首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang B  Mao JF  Gao J  Zhao W  Wang XR 《Molecular ecology》2011,20(18):3796-3811
Pinus densata is an intriguingly successful homoploid hybrid species that occupies vast areas of the southeastern Tibetan Plateau in which neither of its parental species are present, but the colonization processes involved are poorly understood. To shed light on how this species colonized and became established on the plateau, we surveyed paternally inherited chloroplast (cp) and maternally inherited mitochondrial (mt) DNA variation within and among 54 populations of P. densata and its putative parental species throughout their respective ranges. Strong spatial genetic structure of both cp and mtDNA were detected in P. densata populations. Mitotypes specific to P. densata were likely generated by complex recombination events. A putative ancestral hybrid zone in the northeastern periphery of P. densata was identified, and we propose that the species then colonized the plateau by migrating westwards. Along the colonization route, consecutive bottlenecks and surfing of rare alleles caused a significant reduction in genetic diversity and strong population differentiation. The direction and intensity of introgression from parental species varied among geographic regions. In western parts of its range, the species seems to have been isolated from seed and pollen flow from its parent species for a long time. The observed spatial distribution of genetic diversity in P. densata also appears to reflect the persistence of this species on the plateau during the last glaciation. Our results indicate that both ancient and contemporary population dynamics have contributed to the spatial distribution of genetic diversity in P. densata, which accordingly reflects its evolutionary history.  相似文献   

2.
Pinus densata is distributed on the Tibetan Plateau, where it forms extensive forests at high elevations. Genetic studies have provided evidence that P. densata originated through hybridization between P. yunnanensis and P. tabuliformis. To clarify the relationships among these pines, and assess their reproductive fitness in their respective habitats, we conducted a comparative analysis of eight cone and seed morphometric traits and six reproductive traits in them. Among the eight morphometric traits examined, six appeared to be intermediate in P. densata between those of P. yunnanensis and P. tabuliformis. There were significant differences among the three pines in all of the morphometric traits, and P. densata showed greater variability in these traits than the other two pines. In contrast to the morphometric traits, the reproductive traits (including the proportions of filled and empty seeds, ovule abortion rate, seed efficiency, meiotic abnormalities during microsporogenesis and pollen viability) differed little among the three pines, indicating that they have similar overall rates of effective pollination and fertilization in their respective natural environments. Despite their location on the high plateau, natural populations of P. densata appeared to have normal levels of reproductive success, comparable to those of the two parental species in their natural habitats. This study provides empirical data characterizing the reproductive success and adaptation of a stabilized homoploid hybrid in a novel habitat that is ecologically and spatially inaccessible to its parental species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Genetic analyses indicate that Pinus densata is a natural homoploid hybrid originating from Pinus tabuliformis and Pinus yunnanensis. Needle morphological and anatomical features show relative species stability and can be used to identify coniferous species. Comparative analyses of these needle characteristics and phenotypic differences between the artificial hybrids, P. densata, and parental species can be used to determine the genetic and phenotypic evolutionary consequences of natural hybridization. Twelve artificial hybrid families, the two parental species, and P. densata were seeded in a high‐altitude habitat in Linzhi, Tibet. The needles of artificial hybrids and the three pine species were collected, and 24 needle morphological and anatomical traits were analyzed. Based on these results, variations in 10 needle traits among artificial hybrid families and 22 traits among species and artificial hybrids were predicted and found to be under moderate genetic control. Nineteen needle traits in artificial hybrids were similar to those in P. densata and between the two parental species, P. tabuliformis and P. yunnanensis. The ratio of plants with three needle clusters in artificial hybrids was 22.92%, which was very similar to P. densata. The eight needle traits (needle length, the mean number of stomata in sections 2 mm in length of the convex and flat sides of the needle, mean stomatal density, mesophyll/vascular bundle area ratio, mesophyll/resin canal area ratio, mesophyll/(resin canals and vascular bundles) area ratio, vascular bundle/resin canal area ratio) relative to physiological adaptability were similar to the artificial hybrids and P. densata. The similar needle features between the artificial hybrids and P. densata could be used to verify the homoploid hybrid origin of P. densata and helps to better understand of the hybridization roles in adaptation and speciation in plants.  相似文献   

4.
Divergence during the early stage of speciation can be driven by a population bottleneck via reduced gene flow and enhanced lineage sorting. In this study, we aimed to examine whether such bottlenecks occurred during the initial speciation of two closely related spruce species Picea asperata and P. crassifolia occurring on the Qinghai–Tibet Plateau (QTP). We analyzed sequences of three chloroplast, two mitochondrial DNA fragments and a further 13 nuclear loci from 216 individuals of the two species. Both species showed a low level of genetic diversity in contrast to other congeners occurring in the QTP and adjacent regions. The estimated population sizes of P. asperata and P. crassifolia are less than the ancestral population size before splitting. These results together with multiple statistical tests (Tajima's D, Fu and Li's D* and F*) suggest that these two species underwent recent bottlenecks. Based on approximate Bayesian computation (ABC), we also determined that the period of the population shrinkage was consistent with the interspecific divergence during the late Pleistocene. The reduced population sizes and the divergent selection may together have triggered the initial divergence under high gene flow between these two species. Our results therefore highlight the importance of climatic oscillations during the late Pleistocene in promoting speciation through changing demographic sizes of the ancestral species on the QTP and in adjacent regions.  相似文献   

5.
Lu B  Zheng Y  Murphy RW  Zeng X 《Molecular ecology》2012,21(13):3308-3324
Orogenesis of topographically diverse montane regions often drives complex evolutionary histories of species. The extensive biodiversity of the eastern edge of the Tibetan Plateau, which gradually decreases eastwardly, facilitates a comparison of historical patterns. We use coalescence methods to compare species of stream salamanders (Batrachuperus) that occur at high and low elevations. Coalescent simulations reveal that closely related species are likely to have been influenced by different drivers of diversification. Species living in the western high‐elevation region with its northsouth extending mountains appear to have experienced colonization via dispersal followed by isolation and divergence. In contrast, species on the eastern low‐elevation region, which has many discontinuous mountain ranges, appear to have experienced fragmentation, sometimes staged, of wide‐ranging ancestral populations. The two groups of species appear to have been affected differently by glaciation. High‐elevation species, which are more resistant to cooler temperatures, appear to have experienced population declines as recently as the last glaciation (0.016–0.032 Ma). In contrast, salamanders dwelling in the warmer and wetter habitats at low‐elevation environs appear to have been affected less by the relatively recent, milder glaciation, and more so by harsher, extensive glaciations (0.5–0.175 Ma). Thus, elevation, topography and cold tolerance appear to drive evolutionary patterns of diversification and demography even among closely related taxa. The comparison of multiple species in genealogical analyses can lead to an understanding of the evolutionary drivers.  相似文献   

6.
Yu H  Ge S  Hong DY 《Biochemical genetics》2000,38(5-6):138-146
We investigated the levels and patterns of genetic diversity of Pinus densata Master in Yunnan. Horizontal starch-gel electrophoresis was performed on macrogametophytes collected from nine populations in northwestern Yunnan, China. Compared with other gymnosperm species, P. densata has higher mean values for all measures of genetic diversity. Allozyme polymorphism (0.99 criterion) was 97.0% and 71.4% at the species and population levels, respectively. The average number of alleles per locus was 3.1 and 2.0 at the species and population levels. Mean expected heterozygosity was substantially higher in P. densata than average values investigated for other gymnosperms both at the population (H ep = 0.174±0.031) and at the species (H es = 0.190) levels. Of the total genetic variation, less than 12% was partitioned among populations (G ST = 0.112). Our allozyme survey supports the suggestion that the observed higher diversity in P. densata may be attributed partly to its hybrid origin between two genetically distinct species, P. yunnanensis and P. tabulaeformis. In addition, we suggest that introgression would give rise to the increase in genetic diversity occurring in P. densata.  相似文献   

7.
Across their ranges, different populations of migratory species often use separate routes to migrate between breeding and non-breeding grounds. Recent changes in climate and land-use have led to breeding range expansions in many species but it is unclear whether these populations also establish new migratory routes, non-breeding sites and migration phenology. Thus, we compared the migration patterns of European Bee-eaters Merops apiaster from two established western (n = 5) and eastern (n = 6) breeding populations in Europe, with those from a newly founded northern population (n = 19). We aimed to relate the breeding populations to the two known non-breeding clusters in Africa, and to test for similarities of migration routes and timing between the old and new populations. Western Bee-eaters used the western flyway to destinations in West Africa; the eastern birds uniformly headed south to southern African non-breeding sites, confirming a complete separation in time and space between these long-established populations. The recently founded northern population, however, also used a western corridor, but crossed the Mediterranean further east than the western population and overwintered mainly in a new non-breeding area in southern Congo/northern Angola. The migration routes and the new non-breeding range overlapped only slightly with the western, but not with the eastern, population. In contrast, migration phenology appeared to differ between the western and both the northern and the eastern populations, with tracked birds from the western population migrating 2–4 weeks earlier. The northern population thus shares some spatial traits with western Bee-eaters, but similar phenology only with eastern population. This divergence highlights the adjustments in the timing of migration to local environmental conditions in newly founded populations, and a parallel establishment of new breeding and non-breeding sites.  相似文献   

8.
The coastal plain of the south‐eastern United States shows multiple biogeographic patterns of plant and animal dispersal; however, few freshwater fish taxa span these biogeographic barriers. Percina nigrofasciata, the Blackbanded Darter (Teleostomi: Percidae), is a small, benthic, freshwater fish species with an extensive range in the south‐eastern United States. Recently, two species have been elevated from within P. nigrofasciata: P. crypta and P. westfalli, but their ranges have not been established. We broadly sampled across the south‐eastern United States, encompassing the range of P. nigrofasciata sensu lato. We reconstruct the phylogeny of Percina using both mitochondrial and nuclear markers. Eighty‐four specimens of Percina nigrofasciata were sampled for the mitochondrial gene cytochrome b (1,119 bp) to form a base phylogeny. The nuclear marker S7‐I1 was subsampled across populations to detect instances of hybridization. Phylogenetic relationships with other members of the genus Percina were assessed through Bayesian inference. Our results suggest that Percina nigrofasciata sensu stricto occurs from the Lake Pontchartrain Basin in Louisiana to the rivers of the Mobile Basin with little genetic structuring throughout its range. Percina westfalli occurs from the Apalachicola River drainages to the Atlantic Slope from the Savannah River to the St. Johns River. We find that P. crypta is not genetically distinct from P. westfalli in the Chattahoochee and Flint Rivers. Possible ancestral hybridization occurred between the P. nigrofasciata and P. westfalli in the panhandle of Florida between Mobile Bay and the Apalachicola River.  相似文献   

9.
The uplift of the Tibetan Plateau caused significant ecogeographical changes that had a major impact on the exchange and isolation of regional fauna and flora. Furthermore, Pleistocene glacial oscillations were linked to temporal large‐scale landmass and drainage system reconfigurations near the Hengduan Mountain Region and might have facilitated speciation and promoted biodiversity in southwestern China. However, strong biotic evidence supporting this role is lacking. Here, we use the Euchiloglanis fish species complex as a model to demonstrate the compound effects of the Tibetan Plateau uplift and Pleistocene glacial oscillations on species formation in this region. The genetic structure and geographical differentiation of the Euchiloglanis complex in four river systems within the Hengduan Mountain Region were deduced using the cytochrome b (cyt b) gene and 10 microsatellite loci from 360 to 192 individuals, respectively. The results indicated that the populations were divided into four independently evolving lineages, in which the populations from the Qingyi River and Jinsha River formed two sub‐lineages. Phylogenetic relationships were structured by geographical isolation, especially near drainage systems. Divergence time estimation analyses showed that the Euchiloglanis complex diverged from its sister clade Pareuchiloglanis sinensis at around 1.3 Million years ago (Ma). Within the Euchiloglanis complex, the divergence time between the Dadu–Yalong and Jinsha–Qingyi River populations occurred at 1.0 Ma. This divergence time was in concordance with recent geological events, including the Kun‐Huang Movement (1.2–0.6 Ma) and the lag time (<2.0 Ma) of river incision in the Hengduan Mountain Region. Population expansion signals were detected from mismatched distribution analyses, and the expansion times were concurrent with Pleistocene glacier fluctuations. Therefore, current phylogeographic patterns of the Euchiloglanis fish complex in the Hengduan Mountain Region were influenced by the uplift event of the Tibetan Plateau and were subsequently altered by paleo‐river transitions during the late Pleistocene glacial oscillations.  相似文献   

10.
Various hypotheses have been proposed about the Quaternary evolutionary history of plant species on the Qinghai–Tibet Plateau (QTP), yet only a handful of studies have considered both population genetics and ecological niche context. In this study, we proposed and compared climate refugia hypotheses based on the phylogeographic pattern of Anisodus tanguticus (three plastid DNA fragments and nuclear internal transcribed spacer regions from 32 populations) and present and past species distribution models (SDMs). We detected six plastid haplotypes in two well‐differentiated lineages. Although all haplotypes could be found in its western (sampling) area, only haplotypes from one lineage occurred in its eastern area. Meanwhile, most genetic variations existed between populations (FST = 0.822). The SDMs during the last glacial maximum and last interglacial periods showed range fragmentation in the western area and significant range contraction in the eastern area, respectively, in comparison with current potential distribution. This species may have undergone intraspecific divergence during the early Quaternary, which may have been caused by survival in different refugia during the earliest known glacial in the QTP, rather than geological isolation due to orogenesis events. Subsequently, climate oscillations during the Quaternary resulted in a dynamic distribution range for this species as well as the distribution pattern of its plastid haplotypes and nuclear genotypes. The interglacial periods may have had a greater effect on A. tanguticus than the glacial periods. Most importantly, neither genetic data nor SDM alone can fully reveal the climate refugia history of this species. We also discuss the conservation implications for this important Tibetan folk medicine plant in light of these findings and SDMs under future climate models. Together, our results underline the necessity to combine phylogeographic and SDM approaches in future investigations of the Quaternary evolutionary history of species in topographically complex areas, such as the QTP.  相似文献   

11.
Historical tectonism and climate oscillations can isolate and contract the geographical distributions of many plant species, and they are even known to trigger species divergence and ultimately speciation. Here, we estimated the nucleotide variation and speciation in three closely related Populus species, Populus tremuloides, P. tremula and P. davidiana, distributed in North America and Eurasia. We analysed the sequence variation in six single‐copy nuclear loci and three chloroplast (cpDNA) fragments in 497 individuals sampled from 33 populations of these three species across their geographic distributions. These three Populus species harboured relatively high levels of nucleotide diversity and showed high levels of nucleotide differentiation. Phylogenetic analysis revealed that P. tremuloides diverged earlier than the other two species. The cpDNA haplotype network result clearly illustrated the dispersal route from North America to eastern Asia and then into Europe. Molecular dating results confirmed that the divergence of these three species coincided with the sundering of the Bering land bridge in the late Miocene and a rapid uplift of the Qinghai‐Tibetan Plateau around the Miocene/Pliocene boundary. Vicariance‐driven successful allopatric speciation resulting from historical tectonism and climate oscillations most likely played roles in the formation of the disjunct distributions and divergence of these three Populus species.  相似文献   

12.
Triplophysa orientalis (Herzenstein) is one of the Nemacheilinae (Cypriniformes: Balitoridae) fish species distributed in the Tibetan Plateau area. In order to understand the impact of plateau uplift on population history and the isolation effect of plateau lakes on T. orientalis, we examined its genetic structure and phylogenetic relationships. A total of 98 individuals from five wild populations, three from plateau lakes and two from branch rivers in upper reaches of the Yangtze River, in the eastern peripheral of the Tibetan Plateau were sampled. An 848 base pair fragment from the mitochondrial DNA (mtDNA) control region was sequenced for analyses. Overall, very high intra-population genetic variability was found in all populations except for one lake population (Rannicuo); nucleotide diversity ranged from 0.0025 to 0.0159 and haplotype diversity ranged from 0.641 to 0.879. Furthermore, the genetic distance between river populations (0.0326) was much higher than that among lake populations (Rannicuo and Barencuo 0.0035, Bannicuo and Yibicuo 0.0038, Rannicuo and Yibicuo 0.0049). Additionally, the analysis of molecular variance demonstrated that most of the observed genetic variability occurred among populations, accompanied with significant Fst values except for that between the Yibicuo and Barencuo populations. This evidence suggested a strong population structure of the species and a lack of inter-population connection. Lastly, the rate of migration indicated there were large historic gene flows among lake populations. Demographic analysis also indicated there were bottlenecks or expansions in three lake populations, suggesting a potential isolation effect of plateau lakes on population differentiation. Molecular dating of intra-specific divergence showed the plateau uplift has shaped the genetic structure of T. orientalis.  相似文献   

13.
Some of the most important insights into the ecological and evolutionary processes of diversification and speciation have come from studies of island adaptive radiations, yet relatively little research has examined how these radiations initiate. We suggest that Anolis sagrei is a candidate for understanding the origins of the Caribbean Anolis adaptive radiation and how a colonizing anole species begins to undergo allopatric diversification, phenotypic divergence and, potentially, speciation. We undertook a genomic and morphological analysis of representative populations across the entire native range of A. sagrei, finding that the species originated in the early Pliocene, with the deepest divergence occurring between western and eastern Cuba. Lineages from these two regions subsequently colonized the northern Caribbean. We find that at the broadest scale, populations colonizing areas with fewer closely related competitors tend to evolve larger body size and more lamellae on their toepads. This trend follows expectations for post‐colonization divergence from progenitors and convergence in allopatry, whereby populations freed from competition with close relatives evolve towards common morphological and ecological optima. Taken together, our results show a complex history of ancient and recent Cuban diaspora with populations on competitor‐poor islands evolving away from their ancestral Cuban populations regardless of their phylogenetic relationships, thus providing insight into the original diversification of colonist anoles at the beginning of the radiation. Our research also supplies an evolutionary framework for the many studies of this increasingly important species in ecological and evolutionary research.  相似文献   

14.
The mylabrine genus Pseudabris is endemic to the Tibetan Plateau and includes seven species with overlapping or disjunct ranges. The genus is revised: three new species, P. brevipilosa sp.n., P. latimaculata sp.n., P. regularis sp.n., are described and illustrated, and a key to the species is provided. Molecular evidence supports the placement of Pseudabris within the tribe Mylabrini. Results of a morphology‐based cladistic analysis support the existence of two lineages, one centred mainly on the south central plateau, and the second in the eastern area. Faunistics and bionomics of the genus are summarized, focusing on phenology, elevation, habitat preference and host plants. The endemism of the Tibetan Plateau is discussed, with a special focus on the genus Pseudabris.  相似文献   

15.
Ecological speciation plays a primary role in driving species divergence and adaptation. Oryza rufipogon and Oryza nivara are two incipient species at the early stage of speciation with distinct differences in morphology, life history traits and habitat preference, and therefore provide a unique model for the study of ecological speciation. However, the population genetic structure of the ancestral O. rufipogon has been controversial despite substantial study, and the origin of the derivative O. nivara remains unclear. Here, based on sequences of 10 nuclear and two chloroplast loci from 26 wild populations across the entire geographic ranges of the two species, we conducted comprehensive analyses using population genetics, phylogeography and species distribution modelling (SDM) approaches. In addition to supporting the two previously reported major subdivisions, we detected four genetically distinct groups within O. rufipogon and found no correlation between the genetic groups and either species identity or geographical regions. The SDM clearly showed substantial change in the distribution range of O. rufipogon in history, demonstrating that the repeated extinction and colonization of local populations due to multiple glacial–interglacial cycles during the Quaternary was most likely the main factor shaping the confounding population genetic structure of O. rufipogon. Moreover, we found significant differences between the two species in climate preferences, suggestive of an important role for climatic factors in the adaptation, persistence and expansion of O. nivara. Finally, based on the genetic pattern and dynamics of the O. nivara populations, we hypothesize that O. nivara might have independently originated multiple times from different O. rufipogon populations.  相似文献   

16.
The contemporary distribution and genetic structure of a freshwater fish provide insight into its historical geodispersal and geographical isolation following Quaternary climate changes. The short ninespine stickleback, Pungitius kaibarae, is a small gasterosteid fish occurring in freshwater systems on the Korean Peninsula and in southeast Russia. On the Korean Peninsula, P. kaibarae populations are distributed in three geographically separated regions: the NE (northeast coast), SE (southeast coast), and a limited area in the ND (Nakdong River). In this study, we used mitochondrial loci and microsatellites to investigate the evolutionary history of P. kaibarae populations by assessing their pattern of genetic structure. Our analyses revealed a marked level of divergence among three regional populations, suggesting a long history of isolation following colonization, although ND individuals showed relatively higher genetic affinity to populations from SE than those from NE. The populations from NE showed a great degree of interpopulation differentiation, whereas populations from SE exhibited only weak genetic structuring. Upon robust phylogenetic analysis, P. kaibarae formed a monophyletic group with Russian P. sinensis and P. tymensis with strong node confidence values, indicating that P. kaibarae populations on the Korean Peninsula originated from the southward migration of its ancestral lineage around the middle Pleistocene.  相似文献   

17.
Water frogs of the genus Pelophylax (previous Rana) species have been much studied in Europe for their outstanding reproductive mechanism in which sympatric hybridization between genetically distinct parental species produces diverse genetic forms of viable hybrid animals. The most common hybrid is P. esculentus that carries the genomes of both parental species, P. ridibundus and P. lessonae, but usually transfers the whole genome of only one parent to its offsprings (hybridogenesis). The evolutionary cost of transfer of the intact genome and hence the hemiclonal reproduction is the depletion of heterozygosity in the hybrid populations. Pelophylax esculentus presents an excellent example of the long‐term sustained hybridization and hemiclonal reproduction in which the effects of the low genetic diversity are balanced through the novel mutations and periodic recombinations. In this study, we analyzed the mitochondrial (mt) and microsatellites DNA variations in hybrid Pelophylax populations from southern parts of the Pannonian Basin and a north–south transect of the Balkan Peninsula, which are home for a variety of Pelophylax genetic lineages. The mtDNA haplotypes found in this study corresponded to P. ridibundus and P. epeiroticus of the Balkan – Anatolian lineage (ridibundus–bedriagae) and to P. lessonae and a divergent lessonae haplotype of the lessonae lineage. The mtDNA genomes showed considerable intraspecific variation and geographic differentiation. The Balkan wide distributed P. ridibundus was found in all studied populations and its nuclear genome, along with either the lessonae or the endemic epeiroticus genome, in all hybrids. An unexpected finding was that the hybrid populations were invariably heteroplasmic, that is, they contained the mtDNA of both parental species. We discussed the possibility that such extensive heteroplasmy is a result of hybridization and it comes from regular leakage of the paternal mtDNA from a sperm of one species that fertilizes eggs of another. In this case, the mechanisms that protect the egg from heterospecific fertilization and further from the presence of sperm mtDNA could become compromised due to their differences and divergence at both, mitochondrial and nuclear DNA. The heteroplasmy once retained in the fertilized egg could be transmitted by hybrid backcrossing to the progeny and maintained in a population over generations. The role of interspecies and heteroplasmic hybrid animals due to their genomic diversity and better fitness compare to the parental species might be of the special importance in adaptations to miscellaneous and isolated environments at the Balkan Peninsula.  相似文献   

18.
Both historical and contemporary processes influence the genetic structure of species, but the relative roles of such processes are still difficult to access. Population genetic studies of species with recent evolutionary histories such as the New Zealand endemic scallop Pecten novaezelandiae (<1 Ma) permit testing of the effects of recent processes affecting gene flow and shaping genetic structure. In addition, studies encompassing the entire distributional range of species can provide insight into colonization processes. Analyses of genetic variation in P. novaezelandiae (952 individuals from 14 locations, genotyped at 10 microsatellite loci) revealed a weak but significant regional structure across the distributional range of the species, as well as latitudinal gradients of genetic diversity and differentiation: estimates of migration rates supported these patterns. Our results suggest that the observed genetic structure and latitudinal gradients reflect a stepping‐stone model of colonization (north to south) and emerging divergence of populations as a result of ongoing limitations to gene flow and insufficient time to reach migration–drift equilibrium. The low levels of interpopulation and interregional genetic differentiation detected over hundreds of kilometres reflect the recent evolutionary history of P. novaezelandiae and stand in contrast to patterns reported for other evolutionary older species at the same spatial scale. The outcomes of this study contribute to a better understanding of evolutionary processes influencing the genetic variation of species and provide vital information on the genetic structure of P. novaezelandiae.  相似文献   

19.
Interspecific gene flow is pervasive throughout the tree of life. Although detecting gene flow between populations has been facilitated by new analytical approaches, determining the timing and geography of hybridization has remained difficult, particularly for historical gene flow. A geographically explicit phylogenetic approach is needed to determine the overlap of ancestral populations. In this study, we performed population genetic analyses, species delimitation, simulations and a recently developed approach of species tree diffusion to infer the phylogeographic history, timing and geographic extent of gene flow in lizards of the Sceloporus spinosus group. The two species in this group, S. spinosus and S. horridus, are distributed in eastern and western portions of Mexico, respectively, but populations of these species are sympatric in the southern Mexican highlands. We generated data consisting of three mitochondrial genes and eight nuclear loci for 148 and 68 individuals, respectively. We delimited six lineages in this group, but found strong evidence of mito‐nuclear discordance in sympatric populations of S. spinosus and S. horridus owing to mitochondrial introgression. We used coalescent simulations to differentiate ancestral gene flow from secondary contact, but found mixed support for these two models. Bayesian phylogeography indicated more than 60% range overlap between ancestral S. spinosus and S. horridus populations since the time of their divergence. Isolation–migration analyses, however, revealed near‐zero levels of gene flow between these ancestral populations. Interpreting results from both simulations and empirical data indicate that despite a long history of sympatry among these two species, gene flow in this group has only recently occurred.  相似文献   

20.
It is not known how the profoundly complex topography and habitat heterogeneity generated by the uplift of the Qinghai‐Tibetan Plateau (QTP) during the late Tertiary affected population genetic structure of endangered Taxus yunnanensis. In addition, the effects of habitat fragmentation due to anthropogenic disturbance on genetic diversity and population differentiation of this species have not been studied. T. yunnanensis is an ancient tree/shrub mainly distributed in southwest China. Recently, the species has suffered a sharp decline due to excessive logging for its famous anticancer metabolite taxol, resulting in smaller and more isolated populations. To understand the phylogeography and genetic consequences of habitat fragmentation of this endangered species, using 11 polymorphic microsatellites, we genotyped 288 individuals from 14 populations from a range‐wide sampling in China. Our results suggest that two different population groups that were once isolated have persisted in situ during glacial periods in both areas, and have not merged since. Habitat fragmentation has led to significant genetic bottlenecks, high inbreeding and population divergence in this species. The two different population groups of T. yunnanensis could be attributed to restricted gene flow caused through isolation by geographical barriers and by habitat heterogeneity during uplift of the QTP, or the existence of two separate glacial refugia during the Pleistocene. In situ and ex situ conservation of the two Evolutionarily Significant Units (ESUs), artificial gene flow between populations and a comprehensive understanding of the pollination system in this endangered species are suggested from this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号