首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature has a fundamental impact on the metabolic rates of microorganisms and strongly influences microbial ecology and biogeochemical cycling in the environment. In this study, we examined the catabolic temperature response of natural communities of sulfate-reducing microorganisms (SRM) in polar, temperate and tropical marine sediments. In short-term sediment incubation experiments with 35S-sulfate, we demonstrated how the cardinal temperatures for sulfate reduction correlate with mean annual sediment temperatures, indicating specific thermal adaptations of the dominant SRM in each of the investigated ecosystems. The community structure of putative SRM in the sediments, as revealed by pyrosequencing of bacterial 16S rRNA gene amplicons and phylogenetic assignment to known SRM taxa, consistently correlated with in situ temperatures, but not with sediment organic carbon concentrations or C:N ratios of organic matter. Additionally, several species-level SRM phylotypes of the class Deltaproteobacteria tended to co-occur at sites with similar mean annual temperatures, regardless of geographic distance. The observed temperature adaptations of SRM imply that environmental temperature is a major controlling variable for physiological selection and ecological and evolutionary differentiation of microbial communities.  相似文献   

2.
Inverse trophic cascades are a well explored and common consequence of the local depletion or extinction of top predators in natural ecosystems. Despite a large body of research, the cascading effects of predator removal on ecosystem functions are not as well understood. Developing microcosm experiments, we explored food web changes in trophic structure and ecosystem functioning following biomass removal of top predators in representative temperate and tropical rock pool communities that contained similar assemblages of zooplankton and benthic invertebrates. We observed changes in species abundances following predator removal in both temperate and tropical communities, in line with expected inverse effects of a trophic cascade, where predation release benefits the predator’s preys and competitors and impacts the preys of the latter. We also observed several changes at the community and ecosystem levels including a decrease in total abundance and mean trophic level of the community, and changes in chlorophyll-a and total dissolved particles. Our results also showed an increase in variability of both community and ecosystem processes following the removal of predators. These results illustrate how predator removal can lead to inverse trophic cascades both in structural and functioning properties, and can increase variability of ecosystem processes. Although observed patterns were consistent between tropical and temperate communities following an inverse cascade pattern, changes were more pronounced in the temperate community. Therefore, aquatic food webs may have inherent traits that condition ecosystem responses to changes in top-down trophic control and render some aquatic ecosystems especially sensitive to the removals of top predators.  相似文献   

3.
4.
One of the most commonly predicted effects of global ocean warming on marine communities is a poleward shift in the distribution of species with an associated replacement of cold‐water species by warm‐water species. Such predictions are imprecise and based largely on broad correlations in uncontrolled studies that examine changes in species composition and abundance relative to seawater temperature. Before‐After‐Control‐Impact (BACI) analyses of the effects of a large thermal discharge shows that an induced 3.4 deg. C rise in seawater temperature over 10 years along 2 km of rocky coastline resulted in significant community‐wide changes in 150 species of algae and invertebrates relative to controls. Contrary to predictions from biogeographic models, there was no trend towards warm‐water species with southern geographic affinities replacing cold‐species with northern affinities. Instead, communities were greatly altered in apparently cascading responses to changes in abundance of several habitat‐forming taxa, particularly subtidal kelps (e.g. Pterygophora californica) and intertidal foliose red algae (e.g. Mazzaella flaccida). Many temperature sensitive algae decreased greatly in abundance, whereas many invertebrate grazers increased. The results indicate that the responses of temperate reef communities to ocean warming can be strongly coupled to direct effects on habitat‐forming taxa and indirect effects operating through ecological interactions. Given our understanding of temperate reef ecology and its local variability, the results also suggest that accurate predictions of the effects of global ocean warming will be difficult to make.  相似文献   

5.
Tropical insects show temporal changes in their abundance and climate is one of the most influential factors. For tropical butterflies, few studies have quantified this relationship or analyzed changes in community composition and structure throughout time. Communities of butterflies attracted to rotting-carrion bait in one area of the Yasuni National Park, in Ecuadorian Amazonia were examined for these relationships. Butterfly communities in three different strata of the forest were sampled over 13 months using traps with rotten shrimp bait. In total, 9236 individuals of 208 species were collected between April 2002 and April 2003. The composition and structure of butterfly communities showed significant variation during the survey with a constant replacement of species throughout the year. Additionally, these communities had the highest species richness and abundance during the months with high temperatures and intermediate precipitation. Despite relatively low variation, temperature was the most significant climatic factor explaining differences in butterfly richness and abundance throughout the year. This significant response of butterfly communities to slight temperature variations reinforce the need of temporal studies to better predict how tropical butterfly populations will respond to predicted climate change.  相似文献   

6.
The unified neutral theory of biodiversity and biogeography provides a promising framework that can be used to integrate stochastic and ecological processes operating in ecological communities. Based on a mechanistic non‐neutral model that incorporates density‐dependent mortality, we evaluated the deviation from a neutral pattern in tree species abundance distributions and explored the signatures of historical and ecological processes that have shaped forest biomes. We compiled a dataset documenting species abundance distributions in 1168 plots encompassing 16 973 tree species across tropical, temperate, and boreal forests. We tested whether deviations from neutrality of species abundance distributions vary with climatic and historical conditions, and whether these patterns differ among regions. Non‐neutrality in species abundance distributions was ubiquitous in tropical, temperate, and boreal forests, and regional differences in patterns of non‐neutrality were significant between biomes. Species abundance evenness/unevenness caused by negative density‐dependent or abiotic filtering effects had no clear macro‐scale climatic drivers, although temperature was non‐linearly correlated with species abundance unevenness on a global scale. These findings were not significantly biased by heterogeneity of plot data (the differences of plot area, measurement size, species richness, and the number of individuals sampled). Therefore, our results suggest that environmental filtering is not universally increasing from warm tropical to cold boreal forests, but might affect differently tree species assembly between and within biomes. Ecological processes generating particularly dominant species in local communities might be idiosyncratic or region‐specific and may be associated with geography and climate. Our study illustrates that stochastic dynamical models enable the analysis of the interplay of historical and ecological processes that influence community assemblies and the dynamics of biodiversity.  相似文献   

7.
Rising temperatures are predicted to melt all perennial ice cover in the Arctic by the end of this century, thus opening up suitable habitat for temperate and subarctic species. Canopy‐forming seaweeds provide an ideal system to predict the potential impact of climate‐change on rocky‐shore ecosystems, given their direct dependence on temperature and their key role in the ecological system. Our primary objective was to predict the climate‐change induced range‐shift of Fucus distichus, the dominant canopy‐forming macroalga in the Arctic and subarctic rocky intertidal. More specifically, we asked: which Arctic/subarctic and cold‐temperate shores of the northern hemisphere will display the greatest distributional change of Fdistichus and how will this affect niche overlap with seaweeds from temperate regions? We used the program MAXENT to develop correlative ecological niche models with dominant range‐limiting factors and 169 occurrence records. Using three climate‐change scenarios, we projected habitat suitability of Fdistichus – and its niche overlap with three dominant temperate macroalgae – until year 2200. Maximum sea surface temperature was identified as the most important factor in limiting the fundamental niche of Fdistichus. Rising temperatures were predicted to have low impact on the species' southern distribution limits, but to shift its northern distribution limits poleward into the high Arctic. In cold‐temperate to subarctic regions, new areas of niche overlap were predicted between Fdistichus and intertidal macroalgae immigrating from the south. While climate‐change threatens intertidal seaweeds in warm‐temperate regions, seaweed meadows will likely flourish in the Arctic intertidal. Although this enriches biodiversity and opens up new seaweed‐harvesting grounds, it will also trigger unpredictable changes in the structure and functioning of the Arctic intertidal ecosystem.  相似文献   

8.
烟台四十里湾浮游动物群落特征及与环境因子的关系   总被引:3,自引:0,他引:3  
2009年3月—2010年12月在烟台四十里湾海域对浮游动物群落结构及其环境因子进行了连续20个航次的综合调查,记录到浮游动物8大类共计64种(类)。浮游动物主要类群为桡足类和浮游幼虫,分别发现22种、18类,占总种(类)数34%、28%;其次为水螅水母类,发现13种,占20%;毛颚动物和栉水母类各发现1种。浮游动物的优势种为中华哲水蚤(Y=0.183)、腹针胸刺水蚤(Y=0.078)、强壮箭虫(Y=0.078)和洪氏纺锤水蚤(Y=0.026)。浮游动物的生态类型主要为温带近岸种和广布性种。四十里湾海域浮游动物群落结构的季节变化较为明显,春、夏、秋、冬四季之间群落结构有显著性差异(P0.05),同一季节内群落结构相似度较高,达55%以上。浮游动物丰度中位值在5月份达到最高(546.3个/m~3);种类数、多样性指数中位值均在8月达到最高,分别为18种、3.20;浮游动物生物量呈现出双峰变化模型,5月份达到第1峰值(中位值870.4 mg/m~3),10月份为第2峰值(中位值362.0 mg/m~3)。浮游动物种类数高值区主要分布在养马岛北部海域,而丰度高值区主要分布在近岸尤其是辛安河口海域。浮游动物种类数及多样性指数与水温、化学需氧量、硅酸盐显著正相关(P0.01),与盐度、溶解氧、无机氮显著负相关(P0.01);水温和盐度是影响浮游动物分布的主要环境因子,其次是硅酸盐、叶绿素a和化学需氧量,活性磷酸盐、溶解氧、透明度以及无机氮对浮游动物分布的影响较小。  相似文献   

9.
Trait diversity is believed to influence ecosystem dynamics through links between organismal traits and ecosystem processes. Theory predicts that key traits and high trait redundancy—large species richness and abundance supporting the same traits—can buffer communities against environmental disturbances. While experiments and data from simple ecological systems lend support, large‐scale evidence from diverse, natural systems under major disturbance is lacking. Here, using long‐term data from both temperate (English Channel) and tropical (Seychelles Islands) fishes, we show that sensitivity to disturbance depends on communities’ initial trait structure and initial trait redundancy. In both ecosystems, we found that increasing dominance by climatically vulnerable traits (e.g., small, fast‐growing pelagics/corallivores) rendered fish communities more sensitive to environmental change, while communities with higher trait redundancy were more resistant. To our knowledge, this is the first study demonstrating the influence of trait structure and redundancy on community sensitivity over large temporal and spatial scales in natural systems. Our results exemplify a consistent link between biological structure and community sensitivity that may be transferable across ecosystems and taxa and could help anticipate future disturbance impacts on biodiversity and ecosystem functioning.  相似文献   

10.
Summary Deep profiles of particulate organic matter, microplankton (phytoplankton and bacteria), zooplankton and their metabolic activities were investigated during two summer voyages to the eastern Canadian Arctic. Magnitudes and depth distributions were similar in many respects to observations from temperate and tropical waters. Strong gradients in most properties were observed in the upper 50–100 m and subsurface maxima were generally associated with the upper mixed-layer (>50 m). In addition to the general vertical decreases in plankton biomass and metabolic activity there was evidence for both rapid transport (sinking) of organic matter and for enhanced (above background) levels of microbial metabolic activity in deep waters (>500 m). Zooplankton depth distributions differed from the pattern generally observed at lower latitudes; in the Arctic, zooplankton abundance decreased to a lesser degree with depth than particulate organics and microplankton. The overwintering behavior of high-latitude zooplankton appeared to be the best explanation for their relatively high abundance at depth. Despite this, however, zooplankton apparently contributed little to the total column community metabolism.  相似文献   

11.
As global climate change and variability drive shifts in species’ distributions, ecological communities are being reorganized. One approach to understand community change in response to climate change has been to characterize communities by a collective thermal preference, or community temperature index (CTI), and then to compare changes in CTI with changes in temperature. However, important questions remain about whether and how responsive communities are to changes in their local thermal environments. We used CTI to analyze changes in 160 marine assemblages (fish and invertebrates) across the rapidly‐changing Northeast U.S. Continental Shelf Large Marine Ecosystem and calculated expected community change based on historical relationships between species presence and temperature from a separate training dataset. We then compared interannual and long‐term temperature changes with expected community responses and observed community responses over both temporal scales. For these marine communities, we found that community composition as well as composition changes through time could be explained by species associations with bottom temperature. Individual species had non‐linear responses to changes in temperature, and these nonlinearities scaled up to a nonlinear relationship between CTI and temperature. On average, CTI increased by 0.36°C (95% CI: 0.34–0.38°C) for every 1°C increase in bottom temperature, but the relationship between CTI and temperature also depended on community composition. In addition, communities responded more strongly to interannual variation than to long‐term trends in temperature. We recommend that future research into climate‐driven community change accounts for nonlinear responses and examines ecological responses across a range of temporal and geographical scales.  相似文献   

12.
Climatic effects in the ocean at the community level are poorly described, yet accurate predictions about ecosystem responses to changing environmental conditions rely on understanding biotic responses in a food‐web context to support knowledge about direct biotic responses to the physical environment. Here we conduct time‐series analyses with multivariate autoregressive (MAR) models of marine zooplankton abundance in the Northern California Current from 1996 to 2009 to determine the influence of climate variables on zooplankton community interactions. Autoregressive models showed different community interactions during warm vs. cool ocean climate conditions. Negative ecological interactions among zooplankton groups characterized the major warm phase during the time series, whereas during the major cool phase, ocean transport largely structured zooplankton communities. Local environmental conditions (sea temperature) and large‐scale climate indices (El Niño/Southern Oscillation) were associated with changes in zooplankton abundance across the full time series. Secondary environmental correlates of zooplankton abundance varied with ocean climate phase, with most support during the warm phase for upwelling as a covariate, and most support during the cool phase for salinity. Through simultaneous quantitation of community interactions and environmental covariates, we show that marine zooplankton community structure varies with climate, suggesting that predictions about ecosystem responses to future climate scenarios in the Northern California Current should include potential changes to the base of the pelagic food.  相似文献   

13.
The severe environmental stresses of the Arctic may have promoted unique soil bacterial communities compared with those found in lower latitude environments. Here, we present a comprehensive analysis of the biogeography of soil bacterial communities in the Arctic using a high resolution bar‐coded pyrosequencing technique. We also compared arctic soils with soils from a wide range of more temperate biomes to characterize variability in soil bacterial communities across the globe. We show that arctic soil bacterial community composition and diversity are structured according to local variation in soil pH rather than geographical proximity to neighboring sites, suggesting that local environmental heterogeneity is far more important than dispersal limitation in determining community‐level differences. Furthermore, bacterial community composition had similar levels of variability, richness and phylogenetic diversity within arctic soils as across soils from a wide range of lower latitudes, strongly suggesting a common diversity structure within soil bacterial communities around the globe. These results contrast with the well‐established latitudinal gradients in animal and plant diversity, suggesting that the controls on bacterial community distributions are fundamentally different from those observed for macro‐organisms and that our biome definitions are not useful for predicting variability in soil bacterial communities across the globe.  相似文献   

14.
It is frequently assumed that population fluctuations are largely independent within a community of trophically‐similar species, but this need not be so. If population fluctuations are partly synchronized or concordant, this will produce interannual variability in the community's aggregate abundance and generate temporal variance in ecosystem structure. We studied the community of Lepidoptera inhabiting northern hardwood forests in New Hampshire, USA, to evaluate the hypothesis that fluctuations in consumer communities can arise from concordant dynamics of constituent populations. Interannual comparisons of moth abundances for >75 species sampled at three sites over four years revealed that concordant dynamics contribute strongly to interannual variability in the abundance of consumers. A conspicuous decline in community abundance from 2004 to 2005 was the result of predominantly negative population growth rates of the component species, while an increase in community abundance from 2006 to 2007 was the result of predominantly positive population growth rates. Population dynamics most strongly linked species that feed in the early season (perhaps due to shared responses to climatic effects), but not species that might share natural enemies or host plants. The observed concordant dynamics introduced conspicuous temporal variation in the abundance of primary consumers relative to plants and secondary consumers, thereby altering the forest's trophic structure. Such variance in the aggregate abundance of forest primary consumers could generate time‐lagged fluctuations in abundances of secondary consumers and will generally have important consequences for ecosystem properties and processes that are nonlinear functions of consumer abundance, such as plant community structure and nutrient cycling.  相似文献   

15.
Intraspecific phenotypic variation is a significant component of biodiversity. Body size, for example, is variable and critical for structuring communities. We need to understand how homogenous and variably sized populations differ in their ecological responses or effects if we are to have a robust understanding of communities. We manipulated body size variation in consumer (tadpole) populations in mesocosms (both with and without predators), keeping mean size and density of these consumers constant. Size‐variable consumer populations exhibited stronger antipredator responses (reduced activity), which had a cascading effect of increasing the biomass of the consumer's resources. Predators foraged less when consumers were variable in size, and this may have mediated the differential effects of predators on the community composition of alternative prey (zooplankton). All trophic levels responded to differences in consumer size variation, demonstrating that intrapopulation phenotypic variability can significantly alter interspecific ecological interactions. Furthermore, we identify a key mechanism (size thresholds for predation risk) that may mediate impacts of size variation in natural communities. Together, our results suggest that phenotypic variability plays a significant role in structuring ecological communities.  相似文献   

16.
Fish and zooplankton populations of nine Ethiopian freshwater lakes were quantitatively sampled along a North–South gradient. Differences in altitude and latitude resulted in a temperature gradient from North to South. We tested three hypotheses: (1) the degree of zooplanktivory decreases with water temperature, i.e. from North to South; (2) the degree of zooplanktivory increases with the abundance of large-bodied zooplankton; and (3) the pattern of zooplanktivory in eutrophic Ethiopian water bodies differs from other tropical and temperate water bodies. Proportions of zooplanktivory in the fish communities did not show a geographical trend, but mainly depended on fish species, zooplankton density and the availability of large-bodied cladocerans. The degree of zooplanktivory in eutrophic Ethiopian water bodies differs from other eutrophic water bodies, both temperate and tropical. In Ethiopia, the degree of zooplanktivory can be both low and high, in contrast with other tropical water bodies where zooplanktivory is generally low and with temperate eutrophic water bodies where it is generally high. As a result, predation pressure on zooplankton by fish varies dramatically amongst Ethiopian water bodies.  相似文献   

17.
The joint spatial and temporal fluctuations in community structure may be due to dispersal, variation in environmental conditions, ecological heterogeneity among species and demographic stochasticity. These factors are not mutually exclusive, and their relative contribution towards shaping species abundance distributions and in causing species fluctuations have been hard to disentangle. To better understand community dynamics when the exchange of individuals between localities is very low, we studied the dynamics of the freshwater zooplankton communities in 17 lakes located in independent catchment areas, sampled at end of summer from 2002 to 2008 in Norway. We analysed the joint spatial and temporal fluctuations in the community structure by fitting the two‐dimensional Poisson lognormal model under a two‐stage sampling scheme. We partitioned the variance of the distribution of log abundance for a random species at a random time and location into components of demographic stochasticity, ecological heterogeneity among species, and independent environmental noise components for the different species. Non‐neutral mechanisms such as ecological heterogeneity among species (20%) and spatiotemporal variation in the environment (75%) explained the majority of the variance in log abundances. Overdispersion relative to Poisson sampling and demographic stochasticity had a small contribution to the variance (5%). Among a set of environmental variables, lake acidity was the environmental variable that was most strongly related to decay of community similarity in space and time.  相似文献   

18.
Patterns of species occurrence and abundance are influenced by abiotic factors and biotic interactions, but these factors are difficult to disentangle without experimental manipulations. In this study, we used observational and experimental approaches to investigate the role of temperature and interspecific competition in controlling the structure of ground‐foraging ant communities in forests of the Siskiyou Mountains of southwestern Oregon. To assess the potential role of competition, we first used null model analyses to ask whether species partition temporal and/or spatial environments. To understand how thermal tolerances influence the structure of communities, we conducted a laboratory experiment to estimate the maximum thermal tolerance of workers and a field experiment in which we added shaded microhabitats and monitored the response of foragers. Finally, to evaluate the roles of temperature and interspecific competition in the field, we simultaneously manipulated shading and the presence of a dominant competitor (Formica moki). The foraging activity of species broadly overlapped during the diurnal range of temperatures. Species co‐occurrence patterns varied across the diurnal temperature range: species were spatially segregated at bait stations at low temperatures, but co‐occurred randomly at high temperatures. The decreased abundance of the co‐occurring thermophilic Temnothorax nevadensis in shaded plots was a direct effect of shading and not an indirect effect of competitive interactions. Thermal tolerance predicted the response of ant species to the shading experiment: species with the lowest tolerances to high temperatures showed the greatest increase in abundance in the shaded plots. Moreover, species with more similar thermal tolerance values segregated more frequently on baits than did species that differed in their thermal tolerances. Collectively, our results suggest that thermal tolerances of ants may mediate competitive effects in habitats that experience strong diurnal temperature fluctuations.  相似文献   

19.
How ecological communities respond to predicted increases in temperature will determine the extent to which Earth's biodiversity and ecosystem functioning can be maintained into a warmer future. Warming is predicted to alter the structure of natural communities, but robust tests of such predictions require appropriate large‐scale manipulations of intact, natural habitat that is open to dispersal processes via exchange with regional species pools. Here, we report results of a two‐year whole‐stream warming experiment that shifted invertebrate assemblage structure via unanticipated mechanisms, while still conforming to community‐level metabolic theory. While warming by 3.8 °C decreased invertebrate abundance in the experimental stream by 60% relative to a reference stream, total invertebrate biomass was unchanged. Associated shifts in invertebrate assemblage structure were driven by the arrival of new taxa and a higher proportion of large, warm‐adapted species (i.e., snails and predatory dipterans) relative to small‐bodied, cold‐adapted taxa (e.g., chironomids and oligochaetes). Experimental warming consequently shifted assemblage size spectra in ways that were unexpected, but consistent with thermal optima of taxa in the regional species pool. Higher temperatures increased community‐level energy demand, which was presumably satisfied by higher primary production after warming. Our experiment demonstrates how warming reassembles communities within the constraints of energy supply via regional exchange of species that differ in thermal physiological traits. Similar responses will likely mediate impacts of anthropogenic warming on biodiversity and ecosystem function across all ecological communities.  相似文献   

20.
Climate warming has been linked with changes in the spatiotemporal distribution of species and the body size structure of ecological communities. Body size is a master trait underlying a host of physiological, ecological and evolutionary processes. However, the relative importance of environmental drivers and life history strategies on community body size structure across large spatial and temporal scales is poorly understood. We used detailed data of 83 copepod species, monitored over a 57-year period across the North Atlantic, to test how sea surface temperature, thermal and day length seasonality relate to observed latitudinal-size clines of the zooplankton community. The genus Calanus includes dominant taxa in the North Atlantic that overwinter at ocean depth. Thus we compared the copepod community size structure with and without Calanus species, to partition the influence of this life history strategy. The mean community body size of copepods was positively associated with latitude and negatively associated with temperature, suggesting that these communities follow Bergmann's rule. Including Calanus species strengthens these relationships due to their larger than average body sizes and high seasonal abundances, indicating that the latitudinal-size cline may be adaptive. We suggest that seasonal food availability prevents high abundance of smaller-sized copepods at higher latitudes, and that active vertical migration of dominant pelagic species can increase their survival rate over the resource-poor seasons. These findings improve our understanding of the impacts that climate warming has on ecological communities, with potential consequences for trophic interactions and biogeochemical processes that are well known to be size dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号