首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article highlights how the loose definition of the term ‘refugia’ has led to discrepancies in methods used to assess the vulnerability of species to the current trend of rising global temperatures. The term ‘refugia’ is commonly used without distinguishing between macrorefugia and microrefugia, ex situ refugia and in situ refugia, glacial and interglacial refugia or refugia based on habitat stability and refugia based on climatic stability. It is not always clear which definition is being used, and this makes it difficult to assess the appropriateness of the methods employed. For example, it is crucial to develop accurate fine‐scale climate grids when identifying microrefugia, but coarse‐scale macroclimate might be adequate for determining macrorefugia. Similarly, identifying in situ refugia might be more appropriate for species with poor dispersal ability but this may overestimate the extinction risk for good dispersers. More care needs to be taken to properly define the context when referring to refugia from climate change so that the validity of methods and the conservation significance of refugia can be assessed.  相似文献   

2.
Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability – mesic microenvironments – are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species‐specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate‐cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow.  相似文献   

3.
Recent studies suggest that species distribution models (SDMs) based on fine‐scale climate data may provide markedly different estimates of climate‐change impacts than coarse‐scale models. However, these studies disagree in their conclusions of how scale influences projected species distributions. In rugged terrain, coarse‐scale climate grids may not capture topographically controlled climate variation at the scale that constitutes microhabitat or refugia for some species. Although finer scale data are therefore considered to better reflect climatic conditions experienced by species, there have been few formal analyses of how modeled distributions differ with scale. We modeled distributions for 52 plant species endemic to the California Floristic Province of different life forms and range sizes under recent and future climate across a 2000‐fold range of spatial scales (0.008–16 km2). We produced unique current and future climate datasets by separately downscaling 4 km climate models to three finer resolutions based on 800, 270, and 90 m digital elevation models and deriving bioclimatic predictors from them. As climate‐data resolution became coarser, SDMs predicted larger habitat area with diminishing spatial congruence between fine‐ and coarse‐scale predictions. These trends were most pronounced at the coarsest resolutions and depended on climate scenario and species' range size. On average, SDMs projected onto 4 km climate data predicted 42% more stable habitat (the amount of spatial overlap between predicted current and future climatically suitable habitat) compared with 800 m data. We found only modest agreement between areas predicted to be stable by 90 m models generalized to 4 km grids compared with areas classified as stable based on 4 km models, suggesting that some climate refugia captured at finer scales may be missed using coarser scale data. These differences in projected locations of habitat change may have more serious implications than net habitat area when predictive maps form the basis of conservation decision making.  相似文献   

4.
A climatic basis for microrefugia: the influence of terrain on climate   总被引:1,自引:0,他引:1  
There is compelling evidence from glacial and interglacial periods of the Quaternary of the utilization of microrefugia. Microrefugia are sites that support locally favorable climates amidst unfavorable regional climates, which allow populations of species to persist outside of their main distributions. Knowledge of the location of microrefugia has important implications for climate change research as it will influence our understanding of the spatial distribution of species through time, their patterns of genetic diversity, and potential dispersal rates in response to climate shifts. Indeed, the implications of microrefugia are profound and yet we know surprisingly little about their climatic basis; what climatic processes can support their subsistence, where they may occur, their climatic traits, and the relevance of these locations for climate change research. Here I examine the climatic basis for microrefugia and assert that the interaction between regional advective influences and local terrain influences will define the distribution and nature of microrefugia. I review the climatic processes that can support their subsistence and from this climatic basis: (1) infer traits of the spatial distribution of microrefugia and how this may change through time; (2) review assertions about their landscape position and what it can tell us about regional climates; and (3) demonstrate an approach to forecasting where microrefugia may occur in the future. This synthesis highlights the importance of landscape physiography in shaping the adaptive response of biota to climate change.  相似文献   

5.
The distribution and future fate of ectothermic organisms in a warming world will be dictated by thermalscapes across landscapes. That is particularly true for stream fishes and cold‐water species like trout, salmon, and char that are already constrained to high elevations and latitudes. The extreme climates in those environments also preclude invasions by most non‐native species, so identifying especially cold habitats capable of absorbing future climate change while still supporting native populations would highlight important refugia. By coupling crowd‐sourced biological datasets with high‐resolution stream temperature scenarios, we delineate network refugia across >250 000 stream km in the Northern Rocky Mountains for two native salmonids—bull trout (BT) and cutthroat trout (CT). Under both moderate and extreme climate change scenarios, refugia with high probabilities of trout population occupancy (>0.9) were predicted to exist (33–68 BT refugia; 917–1425 CT refugia). Most refugia are on public lands (>90%) where few currently have protected status in National Parks or Wilderness Areas (<15%). Forecasts of refuge locations could enable protection of key watersheds and provide a foundation for climate smart planning of conservation networks. Using cold water as a ‘climate shield’ is generalizable to other species and geographic areas because it has a strong physiological basis, relies on nationally available geospatial data, and mines existing biological datasets. Importantly, the approach creates a framework to integrate data contributed by many individuals and resource agencies, and a process that strengthens the collaborative and social networks needed to preserve many cold‐water fish populations through the 21st century.  相似文献   

6.
During interglacial stages, microrefugia are sites that support locally favorable climates within larger areas with unfavorable warmer climates. Despite recent theoretical representations of microrefugia, an appropriate ecological characterization is still lacking, mostly for warm periods. Across mountain/alpine areas, cold-adapted plant species could adopt different strategies to manage the effects of climate warming: (A) migration toward higher elevations and summits; (B) in situ resilience of communities and species populations within microrefugia; and C) adaptation and evolution by genetic differentiation. This review aims to distinguish and characterize from an ecological perspective glacial, nival, periglacial and composite landforms and deposits that may function as potential microrefugia during interglacial warm periods.We conducted a literature screening related to the geomorphological processes and landforms associated with vegetation and plant communities in alpine/mountain environments of Europe. They include glacial deposits rock glaciers, debris-covered glaciers, composite cones and channels. In Alpine regions, geomorphologic niches that constantly maintain cold-air pooling and temperature inversions are the main candidates for microrefugia. Within such microrefugia, microhabitat diversity modulates the responses of plants to disturbances caused by geomorphologic processes and supports their aptitude for surviving under extreme conditions on unstable surfaces in isolated patches. Currently, European marginal mountain chains may be considered as examples of macrorefugia where relict boreo-alpine species persist within peculiar geomorphological niches that act as microrefugia.This review contributes to identifying potential warm-stage microrefugia areas across alpine and mountain regions and determining certain landforms that play or may play such role under global-change scenarios. The occurrence of warm-stage microrefugia within these locations may be of great importance for the modeling of future distributions of species and assessing the risk of extinction for alpine species. Microrefugia may have important implications in micro-evolutionary processes that occur across alternating climatic phases.  相似文献   

7.
Frequently, Pleistocene climatic cycling has been found to be the diver of genetic structuring in populations, even in areas that did not have continental ice sheets, such as on the Qinghai‐Tibetan Plateau (QTP). Typically, species distributed on the plateau have been hypothesized to re‐treat to south‐eastern refugia, especially during the Last Glacial Maximum (LGM). We evaluated sequence variation in the mitochondrial DNA gene Cytb and the nuclear DNA gene RAG‐1 in Rana kukunoris, a species endemic to the QTP. Two major lineages, N and S, were identified, and lineage N was further subdivided into N1 and N2. The geographical distribution and genealogical divergences supported the hypothesis of multiple refugia. However, major lineages and sublineages diverged prior to the LGM. Demographical expansion was detected only in lineage S and sublineage N2. Sublineage N1 might have survived several glacial cycles in situ and did not expand after the LGM because of the absence of suitable habitat; it survived in river islands. Genetic analysis and environment modelling suggested that the north‐eastern edge of QTP contained a major refugium for R. kukunoris. From here, lineage S dispersed southwards after the LGM. Two microrefugia in northern Qilian Mountains greatly contributed to current level of intraspecific genetic diversity. These results were found to have important implications for the habitat conservation in Northwest China.  相似文献   

8.
Refugia are key environments in biogeography and conservation. Because of their unique eco‐evolutionary formation and functioning, they should display distinct functional trait signatures. However, comparative trait‐based studies of plants in refugia and non‐refugia are lacking. Here, we provide a comparison between resource‐rich (putative microrefugia for species preferring mesic habitats under increasing aridity) and resource‐impoverished woodlands (non‐refugia) around two granite outcrops in south‐western Australia. We measured and compared six functional traits (bark thickness, foliar δ13C, foliar C:N, leaf dry matter content, plant height, specific leaf area) in four woody species. We performed multiple‐trait, multiple‐species and single‐trait, within‐species analyses to test whether plants in resource‐rich habitats were functionally distinct and more diverse than those in the surrounding resource‐impoverished woodlands. We found that species in resource‐rich woodlands occupied larger and distinct multiple‐trait functional spaces and showed distinct single‐trait values (for specific leaf area and bark thickness). This suggests that plants in resource‐rich woodlands can deploy unique and more diverse ecological strategies, potentially making these putative microrefugia more resilient to environmental changes. These findings suggest that species in microrefugia may be characterised by unique functional signatures, illustrating the utility of comparative trait‐based approaches to improve understanding of the functioning of refugia.  相似文献   

9.
Climate warming is likely to shift the range margins of species poleward, but fine‐scale temperature differences near the ground (microclimates) may modify these range shifts. For example, cold‐adapted species may survive in microrefugia when the climate gets warmer. However, it is still largely unknown to what extent cold microclimates govern the local persistence of populations at their warm range margin. We located 99 microrefugia, defined as sites with edge populations of 12 widespread boreal forest understory species (vascular plants, mosses, liverworts and lichens) in an area of ca. 24,000 km2 along the species' southern range margin in central Sweden. Within each population, a logger measured temperature eight times per day during one full year. Using univariate and multivariate analyses, we examined the differences of the populations' microclimates with the mean and range of microclimates in the landscape, and identified the typical climate, vegetation and topographic features of these habitats. Comparison sites were drawn from another logger data set (n = 110), and from high‐resolution microclimate maps. The microrefugia were mainly places characterized by lower summer and autumn maximum temperatures, late snow melt dates and high climate stability. Microrefugia also had higher forest basal area and lower solar radiation in spring and autumn than the landscape average. Although there were common trends across northern species in how microrefugia differed from the landscape average, there were also interspecific differences and some species contributed more than others to the overall results. Our findings provide biologically meaningful criteria to locate and spatially predict potential climate microrefugia in the boreal forest. This opens up the opportunity to protect valuable sites, and adapt forest management, for example, by keeping old‐growth forests at topographically shaded sites. These measures may help to mitigate the loss of genetic and species diversity caused by rear‐edge contractions in a warmer climate.  相似文献   

10.

Climate refugia, or places where habitats are expected to remain relatively buffered from regional climate extremes, provide an important focus for science and conservation planning. Within high-priority, multi-jurisdictional landscapes like the Madrean sky islands of the United States and México, efforts to identify and manage climate refugia are hindered by the lack of high-quality and consistent transboundary datasets. To fill these data gaps, we assembled a bi-national field dataset (n?=?1416) for five pine species (Pinus spp.) and used generalized boosted regression to model pine habitats in relation to topographic variability as a basis for identifying potential microrefugia at local scales in the context of current species’ distribution patterns. We developed additional models to quantify climatic refugial attributes using coarse scale bioclimatic variables and finer scale seasonal remote sensing indices. Terrain metrics including ruggedness, slope position, and aspect defined microrefugia for pines within elevation ranges preferred by each species. Response to bioclimatic variables indicated that small shifts in climate were important to some species (e.g., P. chihuahuana, P. strobiformis), but others exhibited a broader tolerance (e.g., P. arizonica). Response to seasonal climate was particularly important in modeling microrefugia for species with open canopy structure and where regular fires occur (e.g., P. engelmannii and P. chihuahuana). Hotspots of microrefugia differed among species and were either limited to northern islands or occurred across central or southern latitudes. Mapping and validation of refugia and their ecological functions are necessary steps in developing regional conservation strategies that cross jurisdictional boundaries. A salient application will be incorporation of climate refugia in management of fire to restore and maintain pine ecology. Una versión en español de este artículo está disponible como descarga.

  相似文献   

11.
Anticipating species movement under climate change is a major focus in conservation. Bioclimate models are one of the few predictive tools for adaptation planning, but are limited in accounting for (i) climatic tolerances in preadult life stages that are potentially more vulnerable to warming; and (ii) local‐scale movement and use of climatic refugia as an alternative or complement to large‐scale changes in distribution. To assess whether these shortfalls can be addressed with field demographic data, we used California valley oak (Quercus lobata Nee), a long‐lived species with juvenile life stages known to be sensitive to climate. We hypothesized that the valley oak bioclimate model, based on adults, would overpredict the species' ability to remain in the projected persisting area, due to higher climate vulnerability of young life stages; and underpredict the potential for the species to remain in the projected contracting area in local‐scale refugia. We assessed the bioclimate model projections against actual demographic patterns in natural populations. We found that saplings were more constricted around surface water than adults in the projected contracting area. We also found that the climate envelope for saplings is narrower than that for adults. Saplings disappeared at a summer maximum temperature 3 °C below that associated with adults. Our findings indicate that rather than a complete shift northward and upward, as predicted by the species bioclimate model, valley oaks are more likely to experience constriction around water bodies, and eventual disappearance from areas exceeding a threshold of maximum temperature. Ours is the first study we know of to examine the importance of discrete life stage climate sensitivities in determining bioclimate modeling inputs, and to identify current climate change‐related constriction of a species around microrefugia. Our findings illustrate that targeted biological fieldwork can be central to understanding climate change‐related movement for long‐lived, sessile species.  相似文献   

12.
In the context of global warming, a clear understanding of microrefugia—microsites enabling the survival of species populations outside their main range limits—is crucial. Several studies have identified forcing factors that are thought to favor the existence of microrefugia. However, there is a lack of evidence to conclude whether, and to what extent, the climate encountered within existing microrefugia differs from the surrounding climate. To investigate this, we adopt a “bottom-up” approach, linking marginal disconnected populations to microclimate. We used the southernmost disconnected and abyssal populations of the circumboreal herbaceous plant Oxalis acetosella in Southern France to study whether populations in sites matching the definition of “microrefugia” occur in particularly favorable climatic conditions compared to neighboring control plots located at distances of between 50 to 100 m. Temperatures were recorded in putative microrefugia and in neighboring plots for approximately 2 years to quantify their thermal offsets. Vascular plant inventories were carried out to test whether plant communities also reflect microclimatic offsets. We found that current microclimatic dynamics are genuinely at stake in microrefugia. Microrefugia climates are systematically colder compared to those found in neighboring control plots. This pattern was more noticeable during the summer months. Abyssal populations showed stronger offsets compared to neighboring plots than the putative microrefugia occurring at higher altitudes. Plant communities demonstrate this strong spatial climatic variability, even at such a microscale approach, as species compositions systematically differed between the two plots, with species more adapted to colder and moister conditions in microrefugia compared to the surrounding area.  相似文献   

13.
Antarctica is isolated, surrounded by the Southern Ocean and has experienced extreme environmental conditions for millions of years, including during recent Pleistocene glacial maxima. How Antarctic terrestrial species might have survived these glaciations has been a topic of intense interest, yet many questions remain unanswered, particularly for Antarctica's invertebrate fauna. We examine whether genetic data from a widespread group of terrestrial invertebrates, springtails (Collembola, Isotomidae) of the genus Cryptopygus, show evidence for long‐term survival in glacial refugia along the Antarctic Peninsula. We use genome‐wide SNP analyses (via genotyping‐by‐sequencing, GBS) and mitochondrial data to examine population diversity and differentiation across more than 20 sites spanning >950 km on the Peninsula, and from islands both close to the Peninsula and up to ~1,900 km away. Population structure analysis indicates the presence of strong local clusters of diversity, and we infer that patterns represent a complex interplay of isolation in local refugia coupled with occasional successful long‐distance dispersal events. We identified wind and degree days as significant environmental drivers of genetic diversity, with windier and warmer sites hosting higher diversity. Thus, we infer that refugial areas along the Antarctic Peninsula have allowed populations of indigenous springtails to survive in situ throughout glacial periods. Despite the difficulties of dispersal in cold, desiccating conditions, Cryptopygus springtails on the Peninsula appear to have achieved multiple long‐distance colonization events, most likely through wind‐related dispersal events.  相似文献   

14.
The combined effects of climate change and habitat loss represent a major threat to species and ecosystems around the world. Here, we analyse the vulnerability of ecosystems to climate change based on current levels of habitat intactness and vulnerability to biome shifts, using multiple measures of habitat intactness at two spatial scales. We show that the global extent of refugia depends highly on the definition of habitat intactness and spatial scale of the analysis of intactness. Globally, 28% of terrestrial vegetated area can be considered refugia if all natural vegetated land cover is considered. This, however, drops to 17% if only areas that are at least 50% wilderness at a scale of 48 × 48 km are considered and to 10% if only areas that are at least 50% wilderness at a scale of 4.8 × 4.8 km are considered. Our results suggest that, in regions where relatively large, intact wilderness areas remain (e.g. Africa, Australia, boreal regions, South America), conservation of the remaining large‐scale refugia is the priority. In human‐dominated landscapes, (e.g. most of Europe, much of North America and Southeast Asia), focusing on finer scale refugia is a priority because large‐scale wilderness refugia simply no longer exist. Action to conserve such refugia is particularly urgent since only 1 to 2% of global terrestrial vegetated area is classified as refugia and at least 50% covered by the global protected area network.  相似文献   

15.
Increases in drought and temperature stress in forest and woodland ecosystems are thought to be responsible for the rise in episodic mortality events observed globally. However, key climatic drivers common to mortality events and the impacts of future extreme droughts on tree survival have not been evaluated. Here, we characterize climatic drivers associated with documented tree die‐off events across Australia using standardized climatic indices to represent the key dimensions of drought stress for a range of vegetation types. We identify a common probabilistic threshold associated with an increased risk of die‐off across all the sites that we examined. We show that observed die‐off events occur when water deficits and maximum temperatures are high and exist outside 98% of the observed range in drought intensity; this threshold was evident at all sites regardless of vegetation type and climate. The observed die‐off events also coincided with at least one heat wave (three consecutive days above the 90th percentile for maximum temperature), emphasizing a pivotal role of heat stress in amplifying tree die‐off and mortality processes. The joint drought intensity and maximum temperature distributions were modeled for each site to describe the co‐occurrence of both hot and dry conditions and evaluate future shifts in climatic thresholds associated with the die‐off events. Under a relatively dry and moderate warming scenario, the frequency of droughts capable of inducing significant tree die‐off across Australia could increase from 1 in 24 years to 1 in 15 years by 2050, accompanied by a doubling in the occurrence of associated heat waves. By defining commonalities in drought conditions capable of inducing tree die‐off, we show a strong interactive effect of water and high temperature stress and provide a consistent approach for assessing changes in the exposure of ecosystems to extreme drought events.  相似文献   

16.
Gammarus leopoliensis (Crustacea: Amphipoda) is considered a north‐eastern Carpathian endemic species and therefore can be regarded as an appropriate model for testing the hypothesis of Quaternary glacial survival in northern microrefugia. However, 250 km south, the south‐western Carpathians harbour populations that resemble phenotypically both G. leopoliensis and Gammarus kischineffensis, a similar species distributed east of the Carpathians. We used maximum‐likelihood and Bayesian methods to evaluate the phylogenetic relationships of these three taxa based on mitochondrial and nuclear markers, and quantitatively compared diversity patterns, phylogeography and divergence times among north‐eastern and south‐western Carpathian taxa. Results indicate that G. leopoliensis and the south‐western populations form together a strongly supported group (G. leopoliensis s.l.) which, along with G. kischineffensis, belongs to the Gammarus balcanicus clade. This group contains 12 lineages mainly of Pliocene age. G. leopoliensis consists of two widely distributed and recently expanded allopatric sister lineages that diverged from the southern ones ca. 4 Ma, indicating long‐term survival in northern microrefugia. The southern lineages are micro‐endemic and display a scattered distribution, suggesting a more ancient, relict pattern. We conclude that the contrasting diversity patterns between the disjunct distributional areas of G. leopoliensis s.l. reflect differential survival of lineages across the latitudinal gradient, offering a promising system for comparing the evolutionary ecology of lineages persisting in latitudinally disconnected microrefugia. These results fill an important gap in the knowledge of European gammarid biogeography and reveal that all Carpathian Gammarus taxa are ancient and diverse species complexes.  相似文献   

17.
Subdivided Pleistocene glacial refugia, best known as “refugia within refugia”, provided opportunities for diverging populations to evolve into incipient species and/or to hybridize and merge following range shifts tracking the climatic fluctuations, potentially promoting extensive cytonuclear discordances and “ghost” mtDNA lineages. Here, we tested which of these opposing evolutionary outcomes prevails in northern Iberian areas hosting multiple historical refugia of common frogs (Rana cf. temporaria), based on a genomic phylogeography approach (mtDNA barcoding and RAD‐sequencing). We found evidence for both incipient speciation events and massive cytonuclear discordances. On the one hand, populations from northwestern Spain (Galicia and Asturias, assigned to the regional endemic R. parvipalmata), are deeply‐diverged at mitochondrial and nuclear genomes (~4 My of independent evolution), and barely admix with northeastern populations (assigned to R. temporaria sensu stricto) across a narrow hybrid zone (~25 km) located in the Cantabrian Mountains, suggesting that they represent distinct species. On the other hand, the most divergent mtDNA clade, widespread in Cantabria and the Basque country, shares its nuclear genome with other R. temporaria s. s. lineages. Patterns of population expansions and isolation‐by‐distance among these populations are consistent with past mitochondrial capture and/or drift in generating and maintaining this ghost mitochondrial lineage. This remarkable case study emphasizes the complex evolutionary history that shaped the present genetic diversity of refugial populations, and stresses the need to revisit their phylogeography by genomic approaches, in order to make informed taxonomic inferences.  相似文献   

18.
Mediterranean mountain ranges harbour highly endemic biota in islandlike habitats. Their topographic diversity offered the opportunity for mountain species to persist in refugial areas during episodes of major climatic change. We investigate the role of Quaternary climatic oscillations in shaping the demographic history and distribution ranges in the spider Harpactocrates ravastellus, endemic to the Pyrenees. Gene trees and multispecies coalescent analyses on mitochondrial and nuclear DNA sequences unveiled two distinct lineages with a hybrid zone around the northwestern area of the Catalan Pyrenees. The lineages were further supported by morphological differences. Climatic niche‐based species distribution models (SDMs) identified two lowland refugia at the western and eastern extremes of the mountain range, which would suggest secondary contact following postglacial expansion of populations from both refugia. Neutrality test and approximate Bayesian computation (ABC) analyses indicated that several local populations underwent severe bottlenecks followed by population expansions, which in combination with the deep population differentiation provided evidence for population survival during glacial periods in microrefugia across the mountain range, in addition to the main Atlantic and Mediterranean (western and eastern) refugia. This study sheds light on the complexities of Quaternary climatic oscillations in building up genetic diversity and local endemicity in the southern Europe mountain ranges.  相似文献   

19.
The potentially important role of northern microrefugia during postglacial dispersal is challenging the view of southern Europe as a refuge and source area of European biota. In groundwaters, large geographic ranges of presumably good dispersers are increasingly suspected to consist of assemblages of cryptic species with narrow ranges. Moreover, a large species range, even when confirmed by molecular evidence, tells us little about the spatiotemporal dynamics of dispersal. Here, we used phylogenetic inferences, species delineation methods and Bayesian phylogeographic diffusion models to test for the likelihood of postglacial colonization from distant refugia among five morphospecies of Proasellus (Isopoda, Asellidae). All morphospecies except one were monophyletic, but they comprised a total of 15–17 cryptic species. Three cryptic species retained ranges that spanned a distance >650 km, similar to that of the nominal morphospecies. Bayesian diffusion models based on mitochondrial markers revealed considerable spatiotemporal heterogeneity in dispersal rates, suggesting that short‐time dispersal windows were instrumental in shaping species ranges. Only one species was found to experience a recent, presumably postglacial, range expansion. The Jura and Alpine foothills probably played a major role in maintaining diversity within Proasellus in northern regions by acting both as diversification hotspots and Pleistocene refugia. Gaining insight into the spatiotemporal heterogeneity of dispersal rates revealed contrasting colonization dynamics among species that were not consistent with a global postglacial colonization of Europe from distant refugia.  相似文献   

20.

Background  

Species that are widespread throughout historically glaciated and currently non-glaciated areas provide excellent opportunities to investigate the role of Pleistocene climatic change on the distribution of North American biodiversity. Many studies indicate that northern animal populations exhibit low levels of genetic diversity over geographically widespread areas whereas southern populations exhibit relatively high levels. Recently, paleoclimatic data have been combined with niche-based distribution modeling to locate possible refugia during the Last Glacial Maximum. Using phylogeographic, population, and paleoclimatic data, we show that the distribution and mitochondrial data for the millipede genus Narceus are consistent with classical examples of Pleistocene refugia and subsequent post-glacial population expansion seen in other organismal groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号