid concentration caused by proteolysis of the amyloid precursor protein results in an increase in the leakage of choline out of cells. This leads to a reduction in intracellular choline concentration and hence a reduction in acetylcholine production. The reduction in acetylcholine production, in turn, causes an increase in the concentration of beta-amyloid. The resultant positive feedback between decreased acetylcholine and increased beta-amyloid accelerates the loss of acetylcholine. We compare the predictions of the choline-leakage hypothesis with a number of experimental observations. We also approximate it with a pair of ordinary differential equations. The solutions of these equations indicate that the loss of acetylcholine is very sensitive to the initial rate of beta-amyloid production.  相似文献   

2.
Abstract: The experiments described in this paper were designed to test whether increasing choline availability over normal physiological levels increases acetylcholine synthesis in the cat's superior cervical ganglion. When ganglia were perfused with Krebs solution, an increase in the medium's choline concentration over physiological (10−3M) levels increased tissue choline but did not increase tissue acetylcholine or the release of acetylcholine from stimulated ganglia. However, increasing plasma choline in the whole animal increased ganglionic acetylcholine levels. The basis for this difference in the effects of in vivo and in Vitro exposure to elevated choline levels on the tissue acetylcholine content was found to involve plasma factor(s), rather than indirect actions of choline, and the acetylcholine content of isolated ganglia was increased when the tissue was perfused with plasma, instead of Krebs solution, containing 10−3M-choline. The extra acetylcholine generated by this procedure was associated with a subsequent transient increase in transmitter release during short intervals of stimulation, but most of the extra acetylcholine was not readily available for release from stimulated ganglia. It is concluded that increasing choline available to sympathetic ganglia over physiological concentration does not have a sustained effect on the turnover of releasable transmitter under the conditions of these experiments.  相似文献   

3.
Seizures induced by three convulsant treatment produced differential effects on the concentration of acetylcholine in rat brain. Status epilepticus induced by (i) coadministration of lithium and pilocarpine caused massive increases in the concentration of acetylcholine in the cerebral cortex and hippocampus, (ii) a high dose of pilocarpine did not cause an increase of acetylcholine, and (iii) kainate increased acetylcholine, but the magnitude was lower than with the lithium/pilocarpine model. The finding that the acetylcholine concentration increases in two models of status epilepticus in the cortex and hippocampus is in direct contrast with manyin vitro reports in which excessive stimulation causes depletion of acetylcholine. The concentration of choline increased during seizures with all three models. This is likely to be due to calcium- and agonist-induced activation of phospholipase C and/or D activity causing cleavage of choline-containing lipids. The excessive acetylcholine present during status epilepticus induced by lithium and pilocarpine was responsive to pharmacological manipulation. Atropine tended to decrease acetylcholine, similar to its effects in controls. The N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801, reduced the excessive concentration of acetylcholine, especially in the cortex. Inhibition of choline uptake by hemicholinium-3 (HC-3) administered icv reduced the acetylcholine concentration in controls and when given to rats during status epilepticus. These results demonstrate that the rat brain concentrations of acetylcholine and choline can increase during status epilepticus. The accumulated acetylcholine was not in a static, inactive compartment, but was actively turning-over and was responsive to drug treatments. Excessive concentrations of acetylcholine and/or choline may play a role in seizure maintenance and in the neuronal damage and lethality associated with status epilepticus.  相似文献   

4.
Abstract: The present experiments were designed to test whether increasing the availability of choline to rat brain increases the rate of acetylcholine synthesis in that organ. The content of choline and acetylcholine and the turnover rate of acetylcholine in striatum, hippocampus, and cerebral cortex were measured following changes in dietary choline, intraperitoneal choline, or intravenous infusion of choline. Increasing plasma choline caused some increase in tissue choline but did not increase acetylcholine levels nor acetylcholine turn-over rate in any of the areas of brain studied. Indeed, in hippocampus, choline decreased the turnover rate of acetylcholine.  相似文献   

5.
Time course of the hippocampal slice acetylcholine content and the rate of acetylcholine release were studied during high K+-induced depolarization for 4 to 60 min. At the end of the potassium exposure, both the acetylcholine remaining in the tissue and appearing in the incubation medium were quantitatively determined by gas chromatography using a nitrogen-sensitive detector. During prolonged K+ incubation, the acetylcholine content of the slices decreased by 60%, reaching a steady state after 16 min. The increase in the acetycholine concentration of the depolarizing medium showed a biphasic pattern, with rate constants of 1.40 and 0.69 nmol/min/g in the early (0–16 min) and late (16–60 min) phase, respectively. K+-evoked acetylcholine release was Cal+-dependent, but addition of choline did not alter tissue levels of acetylcholine or the pattern of K+-evoked acetylcholine release. The rate of acetylcholine release was markedly decreased by inhibition of choline uptake with hemicholinium-3 or by addition of 4-(1-naphthylvinyl)pyridine which inhibits both ACh producing enzyme, choline acetyltransferase and choline uptake mechanism. These data confirm the essential role during depolarization of extracellular choline transport into the cholinergic terminals utilizing choline released by the slices during the incubation. It is concluded that drugs which can influence the processes of choline uptake and acetylcholine sythesis can alter the rate of acetylcholine release measured under similar conditions.  相似文献   

6.
The uptake and metabolism of [14C]choline in dissociated rat brain embryo cell cultures was examined as a function of the extracellular choline concentration. Choline uptake did not follow normal Michaelis-Menten kinetics, but rather exhibited two components with apparent Km of 0.016 mM and 0.96 mM. At low choline concentrations (high affinity uptake) most of the [14C]choline label was present in the phosphocholine fraction prior to the appearance of label in phospholipids. At high choline concentrations (low affinity uptake) a large proportion of the radioactivity was converted into acetylcholine. The dissimilarities between the formation of phosphocholine and acetylcholine as a function of choline concentration might be explained by the existence of two mutually independent enzymatic activities with different Km affinities for choline. Kinetic data augmented by double label studies, suggested that formation of choline phosphoglyceride proceeds entirely via a phosphocholine intermediate. Nearly all radioactivity in the lipid fraction is incorporated into choline phosphoglycerides. A higher turnover rate of choline incorporation into choline phosphoglycerides, accompanied by an increase in the levels of glycerophosphocholine, was observed in older cultures as compared to younger cultures. The metabolic implications of these findings in cultured brain cells in comparison with other in vitro systems are discussed.  相似文献   

7.
The effects of tacrine (1,2,3,4-tetrahydro-9-aminoacridine) and 7-methoxytacrine on the metabolism of acetylcholine were investigated in experiments on prisms of rat cerebral cortex incubated in vitro in low-potassium (3 mmol/L K+) media; cholinesterases were inactivated by paraoxon to avoid any action of tacrine and methoxytacrine via their inhibition. Under "resting" conditions, tacrine and methoxytacrine increased the synthesis of unlabeled acetylcholine in the prisms; at the same time, they inhibited the uptake of [14C]choline from the medium and the synthesis of [14C]acetylcholine. The concentration of free choline was not increased by tacrine or methoxytacrine in either the tissue or the medium. The contradiction between the increased synthesis of unlabeled and the diminished synthesis of labeled acetylcholine indicates that the utilization of intracellular choline (which is presumably mobilized from intracellular choline esters) for the synthesis of acetylcholine is increased by tacrine and methoxytacrine. This conclusion is supported by the observation that the inhibition of acetylcholine synthesis during incubation with hemicholinium-3 (an inhibitor of choline transport into cholinergic nerve terminals) was overcome when tacrine was present simultaneously with hemicholinium-3. When the prisms were preincubated with [14C]choline and incubated with tacrine or methoxytacrine only after this, the amount of [14C]acetylcholine recovered in the tissue plus the medium was higher at the end of incubation with tacrine or methoxytacrine than without them, again suggesting that the drugs were able to increase the utilization of intracellular [14C]choline or its esters for acetylcholine synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Abstract: We have studied the effects of β-bungarotoxin on acetylcholine and choline metabolism in central and peripheral cholinergic preparations using a gas chromatographic-mass spectrometric assay for acetylcholine and choline. In contrast with previous reports, β-bungarotoxin did not inhibit the high-affinity uptake of labeled choline or the synthesis of acetylcholine in rat brain synaptosomal fractions. However, the toxin did cause a significant increase of medium choline when it was incubated with synaptosomal fractions. This increase of endogenous choline in the medium may account for the previously reported inhibition of choline uptake because of a dilution of the specific activity of the labeled choline in the medium. Several experiments are reported in which a further characterization was made of the effect of β-bungarotoxin on medium choline. β-Bungarotoxin was also shown to cause a large increase of acetylcholine release from rat brain minces and a depletion of the acetylcholine content of minces. A similar phenomenon was found in diaphragm preparations that were exposed continuously to β-bungarotoxin. However, diaphragms that were treated for only 30 min with toxin showed the previously reported increase of acetylcholine content. β-Bungarotoxin did not have any measurable effect on acetylcholine turnover in smooth muscle preparations from guinea pig ileum. These results help to explain certain inconsistencies in the literature regarding the action of β-bungarotoxin.  相似文献   

9.
SYNTHESIS AND RELEASE OF [14C]ACETYLCH0LINE IN SYNAPTOSOMES   总被引:4,自引:2,他引:2  
Abstract— Synaptosomes took up [14C]choline, about half or more of which was converted to [I4C]acetylcholine when incubated in an appropriate medium containing 1 to 5 μ M-[14C] choline and neostigmine. The amount of [14C]acetylcholine synthesized in synaptosomes increased in parallel with the increase of Na+ concentration in the incubation medium. The effect of Na+ on the uptake of [I4C]choline into synaptosomes was dependent on the concentration of choline in the incubation medium.
About 25 per cent of [14C]acetylcholine synthesized in synaptosomes was released rapidly into the medium by increasing the K+ concentration in the medium from 5 m m to 35 m m . The change of Na+ concentration hardly affected the release of [14C]acetylcholine. The effect of K+ on the release of [14C]choline was rather small compared to that on [14C] acetylcholine. Ouabain promoted the release of [14C]acetylcholine.  相似文献   

10.
Choline Administration Elevates Brain Phosphorylcholine Concentrations   总被引:8,自引:6,他引:2  
Abstract: The phosphorylcholine concentration of rat brain rises and falls in response to parallel changes in the concentration of circulating choline. A single oral dose of choline chloride (20 mmol/kg) elevated whole-brain concentrations of both choline and phosphorylcholine 5 h after administration; a greater proportion of exogenously administered choline was retained by the brain in its phosphorylated form than as the free arnine. Striatal phosphorylcholine concentrations were elevated within 2 h of choline administration and continued to be significantly greater than control values for up to 34 h after treatment. The response of striatal choline levels to exogenous choline was of shorter duration than that of phosphorylcholine and was correlated with a significant increase in striatal acetylcholine concentrations. The consumption of a choline-free diet for 7 days lowered both serum choline and striatal phosphorylcholine concentrations, but had no effect on striatal choline or acetylcholine. These results suggest that choline kinase is unsaturated by its substrate in vivo and may thus serve to modulate the response of brain choline concentrations to alterations in the supply of circulating choline.  相似文献   

11.
Intraperitoneal injection of choline (30-90 mg.kg-1) produced a dose-dependent increase in serum insulin, glucose and choline levels in rats. The increase in serum insulin induced by choline (90 mg.kg-1) was blocked by pretreatment with the muscarinic acetylcholine receptor antagonists, atropine (2 mg.kg-1), pirenzepine (2 mg.kg-1) and 4-diphenylacetoxy-N-methylpiperidine (2 mg.kg-1) or the ganglionic nicotinic receptor antagonist, hexamethonium (15 mg.kg-1). The effect of choline on serum insulin and glucose was enhanced by oral glucose administration (3 g.kg-1). Choline administration was associated with a significant (P < 0.001) increase in the acetylcholine content of pancreatic tissue. Choline (10-130 microm) increased basal and stimulated acetylcholine release but failed to evoke insulin release from the minced pancreas at considerably higher concentrations (0.1-10 mm). Hemicholium-3, a choline uptake inhibitor, attenuated the increase in acetylcholine release induced by choline augmentation. Choline (1-32 mm) inhibited [3H]quinuclidinyl benzilate binding to the muscarinic receptors in the pancreatic homogenates. These data show that choline, a precursor of the neurotransmitter acetylcholine, increases serum insulin by indirectly stimulating peripheral acetylcholine receptors through the enhancement of acetylcholine synthesis and release.  相似文献   

12.
The main objective of these studies was to determine whether the acute administration of choline to rats provides supplemental precursor that can be used to support acetylcholine synthesis when the demand for choline is increased by increasing neurotransmitter release. For these experiments, hippocampal and striatal slices were prepared form rats that had received saline or an acute injection of choline. Slices were incubated in a choline-free buffer containing 4.74-35 mM KCl, and acetylcholine synthesis and release and choline production were measured. The initial tissue contents of acetylcholine and choline did not differ between experimental groups for either brain region. When hippocampal slices from the controls were incubated for 10 min with depolarizing concentrations of KCl, acetylcholine release increased and the tissue content decreased in a concentration-dependent fashion; no net synthesis of acetylcholine occurred. In contrast, hippocampal slices from the choline-injected animals maintained their tissue content in the presence of high concentrations of KCl, despite an increase in acetylcholine release that was similar in magnitude to that of the controls; positive net synthesis of acetylcholine resulted. Although the molar concentration of choline achieved in the incubation media at the end of the 10-min period did not differ between groups, the mobilization of free choline from bound stores was significantly greater in hippocampal slices from the choline-injected group than the controls. In addition, the synthesis of acetylcholine by hippocampal slices from the choline-injected group was prevented by the presence of hemicholinium-3 (1 microM) in the media.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A sensitive procedure consisting of a pre- and post-microbore column reactor sequence of a LC-electrochemical detection system coupled with on-line microdialysis system is described in the present study to measure endogenous acetylcholine concentration in freely moving rats. The pre-column packed, with immobilized choline oxidase and catalase, was used to remove choline, whereas the post-column, packed with immobilized acetylcholine oxidase and choline oxidase, was used to measure acetylcholine selectively. The detection limit of acetylcholine was found to be 5 fmol/μl (50 fmol/10 μl). The usefulness of the described methodology was evaluated by examining the change in the striatal acetylcholine concentration of freely moving rats after physostigmine (0.5 mg/kg, s.c.) administration.  相似文献   

14.
The Independency of Choline Transport and Acetylcholine Synthesis   总被引:3,自引:2,他引:1  
The coupling of choline transport to acetylcholine synthesis has been investigated by measurement of the isotopic dilution of a pulse of [3H]choline during its incorporation into the recently synthesised acetylcholine of cerebral cortex synaptosomes. Recently synthesised acetylcholine was identified as that containing 14C-labelled precursors introduced by a preincubation before the pulse. When [14C]glucose was used to label acetyl-CoA coupling ratios (calculated as the inverse of the dilution of extracellular [3H]choline during its incorporation into [3H]acetylcholine) of about 0.05-0.2 were found at a choline concentration of 1 microM, rising to 0.5 at choline concentrations of 10-50 microM. Experiments using [14C]choline as a precursor gave similar results, and it was shown that the isotopic dilution did not occur extrasynaptosomally and was not affected by low glucose concentrations. Coupling ratios were always less than unity and rose as the choline concentration increased. It is concluded that choline transported into the nerve terminal has no privileged access to choline acetyltransferase. The results can be explained by a rate-controlling transport of choline into the terminal followed by its rapid acetylation rather than any linkage or coupling of the two processes.  相似文献   

15.
Although acetylcholine is a major neurotransmitter in Aplysia, labeling studies with methionine and serine showed that little choline was synthesized by nervous tissue and indicated that the choline required for the synthesis of acetylcholine must be derived exogenously. Aanglia in the central nervous system (abdominal, cerebral, and pleuropedals) all took up about 0.5 nmol of choline per hour at 9 muM, the concentration of choline we found in hemolymph. This rate was more than two orders of magnitude greater than that of synthesis from the labeled precursors. Ganglia accumulated choline by a process which has two kinetic components, one with a Michaelis constant between 2-8 muM. The other component was not saturated at 420 muM. Presumably the process with the high affinity functions to supply choline for synthesis of transmitter, since the efficiency of conversion to acetylcholine was maximal in the range of external concentrations found in hemolymph.  相似文献   

16.
Abstract— The effects of monovalent and divalent anions on the choline acetyltransferase reaction have been determined at high (5.0 mM) and low (0.58 mM) choline. At 0.58 mM-choline, both monovalent and divalent anions activate the enzyme ±9 fold; however, at 5.0mM-choline, monovalent anions activate the enzyme ±25 fold, while divalent anions activate ±9 fold. Both monovalent and divalent anions show uncompetitive activation with respect to choline. When either dimethylaminoethanol, N -(2-hydroxyethyl)- N -methyl piperidinium iodide, or N -(2-hydroxyethyl)- N -propyl pyrrolidinium iodide was substituted for choline, activation by monovalent or divalent anions was only 2.5-4 fold. With AcCoA as substrate the ChA reaction can be increased ±20 fold by increased salts; however, with acetyl dephosphoCoA as substrate, the reaction is insensitive to the salt concentration. Similar salt effects on the ChA reaction, as measured in the direction of acetylcholine synthesis, have been demonstrated in the reverse reaction. In addition, inhibition of the forward reaction by acetylcholine has been measured as a function of sodium chloride concentration. Although the K1 for acetylcholine increases with increasing salt, this change in K 1, parallels the increase in the K m for choline. These results support the hypothesis that both monovalent and divalent anions activate choline acetyltransferase by the same singular mechanism; which is to increase the rate of dissociation of coenzyme A from the enzyme.  相似文献   

17.
Acetylcholine mustard aziridinium ion inhibited the transport of [3H]choline into human erythrocytes. Treatment of the erythrocytes with 1 X 10(-4) M tetraethylpyrophosphate prevented the inhibition of [3H]choline transport by acetylcholine mustard aziridinium ion. Hydrolyzed acetylcholine mustard aziridinium ion inhibited choline transport both in the presence and absence of 1 X 10(-4) M tetraethylpyrophosphate. The product of hydrolysis was equipotent with acetylcholine mustard in its ability to inhibit choline transport; incubation of this product with sodium thiosulfate prevented inhibition of choline transport thereby indicating the presence of an aziridinium ion. The hydrolysis product is likely to be choline mustard aziridinium ion. Results on the efflux of [3H]choline from erythrocytes in the presence of the proposed choline mustard aziridinium ion showed that the mustard moiety was transported into the red cells on the choline carrier. The rate of efflux of [3H]choline produced by choline mustard aziridinium ion was 55% of that produced by the same concentration of choline. It is concluded that acetylcholinesterase (EC 3.1.1.7) of red cells rapidly hydrolyzes acetylcholine mustard aziridinium ion to acetate and choline mustard aziridinium and the latter compound can act as a potent inhibitor of choline transport. This finding would indicate that the hemicholinium-like toxicity of acetylcholine mustard in the mouse is due to the formation of choline mustard aziridinium ion.  相似文献   

18.
The effects of arachidonic acid on [3H]choline uptake, on [3H]acetylcholine accumulation, and on endogenous acetylcholine content and release in rat cerebral cortical synaptosomes were investigated. Arachidonic acid (10-150 microM) produced a dose-dependent inhibition of high-affinity [3H]choline uptake. Low-affinity [3H]choline uptake was also inhibited by arachidonic acid. Fatty acids inhibited high-affinity [3H]choline uptake with the following order of potency: arachidonic greater than palmitoleic greater than oleic greater than lauric; stearic acid (up to 150 microM) had no effect. Inhibition of [3H]choline uptake by arachidonic acid was reversed by bovine serum albumin. In the presence of arachidonic acid, there was an increased accumulation of choline in the medium, but this did not account for the inhibition of [3H]choline uptake produced by the fatty acid. Arachidonic acid inhibited the synthesis of [3H]acetylcholine from [3H]choline, and this inhibition was equal in magnitude to the inhibition of high-affinity [3H]choline uptake produced by the fatty acid. A K+-stimulated increase in [3H]acetylcholine synthesis was inhibited completely by arachidonic acid. Arachidonic acid also depleted endogenous acetylcholine stores. Concentrations of arachidonic acid and hemicholinium-3 that produced equivalent inhibition of [3H]choline uptake also produced equivalent depletion of acetylcholine content. In the presence of eserine, arachidonic acid had no effect on acetylcholine release. The results suggest that arachidonic acid may deplete acetylcholine content by inhibiting high-affinity choline uptake and subsequent acetylcholine synthesis. This raises the possibility that arachidonic acid may play a role in the impairment of cholinergic transmission seen in cerebral ischemia and other conditions in which large amounts of the free fatty acid are released in brain.  相似文献   

19.
Abstract— The inhibition of choline acetyltransferase by acetylcholine in vitro occurs at a concentration of 10 m m and increases progressively to 45 per cent at a concentration of 100 m m . The inhibition is competitive for choline and noncompetitive for acetyl-CoA. It is suggested that the synthesis of acetylcholine may be controlled by its accumulation in synaptic vesicles.  相似文献   

20.
Administration of choline chloride i.p. to rats causes a dose-dependent increase in the brain concentration of the neurotransmitter, acetylcholine (ACh). This increase is maximal (22% after a 60-mg/kg dose) 40 minutes after injection. These observations suggest that precursor availability may influence brain ACh synthesis, just as brain tryptophan and tyrosine levels have previously been shown to control the synthesis of brain serotonin and catecholamines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号