首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Anthropogenic habitat alteration interferes the natural aquatic habitats and the system''s hydrodynamics in the Yangtze River floodplain lakes, resulting in a serious decline in freshwater biodiversity. Zooplankton communities possess major position in freshwater ecosystems, which play essential parts in maintaining biological balance of freshwater habitats. Knowledge of processes and mechanisms for affecting variations in abundance, biomass, and diversity of zooplankton is important for maintaining biological balance of freshwater ecosystems. Here, we analyzed that the temporal and spatial changes in the structure of zooplankton community and their temporal and spatial variations respond to changes in environmental factors in the middle reach of Yangtze River floodplain lakes. The results showed that zooplankton samples were classified into 128 species, and Rotifera was the most common taxa. Significant seasonal differences were found among the abundance and diversity of zooplankton. Similarly, we also found significant seasonal differences among the biomass of zooplankton functional groups. The spatial turnover component was the main contributor to the β diversity pattern, which indicated that study areas should establish habitat restoration areas to restore regional biodiversity. The NMDS plot showed that the structure of zooplankton community exhibited significant seasonal changes, where the community structure was correlated with pH, water temperature, water depth, salinity, total nitrogen, chlorophyll‐a, and total phosphorus based on RDA. This study highlights that it is very important to ensure the floodplain ecosystem''s original state of functionality for maintaining the regional diversity of the ecosystem as a whole.  相似文献   

2.
长江中下游四大淡水湖生态系统完整性评价   总被引:2,自引:2,他引:2  
长江中下游地区是我国淡水湖泊集中分布区域,研究该区域湖泊生态系统完整性对于湖泊生态系统保护和恢复具有重要意义。物理、化学和生物完整性指标已经广泛应用于河湖生态系统健康评价,但是缺少物理、化学和生物完整性的综合评价方法。以历史调查状况为主要参照系统,构建了基于物理、化学和生物完整性的多参数湖泊完整性综合评价指标体系,结合近年来长江中下游四大淡水湖(洞庭湖、鄱阳湖、巢湖、太湖)生态系统调查数据,对四大淡水湖生态系统完整性进行了评价。结果表明,洞庭湖、鄱阳湖、巢湖和太湖的综合得分分别为66、71、57和57。根据评价等级划分标准,洞庭湖和鄱阳湖生态系统完整性状况都达到"好"的等级,而巢湖和太湖则处于"一般"等级;结果显示,该指标能够表征人类活动对于湖泊生态系统完整性不同方面的干扰,且能够反映四大淡水湖生态系统完整性历史变化状况。因此,该方法可以作为长江中下游淡水湖泊生态系统完整性综合评价的工具并能够为湖泊生态系统的保护和恢复提供科学支撑。  相似文献   

3.
1. A survey of 30 subtropical shallow lakes in the middle and lower reaches of the Yangtze River area in China was conducted during July–September in 2003–2004 to study how environmental and biological variables were associated with the concentration of the cyanobacterial toxin microcystin (MC). 2. Mean MC concentration in seasonally river‐connected lakes (SL) was nearly 33 times that in permanently river‐connected lakes (RL), and more than six times that in city lakes (NC) and non‐urban lakes (NE) which were not connected to the Yangtze River. The highest MC (8.574 μg L?1) was detected in Dianshan Lake. 3. MC‐RR and MC‐LR were the primary toxin variants in our data. MC‐RR, MC‐YR and MC‐LR were significantly correlated with Chl a, biomass of cyanobacteria, Microcystis and Anabaena, indicating that microcystins were mainly produced by Microcystis and Anabaena sp. in these lakes. 4. Nonlinear interval maxima regression indicated that the relationships of Secchi depth, total nitrogen (TN) : total phosphorus (TP) and NH with MC were characterised by negative exponential curves. The relationships between MC and TN, TP, NO + NO were fitted well with a unimodal curve. 5. Multivariate analyses by principal component and classifying analysis indicated that MC was mainly affected by Microcystis among the biological factors, and was closely related with temperature among physicochemical factors.  相似文献   

4.
长江中游浅水湖泊生物完整性时空变化   总被引:16,自引:1,他引:15  
朱迪  常剑波 《生态学报》2004,24(12):2761-2767
介绍了采用 Karr提出、经 Fausch等修订后的生物完整性指数 (IBI)进行水环境质量评价的原理和概念 ,并根据长江中游鱼类种类组成特征、可获得数据的类型和资料的性质 ,初步建立了适合长江中游浅水湖泊的 IBI体系。同时 ,以基本保持了长江中游浅水湖泊自然属性的五湖 1978年的调查数据为参照 ,选择长江中游不同类型的浅水湖泊进行了生物完整性时空变化的比较研究。结果表明 :以洪湖为例进行纵向比较 ,在 196 4、1981、1993年和 1998年等 4个不同的年代 ,其生物完整性呈逐步下降的趋势 ;以 2 0世纪 90年代初期的资料进行横向比较 ,三湖连江水库和保安湖的生物完整性表现为一般 ,洪湖为差 ,东湖则很差。上述湖泊所呈现的生物完整性的时空变化趋势与其它相关研究所反映的湖泊水环境质量互为补充验证 ,可以为湖泊管理、持续发展和利用以及水环境保护提供更为充分的科学依据  相似文献   

5.
Poyang Lake (Poyang Hu) is located at the junction of the middle and lower reaches of the Yangtze (Changjiang) River, covering an area of 3283 km2. As one of the few lakes that are still freely connected with the river, it plays an important role in the maintenance of the unique biota of the Yangtze floodplain ecosystem. To promote the conservation of Poyang Lake, an investigation of the macrobenthos in the lake itself and adjoining Yangtze mainstream was conducted in 1997–1999. Altogether 58 benthic taxa, including 22 annelids, 8 mollusks, 26 arthropods, and 2 miscellaneous animals, were identified from quantitative samples. The benthic fauna shows a high diversity and a marine affinity. The standing crops of benthos in the lake were much higher than those in the river, being 659 individuals/m2 and 187.3 g/m2 (wet mass) in the main lake, and 549 individuals/m2 and 116.6 g/m2 in the lake outlet, but only 129 individuals/m2 and 0.4 g/m2 in the river. The dominant group in the lake was Mollusca, comprising 63.4% of the total in density and 99.5% in biomass. An analysis of the functional feeding structure indicated that collector-filterers and scrapers were predominant in the lake, up to 42.2% and 24.7% in density and 70.2% and 29.2% in biomass, respectively, while shredders and collector-gatherers were relatively common in the river. The present study was restricted to the northern outlet and the northeast part of Poyang Lake. A scrutiny is required for the remaining areas.  相似文献   

6.
We investigated aquatic macrophytes, water quality, and phytoplankton biomass and species composition in three shallow lakes with different levels of vegetation cover and nutrient concentration in Kushiro Moor, during August 2000. Trapa japonica can live in a wide range of nutrient levels. This species forms an environment with a steeper extinction of light, higher concentrations of dissolved organic carbon (DOC), lower concentrations of dissolved oxygen (DO) near the bottom, and lower concentrations of nitrate+nitrite and soluble reactive phosphorus (SRP) than other vegetation types. The pH was much higher in a Polygonum amphibium community, and the DO near the bottom did not decrease compared to a T.japonica community in the summer. The relationship between chlorophyll a and the limiting nutrient (total phosphorus (TP) when total nitrogen (TN):TPis 10 and TN/10 when TN:TP is <10) significantly differed between lakes with and without submerged vegetation. The chlorophyll a concentrations at a given nutrient level were significantly lower in water with submerged macrophytes than in water without them. Correspondence analysis showed that the difference in phytoplankton community structure across sites was largely due to the presence or absence of submerged macrophytes, and the ordination of phytoplankton species in the lakes with submerged macrophytes is best explained by environmental gradients of TN, chlorophyll, pH and SRP.  相似文献   

7.
1. The scale of investigations influences the interpretation of results. Here, we investigate the influence of fish and nutrients on biotic communities in shallow lakes, using studies at two different scales: (i) within‐lake experimental manipulation and (ii) comparative, among‐lake relationships. 2. At both scales, fish predation had an overriding influence on macroinvertebrates; fish reduced macroinvertebrate biomass and altered community composition. Prey selection appeared to be size based. Fish influenced zooplankton abundance and light penetration through the water column also, but there was no indication that fish caused increased resuspension of sediment. 3. There were effects of nutrients at both scales, but these effects differed with the scale of the investigation. Nutrients increased phytoplankton and periphyton at the within‐lake scale, and were associated with increased periphyton at the among‐lake scale. No significant effect of nutrients on macroinvertebrates was observed at the within‐lake scale. However, at the among‐lake scale, nutrients positively influenced the biomass and density of macroinvertebrates, and ameliorated the effect of fish on macroinvertebrates. 4. Increased prey availability at higher nutrient concentrations would be expected to cause changes in the fish community. However, at the among‐lake scale, differences were not apparent in fish biomass among lakes with different nutrient conditions, suggesting that stochastic events influence the fish community in these small and relatively isolated shallow lakes. 5. The intensity of predation by fish significantly influences macroinvertebrate community structure of shallow lakes, but nutrients also play a role. The scale of investigation influences the ability to detect the influence of nutrients on the different components of shallow lake communities, particularly for longer lived organisms such as macroinvertebrates, where the response takes longer to manifest.  相似文献   

8.
9.
长江中下游湖群大型底栖动物群落结构及影响因素   总被引:3,自引:0,他引:3  
蔡永久  姜加虎  张路  陈宇炜  龚志军 《生态学报》2013,33(16):4985-4999
长江中下游地区是我国淡水湖泊分布最为密集的区域,其中面积大于10 km2的湖泊总面积占相同级别中国淡水湖泊总面积的51.3%。目前对本地区湖泊大型底栖动物研究主要是关于单个湖泊或几个湖泊之间的比较,将区域内湖泊作为一个整体来分析的研究较少。为揭示现阶段长江中下游浅水湖泊底栖动物群落现状及其主要影响因素,于2008年和2009年夏季对本地区5个湖群69个湖泊大型底栖动物和水化学进行了调查,并分析区域过程和局域环境条件在决定该地区底栖群落结构中的相对重要性。结果表明水体矿化度、电导率及氮磷指标在不同湖群间具有显著差异,而高锰酸盐指数、叶绿素a及营养状态指数无显著差异。密度方面,以寡毛类和摇蚊幼虫为优势类群的湖泊共46个,占总数量的66.7%,以螺类为优势类群之一的湖泊16个,占总数量的23.2%;生物量方面,以螺类为优势的湖泊数量最多(33个),占总数量的46.4%,但以寡毛类和摇蚊幼虫占优势的湖泊亦有27个,占总数量的39.1%,双壳类仅在9个湖泊占据优势。典范对应分析结果表明该地区底栖动物群落结构是局域环境条件和区域过程共同作用的结果,两类因子共解释了33.9%的底栖动物群落变异,其中局域环境因子占被解释量的48.1%,空间变量占35.4%。空间变量较高的解释量表明对整个长江中下游地区湖泊而言,区域过程对底栖动物的分布也起着非常重要的作用。  相似文献   

10.
No detailed food web research on macroinvertebrate community of lacustrine ecosystem was reported in China. The present study is the first attempt on the subject in Lake Biandantang, a macrophytic lake in Hubei Province. Food webs of the macroinvertebrate community were compiled bimonthly from March, 2002 to March, 2003. Dietary information was obtained from gut analysis. Linkage strength was quantified by combining estimates of energy flow (secondary production) with data of gut analysis. The macroinvertebrate community of Lake Biandantang was based heavily on detritus. Quantitative food webs showed the total ingestion ranged from 6930 to 36,340 mg dry mass m−2 bimonthly. The ingestion of macroinvertebrate community was higher in the months with optimum temperature than that in other periods with higher or lower temperature. Through comparison, many patterns in benthic food web of Lake Biandantang are consistent with other detritus-based webs, such as stream webs, but different greatly from those based on autochthonous primary production (e.g. pelagic systems). It suggests that the trophic basis of the web is essential in shaping food web structure. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

11.
W. F. DeBusk 《Hydrobiologia》1988,159(2):159-167
A field study was conducted (May 1981 to June 1982) to develop a data-base on seasonal changes of water and sediment chemistry of Lake Monroe (4 000 ha surface and ca. 2 m deep) located in central Florida, USA. This shallow eutrophic lake is a part of the St. Johns River. Quantitative samples of lake water and sediments were collected on a monthly basis from 16 stations and analyzed for various physico-chemical parameters. Relatively high levels of dissolved solids (mean electrical conductivity (EC) = 1832 µS cm1) prevailed in the lake water, and seasonal changes in EC were probably associated with hydrologic flushing from external sources, such as incoming water from upstream as well as precipitation. Average monthly levels of total N and P during the study period were 1.82 and 0.21 mg l–1, respectively. Nutrient concentrations in the water did not show any strong seasonal trends. Organic matter content of lake sediments ranged from 1 to 182 g C kg–1 of dry sediment, reflecting considerable spatial variability. All nutrient elements in the sediments showed highly significant (P < 0.01) correlations with sediment organic C, though little or no significant relationship appeared at any sampling period between water and sediment chemistry of the lake. Temporal trends in water and sediment chemical parameters may have been concealed by periodic hydrologic flushing of the St. Johns River into Lake Monroe.Florida Agricultural Experiment Stations Journal Series No. 7836.  相似文献   

12.
SUMMARY 1. We sampled a set of 93 lakes situated in the floodplains of the lower River Rhine in search for morphometric and other factors that explain their variation in clarity.
2. Lakes with a drop in summer water level were less turbid at the time of sampling, mainly because of a lower concentration of inorganic suspended solids (ISS).
3. We also found that older lakes were more turbid than younger lakes and that this was largely because of an increase in phytoplankton.
4. Water clarity was positively related to lake depth and the presence of vegetation.
5. Model calculations indicated that the underwater light climate was strongly affected by chlorophyll and ISS, the latter being the dominant factor affecting Secchi depth. Dissolved organic carbon (DOC) was less important.
6. The high concentration of ISS suggests that intensive resuspension occurs in most of the lakes. Using a simple wave model, and assuming that vegetation protects sediments against resuspension, we could eliminate wind resuspension as an important process in 90% of the lakes, leaving resuspension by benthivorous fish as probably the most important factor determining transparency.
7. Chlorophyll a concentration showed a strong positive correlation to ISS concentration, suggesting that resuspension may also have a positive effect on phytoplankton biomass in these lakes.
8. In conclusion, in-lake processes, rather than river dynamics, seem to be driving the turbidity of floodplain lakes along the lower River Rhine.  相似文献   

13.
Like many shallow surface waters in the Netherlands the North Holland Vecht lakes, formerly known for their rich variety of flora and fauna, now face a serious eutrophication problem. Nutrient enrichment has been mainly in the form of (treated) wastewater discharges, and the continuing ingress of nutrient-loaded water from the river Vecht. Yet, this water has to be supplied in order to compensate for water shortages resulting from (i) changes in the groundwater flow pattern due to reclamation of the deep polder Horstermeer, (ii) extensive groundwater extraction in the Gooi hills, and (iii) extensive drainage for agricultural purposes.The present policy of eutrophication abatement and restoration of the Ankeveen and Kortenhoef lakes ecosystems is focused on eliminating wastewater discharges and Vecht water supply. It also allows for additional dredging measures. Because of the un-suitable major ion composition of the Vecht, the aim is to compensate for this water supply by (i) partial restoration of the original groundwater flow from the Gooi hills and (ii) periphere additional supply with fresh seepage water from the skirts of the Horstermeer polder. However, uncertainty exists about the amounts of water needed.Water balances and phosphorus budgets have been established to ascertain the water demands of the lakes and to gain a detailed insight into the nutrient fluxes through the lakes. A groundwater flow model is used to assess the beneficial effects of the proposed measures.The results obtained, question the current unilateral restoration objectives. Calculations reveal that, both in the present situation and after (total) reduction of groundwater extractions in the future, the available quantity of fresh seepage water from the skirts of the polder Horstermeer is not sufficient to replace the inlet from the river Vecht into the Kortenhoef lakes. Additional supply options are available but the ones favoured from an ecological viewpoint are either the most expensive or less favoured from a social point of view. Although the sediments of the lakes appear to be a major source of eutrophication, the possibility of dredging the lakes will be considered only after reviewing results of a pilot-dredging project in the Hollands Ankeveen lakes in 1991.  相似文献   

14.
15.
The impact of hydrology (floods, seepage) on the chemistry of water and sediment in floodplain lakes was studied by a multivariate analysis (PCA) of physico-chemical parameters in 100 lakes within the floodplains in the lower reaches of the rivers Rhine and Meuse. In addition, seasonal fluctuations in water chemistry and chlorophyll-a development in the main channel of the Lower Rhine and five floodplain lakes along a flooding gradient were monitored. The species composition of the summer phytoplankton in these lakes was studied as well.At present very high levels of chloride, sodium, sulphate, phosphate and nitrate are found in the main channels of the rivers Rhine and Meuse, resulting from industrial, agricultural and domestic sewage. Together with the actual concentrations of major ions and nutrients in the main channel, the annual flood duration determines the physico-chemistry of the floodplain lakes. The river water influences the water chemistry of these lakes not only via inundations, but also via seepage. A comparison of recent and historical chemical data shows an increase over the years in the levels of chloride both in the main channel of the Lower Rhine and in seepage lakes along this river. Levels of alkalinity in floodplain lakes showed an inverse relationship with annual flood duration, because sulphur retention and alkalinization occurred in seepage waters and rarely-flooded lakes. The input of large quantities of nutrients (N, P) from the main channel has resulted, especially in frequently flooded lakes, in an increase in algal biomass and a shift in phytoplankton composition from a diatom dominated community towards a community dominated by chlorophytes and cyanobacteria.  相似文献   

16.
A new, flexible, fast, robust and economic technique was developed to treat sediment in shallow lakes with phosphate binding chemicals. The upper 0.15 m of the sediment is thoroughly mixed with ferric chloride using a water-jet manifold coupled to a dosing pump and a navigation control system. Its logistics were tried out in a small, shallow and hypertrophic peat lake, Lake Groot Vogelenzang.  相似文献   

17.
Temperature, dissolved oxygen and dissolved methane profiles were measured during autumn and summer, in a shallow floodplain lake in south-eastern Australia to determine the effects of water-column stability on methane and oxygen dynamics. The water column was well mixed in autumn. Strong thermal stratification developed in the late afternoon in summer, with top-to-bottom temperature differences of up to 6 °C. Methane concentrations in surface waters varied over a daily cycle by an 18-fold range in summer, but only by a 2-fold range in autumn. The implication of short-term temporal variation is that static chambers deployed on the water surface for short times (less than a day) in summer will significantly underestimate the diffusive component of methane emissions across the water–atmosphere interface. There was a marked diel variation in dissolved oxygen concentrations in summer, with the highest oxygen values (commonly 5–8 mg l–1) occurring in the surface waters in late afternoon; the bottom waters were then devoid of oxygen (< 0.2 mg l–1). Because of high respiratory demands, even the surface water layers could be nearly anoxic by morning in summer. The concentration of dissolved oxygen in the surface waters was always less than the equilibrium value. When the water column became thermally stratified in summer, the dissolved oxygen and methane maxima were spatially separated, and planktonic methanotrophy would be limited to a moving zone, at variable depth, in the water column. In summer the whole-wetland rates of oxygen production and respiration, calculated from long-term (5 h) shifts in dissolved oxygen concentrations over a diel period, were approximately 6–10 and 3–6 mmol m–3 h–1, respectively. These values correspond to net and gross primary production rates of 0.7–1.2 and 1.0–1.9 g C m–3 day–1, respectively.  相似文献   

18.
The eutrophication of lowland lakes in Europe by excess nitrogen (N) and phosphorus (P) is severe because of the long history of land‐cover change and agricultural intensification. The ecological and socio‐economic effects of eutrophication are well understood but its effect on organic carbon (OC) sequestration by lakes and its change overtime has not been determined. Here, we compile data from ~90 culturally impacted European lakes [~60% are eutrophic, Total P (TP) >30 μg P l?1] and determine the extent to which OC burial rates have increased over the past 100–150 years. The average focussing corrected, OC accumulation rate (C ARFC) for the period 1950–1990 was ~60 g C m?2 yr?1, and for lakes with >100 μg TP l?1 the average was ~100 g C m?2 yr?1. The ratio of post‐1950 to 1900–1950 C AR is low (~1.5) indicating that C accumulation rates have been high throughout the 20th century. Compared to background estimates of OC burial (~5–10 g C m?2 yr?1), contemporary rates have increased by at least four to fivefold. The statistical relationship between C ARFC and TP derived from this study (r2 = 0.5) can be used to estimate OC burial at sites lacking estimates of sediment C‐burial. The implications of eutrophication, diagenesis, lake morphometry and sediment focussing as controls of OC burial rates are considered. A conservative interpretation of the results of the this study suggests that lowland European meso‐ to eutrophic lakes with >30 μg TP l?1 had OC burial rates in excess of 50 g C m?2 yr?1 over the past century, indicating that previous estimates of regional lake OC burial have seriously underestimated their contribution to European carbon sequestration. Enhanced OC burial by lakes is one positive side‐effect of the otherwise negative impact of the anthropogenic disruption of nutrient cycles.  相似文献   

19.
赵文倩  刘振中  郭文莉  周忠泽 《生态学报》2023,43(13):5558-5570
浅水湖泊生态系统正遭受广泛而强烈的人为干扰,但是对收割水生植物干扰的研究甚少。于2019年8月对芡实过度生长的陈瑶湖进行通道式分区收割工程,分析了收割芡实(Euryale ferox)前后不同处理组浮游植物群落的变化。研究期间共鉴定出浮游植物6门47属72种,其中收割前63种,收割后71种。收割后浮游植物的细胞密度和生物量均高于收割前,分别增加了39.78%和5.09%。收割芡实导致陈瑶湖浮游植物群落为由蓝藻-绿藻-硅藻-隐藻群落转变为蓝藻-绿藻-硅藻群落。其中蓝藻细胞密度和生物量显著高于收割前(P<0.05),归因于有害蓝藻(铜绿微囊藻Microcystis aeruginosa、水华束丝藻Aphanizomenon flos-aquae、小颤藻Oscillatoria tenuis、卷曲鱼腥藻Dolicospermum circinale、小席藻Phormidium tenu)的增加。收割还导致了硅藻群落由附生型向浮游型硅藻的转变,表现为尖针杆藻(Ulnaria acus)减少,而颗粒直链藻极狭变种(Aulacoseira granulata var.angustissima)、梅尼小环藻(Cyclotella meneghiniana)增加。在芡实收割过程中,未收割组和河道的浮游植物群落结构在时空分布上无显著性差异(P>0.05),但收割组在收割后的不同阶段内差异较为明显,其细胞密度和生物量随着收割实验的结束逐渐降低。浮游植物与环境因子的相关性分析表明,水生植被覆盖度、总磷、总氮、溶解氧和叶绿素a浓度是影响浮游植物细胞密度和生物量变化的主要环境因子。综合陈瑶湖水质状态,本研究认为收割芡实并不能缓解浅水湖泊富营养化状况,研究结果为浅水湖泊水生植被的管理提供理论依据。  相似文献   

20.
Daphnia lumholtzi comprises a substantial component of the zooplankton community during mid‐ to late‐summer in Lake Chautauqua, a floodplain lake along the Illinois River near Havana, Illinois. In order to quantify the utilization of D. lumholtzi by juvenile fishes, diet analyses were conducted for seven juvenile fish species collected from Lake Chautauqua during the 2001 annual drawdown period. Freshwater drum Aplodinotus grunniens and emerald shiner Notropis atherinoides demonstrated negative selectivity for D. lumholtzi relative to native zooplankton species whereas four species of fish (bluegill Lepomis macrochirus, white bass Morone chrysops, white crappie Pomoxis annularis and black crappie Pomoxis nigromaculatus) consumed substantial amounts of D. lumholtzi. Although selectivity values for D. lumholtzi varied among these fish species, positive selection for D. lumholtzi increased similarly among larger size classes of each fish species, and corresponded with ontogenetic shifts in diet. Mean body length of D. lumholtzi consumed by 20–69 mm LT juvenile fishes ranged from 0·75 to 0·99 mm with a calculated total length range of 2·0–2·6 mm. Results from this study provide evidence that high abundances of D. lumholtzi in mid‐ to late‐summer provide an additional food source for several juvenile fish species during a time when abundances of large native cladoceran species (i.e. Daphnia) are low, and juvenile fishes are searching for larger prey associated with ontogenetic shifts from zooplankton to macroinvertebrates and fishes. Because zooplankton production is typically lower in rivers than in lakes, survivorship of juvenile fishes produced in floodplain lakes may be higher in riverine systems if they are not reliant on zooplankton as a primary food resource. Therefore, high abundances of D. lumholtzi may benefit juvenile fishes in managed floodplain lakes, such as Lake Chautauqua, by increasing growth and facilitating the transition from zooplanktivory to insectivory or piscivory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号