首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
Immune responses evolve to balance the benefits of microbial killing against the costs of autoimmunity and energetic resource use. Models that explore the evolution of optimal immune responses generally include a term for constitutive immunity, or the level of immunological investment prior to microbial exposure, and for inducible immunity, or investment in immune function after microbial challenge. However, studies rarely consider the functional form of inducible immune responses with respect to microbial density, despite the theoretical dependence of immune system evolution on microbe‐ versus immune‐mediated damage to the host. In this study, we analyse antimicrobial peptide (AMP) gene expression from seven wild‐caught flour beetle populations (Tribolium spp.) during acute infection with the virulent bacteria Bacillus thuringiensis (Bt) and Photorhabdus luminescens (P.lum) to demonstrate that inducible immune responses mediated by the humoral IMD pathway exhibit natural variation in both microbe density‐dependent and independent temporal dynamics. Beetle populations that exhibited greater AMP expression sensitivity to Bt density were also more likely to die from infection, while populations that exhibited higher microbe density‐independent AMP expression were more likely to survive P. luminescens infection. Reduction in pathway signalling efficiency through RNAi‐mediated knockdown of the imd gene reduced the magnitude of both microbe‐independent and dependent responses and reduced host resistance to Bt growth, but had no net effect on host survival. This study provides a framework for understanding natural variation in the flexibility of investment in inducible immune responses and should inform theory on the contribution of nonequilibrium host‐microbe dynamics to immune system evolution.  相似文献   

3.
Host genetic diversity can mediate pathogen resistance within and among populations. Here we test whether the lower prevalence of Mycoplasmal conjunctivitis in native North American house finch populations results from greater resistance to the causative agent, Mycoplasma gallisepticum (MG), than introduced, recently‐bottlenecked populations that lack genetic diversity. In a common garden experiment, we challenged wild‐caught western (native) and eastern (introduced) North American finches with a representative eastern or western MG isolate. Although introduced finches in our study had lower neutral genetic diversity than native finches, we found no support for a population‐level genetic diversity effect on host resistance. Instead we detected strong support for isolate differences: the MG isolate circulating in western house finch populations produced lower virulence, but higher pathogen loads, in both native and introduced hosts. Our results indicate that contemporary differences in host genetic diversity likely do not explain the lower conjunctivitis prevalence in native house finches, but isolate‐level differences in virulence may play an important role.  相似文献   

4.
Evidence is accumulating that genetic variation within individual hosts can influence their susceptibility to pathogens. However, there have been few opportunities to experimentally test this relationship, particularly within outbred populations of non-domestic vertebrates. We performed a standardized pathogen challenge in house finches (Carpodacus mexicanus) to test whether multilocus heterozygosity across 12 microsatellite loci predicts resistance to a recently emerged strain of the bacterial pathogen, Mycoplasma gallisepticum (MG). We simultaneously tested whether the relationship between heterozygosity and pathogen susceptibility is mediated by differences in cell-mediated or humoral immunocompetence. We inoculated 40 house finches with MG under identical conditions and assayed both humoral and cell-mediated components of the immune response. Heterozygous house finches developed less severe disease when infected with MG, and they mounted stronger cell-mediated immune responses to phytohaemagglutinin. Differences in cell-mediated immunocompetence may, therefore, partly explain why more heterozygous house finches show greater resistance to MG. Overall, our results underscore the importance of multilocus heterozygosity for individual pathogen resistance and immunity.  相似文献   

5.
Microbes have evolved ways of interference competition to gain advantage over their ecological competitors. The use of secreted killer toxins by yeast cells through acquiring double‐stranded RNA viruses is one such prominent example. Although the killer behaviour has been well studied in laboratory yeast strains, our knowledge regarding how killer viruses are spread and maintained in nature and how yeast cells co‐evolve with viruses remains limited. We investigated these issues using a panel of 81 yeast populations belonging to three Saccharomyces sensu stricto species isolated from diverse ecological niches and geographic locations. We found that killer strains are rare among all three species. In contrast, killer toxin resistance is widespread in Saccharomyces paradoxus populations, but not in Saccharomyces cerevisiae or Saccharomyces eubayanus populations. Genetic analyses revealed that toxin resistance in S. paradoxus is often caused by dominant alleles that have independently evolved in different populations. Molecular typing identified one M28 and two types of M1 killer viruses in those killer strains. We further showed that killer viruses of the same type could lead to distinct killer phenotypes under different host backgrounds, suggesting co‐evolution between the viruses and hosts in different populations. Taken together, our data suggest that killer viruses vary in their evolutionary histories even within closely related yeast species.  相似文献   

6.
Trans‐generational immune priming is the transmission of enhanced immunity to offspring following a parental immune challenge. Although within‐generation increased investment into immunity demonstrates clear costs on reproductive investment in a number of taxa, the potential for immune priming to impact on offspring reproductive investment has not been thoroughly investigated. We explored the reproductive costs of immune priming in a field cricket, Teleogryllus oceanicus. To assess the relative importance of maternal and paternal immune status, mothers and fathers were immune‐challenged with live bacteria or a control solution and assigned to one of four treatments in which one parent, neither or both parents were immune‐challenged. Families of offspring were reared to adulthood under a food‐restricted diet, and approximately 10 offspring in each family were assayed for two measures of immunocompetence. We additionally quantified offspring reproductive investment using sperm viability for males and ovary mass for females. We demonstrate that parental immune challenge has significant consequences for the immunocompetence and, in turn, reproductive investment of their male offspring. A complex interaction between maternal and paternal immune status increased the antibacterial immune response of male offspring. This increased immune response was associated with a reduction in son's sperm viability, implicating a trans‐generational resource trade‐off between investment into immunocompetence and reproduction. Our data also show that these costs are sexually dimorphic, as daughters did not demonstrate a similar increase in immunity, despite showing a reduction in ovary mass.  相似文献   

7.
Virus‐host coevolution has selected for generalized host defense against viruses, exemplified by interferon production/signaling and other innate immune function in eukaryotes such as humans. Although cell‐surface binding primarily limits virus infection success, generalized adaptation to counteract innate immunity across disparate hosts may contribute to RNA virus emergence potential. We examined this idea using vesicular stomatitis virus (VSV) populations previously evolved on strictly immune‐deficient (HeLa) cells, strictly immune competent (MDCK) cells, or on alternating deficient/competent cells. By measuring viral fitness in unselected human cancer cells of differing innate immunity, we confirmed that HeLa‐adapted populations were specialized for innate immune‐deficient hosts, whereas MDCK‐adapted populations were relatively more generalized for fitness on hosts of differing innate immune capacity and of different species origin. We also confirmed that HeLa‐evolved populations maintained fitness in immune‐deficient nonhuman primate cells. These results suggest that innate immunity is more prominent than host species in determining viral fitness at the host‐cell level. Finally, our prediction was inexact that selection on alternating deficient/competent hosts should produce innate viral generalists. Rather, fitness differences among alternating host‐evolved VSV populations indicated variable capacities to evade innate immunity. Our results suggest that the evolutionary history of innate immune selection can affect whether RNA viruses evolve greater host‐breadth.  相似文献   

8.
Studies of ornamental carotenoid coloration suggest that animals may have evolved specialized mechanisms for maximizing color expression and advertising their potential worth as a mate. For example, when given a choice of foods, many carotenoid‐pigmented fishes and birds select the more colorful, presumably carotenoid‐rich foods, and then accumulate these pigments at high levels in both the integument and systemically, in order to boost their immune system and hence directly advertise their health state with their colors. The majority of animals, however, do not exhibit sexually selected carotenoid coloration, which raises the question of whether they still optimize pigment intake and allocation in ways that boost endogenous accumulation and health. We tested the effect of carotenoid supplementation on food intake, carotenoid accumulation in blood, and both innate and adaptive immunity in male society finches (Lonchura domestica) – a non‐carotenoid‐colored estrildid finch relative of the zebra finch (Taeniopygia guttata; a species in which males do display sexually attractive and health‐revealing carotenoid color). Males fed a carotenoid‐rich diet for 2 wk did not consume more food than control males. Still, consumption of the carotenoid‐rich diet for 2 wk significantly elevated circulating levels of carotenoids in blood in male society finches, yielding the potential for immune enhancement. In fact, carotenoid‐enriched finches performed significantly better than control birds in our assay of constitutive innate immunity (bacterial‐killing activity of whole blood), although not in our test of inducible adaptive immunity (response to a mitogenic challenge with phytohemagglutinin). These results suggest that affinities for carotenoid‐rich foods may be particular to species with sexually selected carotenoid pigmentation, but that, as in humans and other mammals (e.g. mice, rats) without carotenoid color, the immune‐boosting action of carotenoids is conserved regardless of the strength of sexual selection on pigment use.  相似文献   

9.
Maintenance and deployment of the immune system are costly and are hence predicted to trade‐off with other resource‐demanding traits, such as reproduction. We subjected this longstanding idea to test using laboratory experimental evolution approach. In the present study, replicate populations of Drosophila melanogaster were subjected to three selection regimes—I (Infection with Pseudomonas entomophila), S (Sham‐infection with MgSO4), and U (Unhandled Control). After 30 generations of selection flies from the I regime had evolved better survivorship upon infection with P. entomophila compared to flies from U and S regimes. However, contrary to expectations and previous reports, we did not find any evidence of trade‐offs between immunity and other life history related traits, such as longevity, fecundity, egg hatchability, or development time. After 45 generations of selection, the selection was relaxed for a set of populations. Even after 15 generations, the postinfection survivorship of populations under relaxed selection regime did not decline. We speculate that either there is a negligible cost to the evolved immune response or that trade‐offs occur on traits such as reproductive behavior or other immune mechanisms that we have not investigated in this study. Our research suggests that at least under certain conditions, life‐history trade‐offs might play little role in maintaining variation in immunity.  相似文献   

10.
When and how populations are regulated by bottom up vs. top down processes, and how those processes are affected by co‐occurring species, are poorly characterised across much of ecology. We are especially interested in the community ecology of parasites that must share a host. Here, we quantify how resources and immunity affect parasite propagation in experiments in near‐replicate ‘mesocosms’’ – i.e. mice infected with malaria (Plasmodium chabaudi) and nematodes (Nippostrongylus brasiliensis). Nematodes suppressed immune responses against malaria, and yet malaria populations were smaller in co‐infected hosts. Further analyses of within‐host epidemiology revealed that nematode co‐infection altered malaria propagation by suppressing target cell availability. This is the first demonstration that bottom‐up resource regulation may have earlier and stronger effects than top‐down immune mechanisms on within‐host community dynamics. Our findings demonstrate the potential power of experimental ecology to disentangle mechanisms of population regulation in complex communities.  相似文献   

11.
A key feature of the vertebrate adaptive immune system is acquired immune memory, whereby hosts launch a faster and heightened response when challenged by previously encountered pathogens, preventing full infection. Here, we use a mathematical model to explore the role of ecological and epidemiological processes in shaping selection for costly acquired immune memory. Applying the framework of adaptive dynamics to the classic SIR (Susceptible‐Infected‐Recovered) epidemiological model, we focus on the conditions that may lead hosts to evolve high levels of immunity. Linking our work to previous theory, we show how investment in immune memory may be greatest at long or intermediate host lifespans depending on whether immunity is long lasting. High initial costs to gain immunity are also found to be essential for a highly effective immune memory. We also find that high disease infectivity and sterility, but intermediate virulence and immune period, increase selection for immunity. Diversity in host populations through evolutionary branching is found to be possible but only for a limited range of parameter space. Our model suggests that specific ecological and epidemiological conditions have to be met for acquired immune memory to evolve.  相似文献   

12.
13.
We present evidence that populations of an invasive plant species that have become re‐associated with a specialist herbivore in the exotic range through biological control have rapidly evolved increased antiherbivore defences compared to populations not exposed to biocontrol. We grew half‐sib families of the invasive plant Lythrum salicaria sourced from 17 populations near Ottawa, Canada, that differed in their history of exposure to a biocontrol agent, the specialist beetle Neogalerucella calmariensis. In a glasshouse experiment, we manipulated larval and adult herbivory to examine whether a population's history of biocontrol influenced plant defence and growth. Plants sourced from populations with a history of biocontrol suffered lower defoliation than naïve, previously unexposed populations, strongly suggesting they had evolved higher resistance. Plants from biocontrol‐exposed populations were also larger and produced more branches in response to herbivory, regrew faster even in the absence of herbivory and were better at compensating for the impacts of herbivory on growth (i.e. they exhibited increased tolerance). Furthermore, resistance and tolerance were positively correlated among genotypes with a history of biocontrol but not among naïve genotypes. Our findings suggest that biocontrol can rapidly select for increased defences in an invasive plant and may favour a mixed defence strategy of resistance and tolerance without an obvious cost to plant vigour. Although rarely studied, such evolutionary responses in the target species have important implications for the long‐term efficacy of biocontrol programmes.  相似文献   

14.
Pathogens exert a strong selective pressure on hosts, entailing host adaptation to infection. This adaptation often affects negatively other fitness‐related traits. Such trade‐offs may underlie the maintenance of genetic diversity for pathogen resistance. Trade‐offs can be tested with experimental evolution of host populations adapting to parasites, using two approaches: (1) measuring changes in immunocompetence in relaxed‐selection lines and (2) comparing life‐history traits of evolved and control lines in pathogen‐free environments. Here, we used both approaches to examine trade‐offs in Drosophila melanogaster populations evolving for over 30 generations under infection with Drosophila C Virus or the bacterium Pseudomonas entomophila, the latter through different routes. We find that resistance is maintained after up to 30 generations of relaxed selection. Moreover, no differences in several classical life‐history traits between control and evolved populations were found in pathogen‐free environments, even under stresses such as desiccation, nutrient limitation, and high densities. Hence, we did not detect any maintenance costs associated with resistance to pathogens. We hypothesize that extremely high selection pressures commonly used lead to the disproportionate expression of costs relative to their actual occurrence in natural systems. Still, the maintenance of genetic variation for pathogen resistance calls for an explanation.  相似文献   

15.
Costs of resistance, i.e. trade‐offs between resistance to parasites or pathogens and other fitness components, may prevent the fixation of resistant genotypes and therefore explain the maintenance of genetic polymorphism for resistance in the wild. Using two approaches, the cost of resistance to a sterilizing bacterial pathogen were tested for in the crustacean Daphnia magna. First, groups of susceptible and resistant hosts from each of four natural populations were compared in terms of their life‐history characteristics. Secondly, we examined the competitiveness of nine clones from one population for which more detailed information on genetic variation for resistance was known. In no case did the results show that competitiveness or life history characteristics of resistant Daphnia systematically differed from susceptible ones. These results suggest that costs of resistance are unlikely to explain the maintenance of genetic variation in D. magna populations. We discuss methods for measuring fitness and speculate on which genetic models of host‐parasite co‐evolution may apply to the Daphnia‐microparasite system.  相似文献   

16.
The loss of regulating agents such as parasites is among the most important changes in biotic interactions experienced by populations established in newly colonized areas. Under a relaxed parasite pressure, individuals investing less in costly immune mechanisms might experience a selective advantage and become successful colonizers as they re‐allocate resources to other fitness‐related traits. Accordingly, a refinement of the evolution of increased competitive ability (EICA) hypothesis proposed that immunity of invasive populations has evolved toward a reduced investment in innate immunity, the most costly component of immunity, and an increased humoral immunity that is less costly. Biogeographical approaches comparing populations between native and expansion ranges are particularly relevant in exploring this issue, but remain very scarce. We conducted a biogeographical comparison between populations of Spectacled Thrush (Turdus nudigenis) from the native area (South America) and from the expansion range (Caribbean islands). First, we compared haemosporidian prevalence and circulating haptoglobin (an acute‐phase protein produced during inflammation). Second, we challenged captive birds from both ranges with Escherichia coli lipopolysaccharides (LPS) and measured postchallenge haptoglobin production and body mass change. Birds from the expansion range showed lower haemosporidian prevalence and lower levels of haptoglobin than birds from the native range. In addition, the inflammation elicited by LPS injection and its associated cost in terms of body mass loss were lower in birds from the expansion range than in birds from the native range. In accordance with the enemy release hypothesis, our results suggest that range expansion is associated with a reduced infection risk. Our study also supports the hypothesis that individuals from newly established populations have evolved mechanisms to dampen the inflammatory response and are in accordance with one prediction of the refined EICA hypothesis, proposed to understand biological invasions.  相似文献   

17.
Can a population evolved in two resources reach the same fitness in both as specialist populations evolved in each of the individual resources? This question is central to theories of ecological specialization, the maintenance of genetic variation, and sympatric speciation, yet relatively few experiments have examined costs of generalism over long‐term adaptation. We tested whether selection in environments containing two resources limits a population's ability to adapt to the individual resources by comparing the fitness of replicate Escherichia coli populations evolved for 6000 generations in the presence of glucose or lactose alone (specialists), or in varying presentations of glucose and lactose together (generalists). We found that all populations had significant fitness increases in both resources, though the magnitude and rate of these increases differed. For the first 4000 generations, most generalist populations increased in fitness as quickly in the individual resources as the corresponding specialist populations. From 5000 generations, however, a widespread cost of adaptation affected all generalists, indicating a growing constraint on their abilities to adapt to two resources simultaneously. Our results indicate that costs of generalism are prevalent, but may influence evolutionary trajectories only after a period of cost‐free adaptation.  相似文献   

18.
The long‐term contamination that followed the nuclear disaster at Chernobyl provides a case study for the effects of chronic ionizing radiation on living organisms and on their ability to tolerate or evolve resistance to such radiation. Previously, we studied the fertility and viability of early developmental stages of a castrating plant pathogen, the anther‐smut fungus Microbotryum lychnidis‐dioicae, isolated from field sites varying over 700‐fold in degree of radioactive contamination. Neither the budding rate of haploid spores following meiosis nor the karyotype structure varied with increasing radiation levels at sampling sites. Here, we assessed the ability of the same M. lychnidis‐dioicae strains to perform their whole life cycle, up to the production of symptoms in the plants, that is, the development of anthers full of fungal spores; we also assessed their viability under experimental radiation. Fungal strains from more contaminated sites had no lower spore numbers in anthers or viability, but infected host plants less well, indicating lower overall fitness due to radioactivity exposure. These findings improve our understanding of the previous field data, in which the anther‐smut disease prevalence on Silene latifolia plants caused by M. lychnidis‐dioicae was lower at more contaminated sites. Although the fungus showed relatively high resistance to experimental radiation, we found no evidence that increased resistance to radiation has evolved in populations from contaminated sites. Fungal strains from more contaminated sites even tolerated or repaired damage from a brief acute exposure to γ radiation less well than those from non‐ or less contaminated sites. Our results more generally concur with previous studies in showing that the fitness of living organisms is affected by radiation after nuclear disasters, but that they do not rapidly evolve higher tolerance.  相似文献   

19.
While theory suggests conditions under which mutualism may evolve from parasitism, few studies have observed this transition empirically. Previously, we evolved Escherichia coli and the filamentous bacteriophage M13 in 96‐well microplates, an environment in which the ancestral phage increased the growth rate and yield of the ancestral bacteria. In the majority of populations, mutualism was maintained or even enhanced between phages and coevolving bacteria; however, these same phages evolved traits that harmed the ancestral E. coli genotype. Here, we set out to determine if mutualism could evolve from this new parasitic interaction. To do so, we chose six evolved phage populations from the original experiment and used them to establish new infections of the ancestral bacteria. After 20 passages, mutualism evolved in almost all replicates, with the remainder growing commensally. Many phage populations also evolved to benefit both their local, evolving bacteria and the ancestral bacteria, though these phages were less beneficial to their co‐occurring hosts than phages that harm the ancestral bacteria. These results demonstrate the rapid recovery of mutualism from parasitism, and we discuss how our findings relate to the evolution of phages that enhance the virulence of bacterial pathogens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号