首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Globally increasing atmospheric CO2 concentrations are known to affect many aspects of plant physiology and development; however, little attention has been given to leaf and canopy optical properties. Three tropical trees in the Leguminosae, an important canopy tree family in many tropical forests, responded similarly to an experimental doubling of CO2 partial pressure with a 9–23% increase in spectral leaf reflectance to light in the visible (400–700 nm) waveband. Decreased leaf chlorophyll content under elevated CO2 may explain part of the observed increase in reflectance. However, analyses that statistically corrected for chlorophyll content effects on reflectance still indicated a significant CO2 effect. This results, in conjunction with the spectral pattern of the response, suggests that the primary mechanism is increased optical masking of chlorophyll under elevated CO2. The magnitude of the increase in leaf reflectance is sufficient to suggest that increased canopy reflectance of tropical forests (and possibly other terrestrial ecosystems) may be an important negative feedback in the response of global net radiative climate forcing to increasing atmospheric CO2.  相似文献   

2.
Tropical forest recovery: legacies of human impact and natural disturbances   总被引:5,自引:0,他引:5  
Land-use history interacts with natural forces to influence the severity of disturbance events and the rate and nature of recovery processes in tropical forests. Although we are far from an integrated view of forest recovery processes, some generalizations can be made. Recovery of forest structure and composition is relatively rapid following disturbances that primarily impact forest canopies, such as hurricanes. Recovery is considerably slower following disturbances that heavily impact soils as well as aboveground vegetation, such as bulldozing, heavy or long-term grazing, and severe fires, often with long-lasting effects on species composition. The landscape matrix plays a critical role in local recovery processes. Proximity of disturbed areas to remnant forest patches promotes more rapid recovery, which depends heavily on seed dispersal. Recovery of aboveground biomass is constrained by soil fertility and texture across regions as well as across soil types within a region. Restoration of soil fertility may be a prerequisite for forest recovery on sites with severely degraded soils. Despite evidence of rapid forest recovery following large-scale deforestation, many degraded areas of today's tropics will require human assistance to recover forest structure, species composition, and species interactions typical of mature tropical forests.  相似文献   

3.
Over the last decades, the natural disturbance is increasingly putting pressure on European forests. Shifts in disturbance regimes may compromise forest functioning and the continuous provisioning of ecosystem services to society, including their climate change mitigation potential. Although forests are central to many European policies, we lack the long-term empirical data needed for thoroughly understanding disturbance dynamics, modeling them, and developing adaptive management strategies. Here, we present a unique database of >170,000 records of ground-based natural disturbance observations in European forests from 1950 to 2019. Reported data confirm a significant increase in forest disturbance in 34 European countries, causing on an average of 43.8 million m3 of disturbed timber volume per year over the 70-year study period. This value is likely a conservative estimate due to under-reporting, especially of small-scale disturbances. We used machine learning techniques for assessing the magnitude of unreported disturbances, which are estimated to be between 8.6 and 18.3 million m3/year. In the last 20 years, disturbances on average accounted for 16% of the mean annual harvest in Europe. Wind was the most important disturbance agent over the study period (46% of total damage), followed by fire (24%) and bark beetles (17%). Bark beetle disturbance doubled its share of the total damage in the last 20 years. Forest disturbances can profoundly impact ecosystem services (e.g., climate change mitigation), affect regional forest resource provisioning and consequently disrupt long-term management planning objectives and timber markets. We conclude that adaptation to changing disturbance regimes must be placed at the core of the European forest management and policy debate. Furthermore, a coherent and homogeneous monitoring system of natural disturbances is urgently needed in Europe, to better observe and respond to the ongoing changes in forest disturbance regimes.  相似文献   

4.
Natural disturbance regimes are changing substantially in forests around the globe. However, large‐scale disturbance change is modulated by a considerable spatiotemporal variation within biomes. This variation remains incompletely understood particularly in the temperate forests of Europe, for which consistent large‐scale disturbance information is lacking. Here, our aim was to quantify the spatiotemporal patterns of forest disturbances across temperate forest landscapes in Europe using remote sensing data and determine their underlying drivers. Specifically, we tested two hypotheses: (1) Topography determines the spatial patterns of disturbance, and (2) climatic extremes synchronize natural disturbances across the biome. We used novel Landsat‐based maps of forest disturbances 1986–2016 in combination with landscape analysis to compare spatial disturbance patterns across five unmanaged forest landscapes with varying topographic complexity. Furthermore, we analyzed annual estimates of disturbances for synchronies and tested the influence of climatic extremes on temporal disturbance patterns. Spatial variation in disturbance patterns was substantial across temperate forest landscapes. With increasing topographic complexity, natural disturbance patches were smaller, more complex in shape, more dispersed, and affected a smaller portion of the landscape. Temporal disturbance patterns, however, were strongly synchronized across all landscapes, with three distinct waves of high disturbance activity between 1986 and 2016. All three waves followed years of pronounced drought and high peak wind speeds. Natural disturbances in temperate forest landscapes of Europe are thus spatially diverse but temporally synchronized. We conclude that the ecological effect of natural disturbances (i.e., whether they are homogenizing a landscape or increasing its heterogeneity) is strongly determined by the topographic template. Furthermore, as the strong biome‐wide synchronization of disturbances was closely linked to climatic extremes, large‐scale disturbance episodes are likely in Europe's temperate forests under climate changes.  相似文献   

5.
Questions: How does woody vegetation abundance and diversity differ after natural disturbances causing different levels of mortality? Location: Abies balsamea–Betula papyrifera boreal mixed‐wood stands of southeast Quebec, Canada. Methods: Woody vegetation abundance and diversity were quantified and compared among three disturbance‐caused mortality classes, canopy gap, moderate‐severity disturbances, and catastrophic fire, using redundancy analysis, a constrained linear ordination technique, and diversity indices. Results: Substantial changes in canopy tree species abundance and diversity only occurred after catastrophic fire. Shade‐tolerant, late‐successional conifer species remained dominant after canopy gap and moderate‐severity disturbances, whereas shade‐intolerant, early‐successional colonizers dominated canopy tree regeneration after catastrophic fire. Density and diversity of mid‐tolerant and shade‐intolerant understory tree and shrub species increased as the impact of disturbance increased. Highest species richness estimates were observed after catastrophic fire, with several species establishing exclusively under these conditions. Relative abundance of canopy tree regeneration was most similar after canopy gap and moderate‐severity disturbances. For the sub‐canopy tree and shrub community, relative species abundances were most similar after moderate‐severity disturbances and catastrophic fire. Vegetation responses to moderate‐severity disturbances thus had commonalities with both extremes of the disturbance‐caused mortality gradient, but for different regeneration layers. Conclusions: Current spatio‐temporal parameters of natural disturbances causing varying degrees of mortality promote the development of a complex, multi‐cohort forest condition throughout the landscape. The projected increase in time intervals between catastrophic fires may lead to reduced diversity within the system.  相似文献   

6.
Land cover changes may affect climate and the energy balance of the Earth through their influence on the greenhouse gas composition of the atmosphere (biogeochemical effects) but also through shifts in the physical properties of the land surface (biophysical effects). We explored how the radiation budget changes following the replacement of temperate dry forests by crops in central semiarid Argentina and quantified the biophysical radiative forcing of this transformation. For this purpose, we computed the albedo and surface temperature for a 7‐year period (2003–2009) from MODIS imagery at 70 paired sites occupied by native forests and crops and calculated the radiation budget at the tropopause and surface levels using a columnar radiation model parameterized with satellite data. Mean annual black‐sky albedo and diurnal surface temperature were 50% and 2.5 °C higher in croplands than in dry forests. These contrasts increased the outgoing shortwave energy flux at the top of the atmosphere in croplands by a quarter (58.4 vs. 45.9 W m?2) which, together with a slight increase in the outgoing longwave flux, yielded a net cooling of ?14 W m?2. This biophysical cooling effect would be equivalent to a reduction in atmospheric CO2 of 22 Mg C ha?1, which involves approximately a quarter to a half of the typical carbon emissions that accompany deforestation in these ecosystems. We showed that the replacement of dry forests by crops in central Argentina has strong biophysical effects on the energy budget which could counterbalance the biogeochemical effects of deforestation. Underestimating or ignoring these biophysical consequences of land‐use changes on climate will certainly curtail the effectiveness of many warming mitigation actions, particularly in semiarid regions where high radiation load and smaller active carbon pools would increase the relative importance of biophysical forcing.  相似文献   

7.
林火干扰对森林生态系统土壤有机碳的影响研究进展   总被引:4,自引:0,他引:4  
林火干扰是森林生态系统特殊而重要的生态因子,可改变生态系统的养分循环与能量传递。研究林火干扰对森林生态系统土壤有机碳的影响,有助于理解森林生态系统中土壤碳固持和碳循环过程,为制定科学合理的旨在减缓全球变化的林火管理策略具有重要意义。从4个方面阐述了林火干扰对森林生态系统土壤有机碳的影响及内在机制:分别从大尺度和小尺度两个方面阐述了林火干扰对土壤有机碳的影响及对森林生态系统碳循环与碳平衡的作用机制;探讨了不同林火干扰类型和林火干扰强度下,土壤活性有机碳对林火干扰的响应机制;阐明了林火干扰对土壤惰性有机碳的影响及作用机制;论述了林火干扰主要通过改变土壤有机碳的输入和输出过程进而影响土壤有机碳的稳定性及内在机制。最后提出了提高林火干扰对森林生态系统土壤有机碳影响定量化研究的4种路径选择:(1)全面比较研究不同林火干扰类型对土壤有机碳循环及其碳素再分配过程的功能特征;(2)进一步阐明林火干扰通过改变植被结构进而影响土壤生物群落结构,剖析土壤碳库循环的内在机制;(3)完善不同时空尺度下林火干扰对森林生态系统土壤碳库周转过程的定量化研究;(4)加强不同林火干扰类型土壤碳库稳定性差异的研究。  相似文献   

8.
At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus (‘forest’) lead to expansion of permafrost‐free wetlands (‘wetland’). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH4) emissions. Here, we quantify the thaw‐induced increase in CH4 emissions for a boreal forest‐wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long‐term net carbon dioxide (CO2) exchange. Using nested wetland and landscape eddy covariance net CH4 flux measurements in combination with flux footprint modeling, we find that landscape CH4 emissions increase with increasing wetland‐to‐forest ratio. Landscape CH4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May–October) wetland CH4 emission of ~13 g CH4 m?2 is the dominating contribution to the landscape CH4 emission of ~7 g CH4 m?2. In contrast, forest contributions to landscape CH4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr?1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH4 m?2 yr?1 in landscape CH4 emissions. A long‐term net CO2 uptake of >200 g CO2 m?2 yr?1 is required to offset the positive radiative forcing of increasing CH4 emissions until the end of the 21st century as indicated by an atmospheric CH4 and CO2 concentration model. However, long‐term apparent carbon accumulation rates in similar boreal forest‐wetland landscapes and eddy covariance landscape net CO2 flux measurements suggest a long‐term net CO2 uptake between 49 and 157 g CO2 m?2 yr?1. Thus, thaw‐induced CH4 emission increases likely exert a positive net radiative greenhouse gas forcing through the 21st century.  相似文献   

9.
Hurricane-induced nitrous oxide fluxes from a wet tropical forest   总被引:2,自引:0,他引:2  
Hurricane activity is predicted to increase over the mid-Atlantic as global temperatures rise. Nitrous oxide (N2O), a greenhouse gas with a substantial source from tropical soils, may increase after hurricanes yet this effect has been insufficiently documented. On September 21, 1998, Hurricane Georges crossed Puerto Rico causing extensive defoliation. We used a before–after design to assess the effect of Georges on N2O emissions, and factors likely influencing N2O fluxes including soil inorganic nitrogen pools and soil water content in a humid tropical forest at El Verde, Puerto Rico. Emissions of N2O up to 7 months post-Georges ranged from 5.92 to 4.26 ng cm−2 h−1 and averaged five times greater than fluxes previously measured at the site. N2O emissions 27 months after the hurricane remained over two times greater than previously measured fluxes. Soil ammonium pools decreased after Georges and remained low. The first year after the hurricane, nitrate pools increased, but not significantly when compared against a single measurement made before the hurricane. Soil moisture and temperature did not differ significantly in the two sampling periods. These results suggest that hurricanes increase N2O fluxes in these forests by altering soil N transformations and the relative availabilities of inorganic nitrogen.  相似文献   

10.
林火作为森林非连续的生态因子,引起森林生态系统碳库碳储量与碳分配的变化,影响森林演替进程及固碳能力。以桉树林不同林火干扰强度的火烧迹地为对象,采用相邻样地比较法,以野外调查采样与室内试验分析相结合为主要手段,研究不同林火干扰强度对森林生态系统各碳库及生态系统碳密度变化和空间分布格局的影响,探讨林火干扰对生态系统碳密度与碳分布格局的影响机制。结果表明:林火干扰降低了植被碳密度(P<0.05),轻度、中度和重度林火干扰样地植被碳密度依次为67.88、35.68和15.50 t·hm-2,相比对照分别下降了15.86%、55.78%和80.79%;在轻度、中度和重度林火干扰样地中,凋落物碳密度分别为1.43、0.94和0.81 t·hm-2,相比对照分别降低了28.14%、52.76%和59.30%;不同林火干扰强度样地土壤有机碳密度均低于对照,且减少幅度随土壤剖面深度增加而逐渐变小,轻度、中度和重度林火干扰样地土壤有机碳密度分别为103.30、84.33和70.04 t·hm-2,相比对照分别下降了11.67%、27....  相似文献   

11.
The net CO2 exchange of forests was investigated to study net atmospheric impact of forest bioenergy production (BP) and utilization in Finnish boreal conditions. Net CO2 exchange was simulated with a life cycle assessment tool over a 90‐year period and over the whole Finland based on National Forest Inventory data. The difference in the net exchanges between the traditional timber production (TP) and BP regime was considered the net atmospheric impact of forest bioenergy utilization. According to the results, forests became net sources of CO2 after about 20 years of simulation, and the net exchange was higher in the BP regime than in the TP regime until the middle of the simulation period. From 2040 onwards, the net exchange started to decrease in both regimes and became higher in the TP regime, excluding the last decade of the simulation. The shift of forests to becoming a CO2 source reflected the decrease in CO2 sequestration due to the increasing share of recently harvested and seedling stands that are acting as sources of CO2, and an increase of emissions from degradation of wood products. When expressed in terms of radiative forcing, the net atmospheric impact was on average 19% less for bioenergy compared with that for coal energy over the whole simulation period. The results show the importance of time dependence when considering dynamic forest ecosystems in BP and climate change mitigation. Furthermore, the results emphasize the dualistic role and possibilities of forest management in controlling the build and release of carbon into and from the stocks and in controlling the rate of the build speed, i.e. growth. This information is needed in identifying the capability and possibilities of ecosystems to produce biomass for energy, alongside other products and ecosystem services (e.g. pulp wood and timber), and simultaneously to mitigate climate change.  相似文献   

12.
Wetlands are important sources of methane (CH4) and sinks of carbon dioxide (CO2). However, little is known about CH4 and CO2 fluxes and dynamics of seasonally flooded tropical forests of South America in relation to local carbon (C) balances and atmospheric exchange. We measured net ecosystem fluxes of CH4 and CO2 in the Pantanal over 2014–2017 using tower‐based eddy covariance along with C measurements in soil, biomass and water. Our data indicate that seasonally flooded tropical forests are potentially large sinks for CO2 but strong sources of CH4, particularly during inundation when reducing conditions in soils increase CH4 production and limit CO2 release. During inundation when soils were anaerobic, the flooded forest emitted 0.11 ± 0.002 g CH4‐C m?2 d?1 and absorbed 1.6 ± 0.2 g CO2‐C m?2 d?1 (mean ± 95% confidence interval for the entire study period). Following the recession of floodwaters, soils rapidly became aerobic and CH4 emissions decreased significantly (0.002 ± 0.001 g CH4‐C m?2 d?1) but remained a net source, while the net CO2 flux flipped from being a net sink during anaerobic periods to acting as a source during aerobic periods. CH4 fluxes were 50 times higher in the wet season; DOC was a minor component in the net ecosystem carbon balance. Daily fluxes of CO2 and CH4 were similar in all years for each season, but annual net fluxes varied primarily in relation to flood duration. While the ecosystem was a net C sink on an annual basis (absorbing 218 g C m?2 (as CH4‐C + CO2‐C) in anaerobic phases and emitting 76 g C m?2in aerobic phases), high CH4 effluxes during the anaerobic flooded phase and modest CH4 effluxes during the aerobic phase indicate that seasonally flooded tropical forests can be a net source of radiative forcings on an annual basis, thus acting as an amplifying feedback on global warming.  相似文献   

13.
Disturbance regimes are changing in forests across the world in response to global climate change. Despite the profound impacts of disturbances on ecosystem services and biodiversity, assessments of disturbances at the global scale remain scarce. Here, we analyzed natural disturbances in boreal and temperate forest ecosystems for the period 2001–2014, aiming to 1) quantify their within- and between-biome variation and 2) compare the climate sensitivity of disturbances across biomes. We studied 103 unmanaged forest landscapes with a total land area of 28.2 × 106 ha, distributed across five continents. A consistent and comprehensive quantification of disturbances was derived by combining satellite-based disturbance maps with local expert knowledge of disturbance agents. We used Gaussian finite mixture models to identify clusters of landscapes with similar disturbance activity as indicated by the percent forest area disturbed as well as the size, edge density and perimeter–area-ratio of disturbed patches. The climate sensitivity of disturbances was analyzed using Bayesian generalized linear mixed effect models and a globally consistent climate dataset. Within-biome variation in natural disturbances was high in both boreal and temperate biomes, and disturbance patterns did not vary systematically with latitude or biome. The emergent clusters of disturbance activity in the boreal zone were similar to those in the temperate zone, but boreal landscapes were more likely to experience high disturbance activity than their temperate counterparts. Across both biomes high disturbance activity was particularly associated with wildfire, and was consistently linked to years with warmer and drier than average conditions. Natural disturbances are a key driver of variability in boreal and temperate forest ecosystems, with high similarity in the disturbance patterns between both biomes. The universally high climate sensitivity of disturbances across boreal and temperate ecosystems indicates that future climate change could substantially increase disturbance activity.  相似文献   

14.
Bioenergy from forest residues can be used to avoid fossil carbon emissions, but removing biomass from forests reduces carbon stock sizes and carbon input to litter and soil. The magnitude and longevity of these carbon stock changes determine how effective measures to utilize bioenergy from forest residues are to reduce greenhouse gas (GHG) emissions from the energy sector and to mitigate climate change. In this study, we estimate the variability of GHG emissions and consequent climate impacts resulting from producing bioenergy from stumps, branches and residual biomass of forest thinning operations in Finland, and the contribution of the variability in key factors, i.e. forest residue diameter, tree species, geographical location of the forest biomass removal site and harvesting method, to the emissions and their climate impact. The GHG emissions and the consequent climate impacts estimated as changes in radiative forcing were comparable to fossil fuels when bioenergy production from forest residues was initiated. The emissions and climate impacts decreased over time because forest residues were predicted to decompose releasing CO2 even if left in the forest. Both were mainly affected by forest residue diameter and climatic conditions of the forest residue collection site. Tree species and the harvest method of thinning wood (whole tree or stem‐only) had a smaller effect on the magnitude of emissions. The largest reduction in the energy production climate impacts after 20 years, up to 62%, was achieved when coal was replaced by the branches collected from Southern Finland, whereas the smallest reduction 7% was gained by using stumps from Northern Finland instead of natural gas. After 100 years the corresponding values were 77% and 21%. The choice of forest residue biomass collected affects significantly the emissions and climate impacts of forest bioenergy.  相似文献   

15.
Climate change is increasing the intensity of severe tropical storms and cyclones (also referred to as hurricanes or typhoons), with major implications for tropical forest structure and function. These changes in disturbance regime are likely to play an important role in regulating ecosystem carbon (C) and nutrient dynamics in tropical and subtropical forests. Canopy opening and debris deposition resulting from severe storms have complex and interacting effects on ecosystem biogeochemistry. Disentangling these complex effects will be critical to better understand the long‐term implications of climate change on ecosystem C and nutrient dynamics. In this study, we used a well‐replicated, long‐term (10 years) canopy and debris manipulation experiment in a wet tropical forest to determine the separate and combined effects of canopy opening and debris deposition on soil C and nutrients throughout the soil profile (1 m). Debris deposition alone resulted in higher soil C and N concentrations, both at the surface (0–10 cm) and at depth (50–80 cm). Concentrations of NaOH‐organic P also increased significantly in the debris deposition only treatment (20–90 cm depth), as did NaOH‐total P (20–50 cm depth). Canopy opening, both with and without debris deposition, significantly increased NaOH‐inorganic P concentrations from 70 to 90 cm depth. Soil iron concentrations were a strong predictor of both C and P patterns throughout the soil profile. Our results demonstrate that both surface‐ and subsoils have the potential to significantly increase C and nutrient storage a decade after the sudden deposition of disturbance‐related organic debris. Our results also show that these effects may be partially offset by rapid decomposition and decreases in litterfall associated with canopy opening. The significant effects of debris deposition on soil C and nutrient concentrations at depth (>50 cm), suggest that deep soils are more dynamic than previously believed, and can serve as sinks of C and nutrients derived from disturbance‐induced pulses of organic matter inputs.  相似文献   

16.
  1. Forest ecosystems experience a myriad of natural and anthropogenic disturbances that shape ecological communities. Seedling emergence is a critical, preliminary stage in the recovery of forests post​ disturbance and is triggered by a series of abiotic and biotic changes. However, the long‐term influence of different disturbance histories on patterns of seedling emergence is poorly understood.
  2. Here, we address this research gap by using an 11‐year dataset gathered between 2009 and 2020 to quantify the influence of different histories of natural (wildfire) and anthropogenic (clearcut and postfire salvage logging) disturbances on emerging seedlings in early‐successional Mountain Ash forests in southeastern Australia. We also describe patterns of seedling emergence across older successional forests varying in stand age (stands that regenerated in <1900s, 1939, 1970–90, and 2007–11).
  3. Seedling emergence was highest in the first three years post disturbance. Stand age and disturbance history significantly influenced the composition and abundance of plant seedlings. Specifically, in salvage‐logged forests, plant seedlings were the most different from similarly aged forests with other disturbance histories. For instance, relative to clearcut and unlogged, burnt forests of the same age, salvage logging had the lowest overall richness, the lowest counts of Acacia seedlings, and an absence of common species including Acacia obliquinervia, Acacia frigescens, Cassinia arcuealta, Olearia argophylla, Pimelea axiflora, Polyscias sambucifolia, and Prosanthera melissifolia over the survey period.
  4. Synthesis: Our findings provide important new insights into the influence of different disturbance histories on regenerating forests and can help predict plant community responses to future disturbances, which may influence forest recovery under altered disturbance regimes.
  相似文献   

17.
森林碳库在调节CO2浓度及减缓温室效应中发挥重要作用。选择广东木荷林为研究对象,通过相邻样地法,进行植被生物量、凋落物生物量和土壤样品的采样与分析,研究不同林火干扰强度对生态系统各碳库(植被、凋落物和土壤有机碳)及生态系统碳库产生的变化规律和空间分布格局及其影响因素。结果表明:(1)植被碳密度随着林火干扰强度增强而减少,但不同组分的植被碳密度表现不同,乔木碳密度在不同林火干扰强度下变化与植被碳密度变化一致,而草本碳密度则呈现相反的变化趋势。相同林火干扰强度下,植被各组分碳密度均以乔木层降低幅度最大。林火干扰均显著降低了凋落物碳密度(P<0.05),并随林火干扰强度的增加其降低幅度增大,但不同林火干扰强度对凋落物碳密度的影响有所差异。林火干扰降低了土壤有机碳密度,且降低幅度随土层深度增加而逐渐变小。(2)林火干扰有效改变了生态系统碳库的空间分布格局。对照样地木荷林土壤有机碳库占比为61.59%,重度林火干扰后,土壤有机碳库占比为70.96%呈上升趋势,占生态系统碳库的优势地位,而植被和凋落物碳库占比呈下降趋势,处于生态系统碳库的次要地位。(3)双因素方差分析表明,林火干扰强度和土层深度及其交互作用均对土壤有机碳密度有显著影响。林火干扰强度解释了土壤有机碳密度变异的8.78%,土层深度解释了土壤有机碳密度变异的70.29%,林火干扰强度和土层深度之间的交互作用解释了土壤有机碳密度变异的8.16%。研究发现:林火干扰降低了生态系统碳库,且随林火干扰强度增加,生态系统碳库减少幅度增大。轻度林火干扰对森林生态系统碳库的影响差异不显著,而中度和重度林火干扰对森林生态系统碳库的影响差异显著。研究结果对深化亚热带森林固碳效应的影响机制提供理论支撑。  相似文献   

18.
Seasonally dry tropical forests (SDTF) are a widely distributed vegetation type in the tropics, characterized by seasonal rainfall with several months of drought when they are subject to fire. This study is one of the first attempts to quantify above- and belowground biomass (AGB and BGB) and above- and belowground carbon (AGC and BGC) pools to calculate their recovery after fire, using a chronosequence approach (six forests that ranged form 1 to 29 years after fire and mature forest). We quantified AGB and AGC pools of trees, lianas, palms, and seedlings, and BGB and BGC pools (Oi, Oe, Oa soil horizons, and fine roots). Total AGC ranged from 0.05 to nearly 72 Mg C ha−1, BGC from 21.6 to nearly 85 Mg C ha−1, and total ecosystem carbon from 21.7 to 153.5 Mg C ha−1; all these pools increased with forest age. Nearly 50% of the total ecosystem carbon was stored in the Oa horizon of mature forests, and up to 90% was stored in the Oa-horizon of early successional SDTF stands. The soils were shallow with a depth of <20 cm at the study site. To recover values similar to mature forests, BGC and BGB required <19 years with accumulation rates greater than 20 Mg C ha−1 yr−1, while AGB required 80 years with accumulation rates nearly 2.5 Mg C ha−1 yr−1. Total ecosystem biomass and carbon required 70 and 50 years, respectively, to recover values similar to mature forests. When belowground pools are not included in the calculation of total ecosystem biomass or carbon recovery, we estimated an overestimation of 10 and 30 years, respectively.  相似文献   

19.
Rodents inhabit the coastal dune forests of KwaZulu‐Natal, South Africa. Here habitat rehabilitation following mining of dunes has resulted in coastal dune forest succession similar to that recorded in nonmined forests. We investigated the colonization of rehabilitating stands and evaluate the role of disturbance in maintaining rodent diversity. A trapping programme was established between July 1993 and February 1995 during which rodent colonization, local extinction and species richness were recorded for rehabilitating stands of different ages. Trends in these variables were closely associated with one of three possible outcomes for a disturbed patch over time, with no intervening disturbances following the initial disturbance. Colonization was initially high which led to an increase in species richness. Extinction was lower than colonization, but became higher when the habitat was 3 years old, which led to a decline in richness. We extrapolate this result assuming negligibly small disturbances after the initiation of rehabilitation and suggest that intermediate levels of disturbance maintain rodent species richness in coastal dune forests. Furthermore, our results illustrated species turnover, a prediction of the recorded outcome, with young stands dominated by Mastomys natalensis and older stands by Saccostomus campestris or Aethomys chrysophilus.  相似文献   

20.
As the environmental and economic consequences of fossil‐fuel use become clear, land is increasingly targeted as a source of bioenergy. We explore the potential for generating electricity from biomass vulnerable to fires as an ecologic and socioeconomic opportunity that can reduce the risk of greenhouse gas generation from wildfires and help to create incentives to preserve natural and seminatural vegetation and prevent its conversion to agriculture, including biofuel crops. On the basis of a global analysis of the energy generation and spatial distribution of fires, we show that between 2003 and 2010, global fires consumed ~8300 ± 592 PJ yr?1 of energy, equivalent to ~36–44% of the global electricity consumption in 2008 and >100% national consumption in 57 countries. Forests/woodlands, cultivated areas, shrublands, and grasslands contributed 53%, 19%, 16%, and 3.5% of the global energy released by fires. Although many agroecological, socioeconomic, and engineering challenges need to be overcome before diverting the energy lost in fires into more useable forms, done cautiously it could reconcile habitat preservation with economic yields in natural systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号