首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
China is rich of germplasm resources of common wild rice (Oryza rufipogon Griff.) and Asian cultivated rice (O. sativa L.) which consists of two subspecies, indica and japonica. Previous studies have shown that China is one of the domestication centers of O. sativa. However, the geographic origin and the domestication times of O. sativa in China are still under debate. To settle these disputes, six chloroplast loci and four mitochondrial loci were selected to examine the relationships between 50 accessions of Asian cultivated rice and 119 accessions of common wild rice from China based on DNA sequence analysis in the present study. The results indicated that Southern China is the genetic diversity center of O. rufipogon and it might be the primary domestication region of O. sativa. Molecular dating suggested that the two subspecies had diverged 0.1 million years ago, much earlier than the beginning of rice domestication. Genetic differentiations and phylogeography analyses indicated that indica was domesticated from tropical O. rufipogon while japonica was domesticated from O. rufipogon which located in higher latitude. These results provided molecular evidences for the hypotheses of (i) Southern China is the origin center of O. sativa in China and (ii) the two subspecies of O. sativa were domesticated multiple times.  相似文献   

2.
Asian wild rice (Oryza rufipogon) that ranges widely across the eastern and southern part of Asia is recognized as the direct ancestor of cultivated Asian rice (O. sativa). Studies of the geographic structure of O. rufipogon, based on chloroplast and low‐copy nuclear markers, reveal a possible phylogeographic signal of subdivision in O. rufipogon. However, this signal of geographic differentiation is not consistently observed among different markers and studies, with often conflicting results. To more precisely characterize the phylogeography of O. rufipogon populations, a genome‐wide survey of unlinked markers, intensively sampled from across the entire range of O. rufipogon is critical. In this study, we surveyed sequence variation at 42 genome‐wide sequence tagged sites (STS) in 108 O. rufipogon accessions from throughout the native range of the species. Using Bayesian clustering, principal component analysis and amova , we conclude that there are two genetically distinct O. rufipogon groups, Ruf‐I and Ruf‐II. The two groups exhibit a clinal variation pattern generally from north‐east to south‐west. Different from many earlier studies, Ruf‐I, which is found mainly in China and the Indochinese Peninsula, shows genetic similarity with one major cultivated rice variety, O. satvia indica, whereas Ruf‐II, mainly from South Asia and the Indochinese Peninsula, is not found to be closely related to cultivated rice varieties. The other major cultivated rice variety, O. sativa japonica, is not found to be similar to either O. rufipogon groups. Our results support the hypothesis of a single origin of the domesticated O. sativa in China. The possible role of palaeoclimate, introgression and migration–drift balance in creating this clinal variation pattern is also discussed.  相似文献   

3.
It is generally accepted that Oryza rufipogon is the progenitor of Asian cultivated rice (O. sativa). However, how the two subspecies of O. sativa (indica and japonica) were domesticated has long been debated. To investigate the genetic differentiation in O. rufipogon in relation to the domestication of O. sativa, we developed 57 subspecies-specific intron length polymorphism (SSILP) markers by comparison between 10 indica cultivars and 10 japonica cultivars and defined a standard indica rice and a standard japonica rice based on these SSILP markers. Using these SSILP markers to genotype 73 O. rufipogon accessions, we found that the indica alleles and japonica alleles of the SSILP markers were predominant in the O. rufipogon accessions, suggesting that SSILPs were highly conserved during the evolution of O. sativa. Cluster analysis based on these markers yielded a dendrogram consisting of two distinct groups: one group (Group I) comprises all the O. rufipogon accesions from tropical (South and Southeast) Asia as well as the standard indica rice; the other group (Group II) comprises all the O. rufipogon accessions from Southern China as well as the standard japonica rice. Further analysis showed that the two groups have significantly higher frequencies of indica alleles and japonica alleles, respectively. These results support the hypothesis that indica rice and japonica rice were domesticated from the O. rufipogon of tropical Asia and from that of Southern China, respectively, and suggest that the indica-japonica differentiation should have formed in O. rufipogon long before the beginning of domestication. Furthermore, with an O. glaberrima accession as an outgroup, it is suggested that the indica-japonica differentiation in O. ruffpogon might occur after its speciation from other AA-genome species.  相似文献   

4.
Summary Ninety-three accessions representing 21 species from the genus Oryza were examined for restriction fragment length polymorphism. The majority (78%) of the accessions, for which five individuals were tested, were found to be monomorphic. Most of the polymorphic accessions segregated for only one or two probes and appeared to be mixed pure lines. For most of the Oryza species tested, the majority of the genetic variation (83%) was found between accessions from different species with only 17% between accessions within species. Tetraploid species were found to have, on average, nearly 50% more alleles (unique fragments) per individual than diploid species reflecting the allopolyploid nature of their genomes.Classification of Oryza species based on RFLPs matches remarkably well previous classifications based on morphology, hybridization and isozymes. In the current study, four species complexes could be identified corresponding to those proposed by Vaughan (1989): the O. ridleyi complex, the O. meyeriana complex, the O. officinalis complex and the O. sativa complex. Within the O. sativa complex, accessions of O. rufipogon from Asia (including O. nivara) and perennial forms of O. rufipogon from Australia clustered together with accessions of cultivated rice O. sativa. Surprisingly, indica and japonica (the two major subspecies of cultivated rice) showed closer affinity with different accessions of wild O. Rufipogon than to each other, supporting a hypothesis of independent domestication events for these two types of rice. Australian annual wild rice O. meridionalis (previously classified as O. rufipogon) was clearly distinct from all other O. rufipogon accessions supporting its recent reclassification as O. meridionalis (Ng et al. 1981). Using genetic relatedness as a criterion, it was possible to identify the closest living diploid relatives of the currently known tetraploid rice species. Results from these analyses suggest that BBCC tetraploids (O. malampuzhaensis, O. punctata and O. minuta) are either of independent origins or have experienced introgression from sympatric C-genome diploid rice species. CCDD tetraploid species from America (O. latifolia, O. alta and O. grandiglumis) may be of ancient origin since they show a closer affinity to each other than to any known diploid species. Their closest living diploid relatives belong to C genome (O. eichingeri) and E genome (O. Australiensis) species. Comparisons among African, Australian and Asian rice species suggest that Oryza species in Africa and Australia are of polyphyletic origin and probably migrated to these regions at different times in the past.Finally, on a practical note, the majority of probes used in this study detected polymorphism between cultivated rice and its wild relatives. Hence, RFLP markers and maps based on such markers are likely to be very useful in monitoring and aiding introgression of genes from wild rice into modern cultivars.  相似文献   

5.
Structural variants (SVs) are a largely unstudied feature of plant genome evolution, despite the fact that SVs contribute substantially to phenotypes. In this study, we discovered SVs across a population sample of 347 high-coverage, resequenced genomes of Asian rice (Oryza sativa) and its wild ancestor (O. rufipogon). In addition to this short-read data set, we also inferred SVs from whole-genome assemblies and long-read data. Comparisons among data sets revealed different features of genome variability. For example, genome alignment identified a large (∼4.3 Mb) inversion in indica rice varieties relative to japonica varieties, and long-read analyses suggest that ∼9% of genes from the outgroup (O. longistaminata) are hemizygous. We focused, however, on the resequencing sample to investigate the population genomics of SVs. Clustering analyses with SVs recapitulated the rice cultivar groups that were also inferred from SNPs. However, the site-frequency spectrum of each SV type—which included inversions, duplications, deletions, translocations, and mobile element insertions—was skewed toward lower frequency variants than synonymous SNPs, suggesting that SVs may be predominantly deleterious. Among transposable elements, SINE and mariner insertions were found at especially low frequency. We also used SVs to study domestication by contrasting between rice and O. rufipogon. Cultivated genomes contained ∼25% more derived SVs and mobile element insertions than O. rufipogon, indicating that SVs contribute to the cost of domestication in rice. Peaks of SV divergence were enriched for known domestication genes, but we also detected hundreds of genes gained and lost during domestication, some of which were enriched for traits of agronomic interest.  相似文献   

6.
Flowering time is a major determinant for the local adaptation of crops. Hd1 is a key flowering-time gene in rice and is orthologous to the Arabidopsis CONSTANS gene. To elucidate the role of Hd1 in selection, we examined the Hd1 alleles of 60 landraces of Asian cultivated rice (Oryza sativa L.) originating from all regions of Asia, which comprised three cultivar groups, indica, japonica, and aus. The identified alleles were classified into four allele groups. The functional Hd1 alleles in allele groups I and II corresponded to indica and japonica, respectively. Non-functional alleles in these groups were not clearly associated with cultivar groups or locations. Allele groups III and IV corresponded to the aus cultivar group. The ancestry of each cultivar group was identified by the coalescent approach for Hd1 molecular evolution using the haplotype patterns of 14 regions over the 1.1 Mb chromosomal region surrounding Hd1 and the pSINE patterns of two loci, 1.4 and 4.4 Mb apart from Hd1. The haplotype patterns clearly revealed that Hd1 allele migration was caused by multiple and complex introgression events between cultivar groups. The Hd1 haplotypes among dozens of accessions of the wild species O. rufipogon were strongly divergent and only two of the haplotype clusters in O. rufipogon were closely related to those in cultivated rice. This strongly suggested that multiple introgression events have played an important role in the shaping and diversification of adaptation in addition to primary selection steps at the beginning of domestication.  相似文献   

7.
Common wild rice (Oryza rufipogon) plays an important role by contributing to modern rice breeding. In this paper, we report the sequence and analysis of a 172-kb genomic DNA region of wild rice around the RM5 locus, which is associated with the yield QTL yld1.1. Comparative sequence analysis between orthologous RM5 regions from Oryza sativa ssp. japonica, O. sativa ssp. indica and O. rufipogon revealed a high level of conserved synteny in the content, homology, structure, orientation, and physical distance of all 14 predicted genes. Twelve of the putative genes were supported by matches to proteins with known function, whereas two were predicted by homology to rice and other plant expressed sequence tags or complementary DNAs. The remarkably high level of conservation found in coding, intronic and intergenic regions may indicate high evolutionary selection on the RM5 region. Although our analysis has not defined which gene(s) determine the yld1.1 phenotype, allelic variation and the insertion of transposable elements, among other nucleotide changes, represent potential variation responsible for the yield QTL. However, as suggested previously, two putative receptor-like protein kinase genes remain the key suspects for yld1.1. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
BL Gross 《Molecular ecology》2012,21(18):4412-4413
Domesticated rice (Oryza sativa) is one of the world’s most important food crops, culturally, nutritionally and economically ( Khush 1997 ). Thus, it is no surprise that there is intense curiosity about its genetic and geographical origins, its response to selection under domestication, and the genetic structure of its wild relative, Oryza rufipogon. Studies of Oryza attempting to answer these questions have accompanied each stage of the development of molecular markers, starting with allozymes and continuing to genome sequencing. While many of these studies have been restricted to small sample sizes, in terms of either the number of markers used or the number and distribution of the accessions, costs are now low enough that researchers are including large numbers of molecular markers and accessions. How will these studies relate to previous findings and long‐held assumptions about rice domestication and evolution? If the paper in this issue of Molecular Ecology ( Huang et al. 2012 ) is any indication, there will be some considerable surprises in store. In this study, a geographically and genomically thorough sampling of O. rufipogon and O. sativa revealed two genetically distinct groups of wild rice and also indicated that only one of these groups appears to be related to domesticated rice. While this fits well with previous studies indicating that there are genetic subdivisions within O. rufipogon, it stands in contrast to previous findings that the two major varieties of O. sativa (indica and japonica) were domesticated from two (or more) subpopulations of wild rice.  相似文献   

9.
10.
The predominant view regarding Asian rice domestication is that the initial origin of nonshattering involved a single gene of large effect, specifically, the sh4 locus via the evolutionary replacement of a dominant allele for shattering with a recessive allele for reduced shattering. Data have accumulated to challenge this hypothesis. Specifically, a few studies have reported occasional seed‐shattering plants from populations of the wild progenitor of cultivated rice (Oryza rufipogon complex) being homozygous for the putative “nonshattering” sh4 alleles. We tested the sh4 hypothesis for the domestication of cultivated rice by obtaining genotypes and phenotypes for a diverse set of samples of wild, weedy, and cultivated rice accessions. The cultivars were fixed for the putative “nonshattering” allele and nonshattering phenotype, but wild rice accessions are highly polymorphic for the putative “nonshattering” allele (frequency ~26%) with shattering phenotype. All weedy rice accessions are the “nonshattering” genotype at the sh4 locus but with shattering phenotype. These data challenge the widely accepted hypothesis that a single nucleotide mutation (“G”/“T”) of the sh4 locus is the major driving force for rice domestication. Instead, we hypothesize that unidentified shattering loci are responsible for the initial domestication of cultivated rice through reduced seed shattering.  相似文献   

11.
12.
Polymorphism over ∼26 kb of DNA sequence spanning 22 loci and one region distributed on chromosomes 1, 2, 3 and 4 was studied in 30 accessions of cultivated rice, Oryza sativa, and its wild relatives. Phylogenetic analysis using all the DNA sequences suggested that O. sativa ssp. indica and ssp. japonica were independently domesticated from a wild species O. rufipogon. O. sativa ssp. indica contained substantial genetic diversity (π = 0.0024), whereas ssp. japonica exhibited extremely low nucleotide diversity (π = 0.0001) suggesting the origin of the latter from a small number of founders. O. sativa ssp. japonica contained a larger number of derived and fixed non-synonymous substitutions as compared to ssp. indica. Nucleotide diversity and genealogical history substantially varied across the 22 loci. A locus, RLD15 on chromosome 2, showed a distinct genealogy with ssp. japonica sequences distantly separated from those of O. rufipogon and O. sativa ssp. indica. Linkage disequilibrium (LD) was analyzed in two different regions. LD in O. rufipogon decays within 5 kb, whereas it extends to ∼50 kb in O. sativa ssp. indica. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Forty fourth single-copy RFLP markers were used to evaluate the genetic diversity of 122 accessions of common wild rice (CWR, Oryza rufipogon Griff.) and 75 entries of cultivated rice (Oryza sativa L. ) from more than ten Asian countries. A comparison of the parameters showing genetic diversity, including the percentage of polymorphic loci (P), the average number of alleles per locus (A), the number of genotypes (Ng), the average heterozygosity (Ho) and the average genetic multiplicity (Hs) of CWR and indica and japonica subspecies of cultivated rice from different countries and regions, indicated that CWR from China possesses the highest genetic diversity, followed by CWR from South Asia and Southeast Asia. The genetic diversity of CWR from India is the second highest. Although the average gene diversity (Hs)of the South Asian CWR is higher than that of the Southeast Asian CWR, its percentage of polymorphic loci (P), number of alleles (Na) and number of genotypes (Ng) are all smaller. It was also found that the genetic diversity of cultivated rice is obviously lower than that of CWR. At the 44 loci investigated, the number of polymorphic loci of cultivated rice is only 3/4 that of CWR, while the number of alleles, 60%, and the number of genotypes is about 1/2 that of CWR. Of the two subspecies studied, the genetic diversity of indica is higher than that of japonica. The average heterozygosity of the Chinese CWR is the highest among all the entries studied. The average heterozygosity of CWR is about two-times that of cultivated rice. It is suggested that during the course of evolution from wild rice to cultivated rice, many alleles were lost through natural and human selection, leading to the lower heterozygosity and genetic diversity of the cultivated rice. Received: 19 May 1999 / Accepted: 26 April 2000  相似文献   

14.
Asian cultivated rice(Oryza sativa L.),an important cereal crop worldwide,was domesticated from its wild ancestor 8000 years ago.During its long-term cultivation and evolution under diverse agroecological conditions, Asian cultivated rice has differentiated into indica and japonica subspecies.An effective method is required to identify rice germplasm for its indica and japonica features,which is essential in rice genetic improvements.We developed a protocol that combined DNA extraction from a single rice seed and the insertion/deletion(InDel) molecular fingerprint to determine the indica and japonica features of rice germplasm.We analyzed a set of rice germplasm,including 166 Asian rice varieties,two African rice varieties,30 accessions of wild rice species,and 42 weedy rice accessions,using the single-seeded InDel fingerprints(SSIF).The results show that the SSIF method can efficiently determine the indica and japonica features of the rice germplasm.Further analyses revealed significant indica and japonica differentiation in most Asian rice varieties and weedy rice accessions.In contrast,African rice varieties and nearly all the wild rice accessions did not exhibit such differentiation.The pattern of cultivated and wild rice samples illustrated by the SSIF supports our previous hypothesis that indica and japonica differentiation occurred after rice domestication under different agroecological conditions.In addition,the divergent pattern of rice cultivars and weedy rice accessions suggests the possibility of an endoferal origin(from crop)of the weedy rice included in the present study.  相似文献   

15.
Summary Phylogenetic relationship of the cultivated rices Oryza sativa and O. glaberrima with the O. perennis complex, distributed on the three continents of Asia, Africa and America, and O. australiensis has been studied using Fraction 1 protein and two repeated DNA sequences as markers. Fraction 1 protein isolated from the leaf tissue of accessions of different species was subjected to isoelectric focusing. All the species studied have similar nuclear-encoded small subunit polypeptides and chloroplast-encoded large subunit polypeptides, except two of the O. perennis accessions from South America and O. australiensis, which have a different pattern for the chloroplast subunit. Two DNA sequences were isolated from Eco R1 restriction endonuclease digests of total DNA from O. sativa. One of the sequences has been characterized as highly repeated satellite DNA, and the other one as a moderately repeated DNA sequence. These sequences were used as probes in DNA/DNA hybridization with restriction endonuclease digested DNA from some accessions of the different species. Those accessions that are divergent for large subunit polypeptides of Fraction 1 protein (O. australiensis and two of the four South American O. perennis accessions) also lack the satellite DNA and have a different hybridization pattern with the moderately repeated sequence. All other accessions, irrespective of their geographical origin, are similar. We propose that various accessions of O. perennis from Africa and Asia are closely related to O. sativa and O. glaberrima, and that the dispersal of cultivated and O. perennis rices to different continents may be quite recent. The American O. perennis is a heterogeneous group. Some of the accessions ascribed to this group are closely related to the Asian and African O. perennis, while others have diverged.  相似文献   

16.
In the present study, we report a survey on a Miniature Inverted Transposable Element (MITE) system known as mPing in 102 varieties of Asian cultivated rice (Oryza sativa L.). We found that mPing populations could be generalized Into two families, mPing-1 and mPing-2, according to their sequence structures. Further analysis showed that these two families of mPing had significant bias in their distribution pattern in two subspecies of rice, namely O. sativa ssp. japonica and indica. 0. sativa japonica has a higher proportion of mPing-1 as a general trait, whereas 0. sativa indica has a higher proportion of roPing-2. We also examined the mPing system In a doubled haploid (DH) cross-breeding population of jingxi 17 (japonica) and zhaiyeqing 8 (indica) varieties and observed that the mPing system was not tightly linked to major subspecies-determining genes. Furthermore, we checked the mPing system in 28 accessions of Asian common wild rice O. rufipogon and found the roPing system in 0. rufipogon. The distribution pattern of the roPing system in O. rufipogon indicated a diphyletlc origin of the Asian cultivated rice O. sativa species. We did not find the mPing system in another 20 Oryza species. These results substantiated a previous hypothesis that O. ruflpogon and O. nivara species were the closest relatives of O. sativa and that the two extant subspecies of O. sativa were evolved independently from corresponding ecotypes of O. ruflpogon.  相似文献   

17.
 Domesticated rice differs from the wild progenitor in large arrays of morphological and physiological traits. The present study was conducted to identify the genetic factors controlling the differences between cultivated rice and its wild progenitor, with the intention to assess the genetic basis of the changes associated with the processes of rice domestication. A total of 19 traits, including seven qualitative and 12 quantitative traits, that are related to domestication were scored in an F2 population from a cross between a variety of the Asian cultivated rice (Oryza sativa) and an accession of the common wild rice (O. rufipogon). Loci controlling the inheritance of these traits were determined by making use of a molecular linkage map consisting of 348 molecular-marker loci (313 RFLPs, 12 SSRs and 23 AFLPs) based on this F2 population. All seven qualitative traits were each controlled by a single Mendelian locus. Analysis of the 12 quantitative traits resolved a total of 44 putative QTLs with an average of 3.7 QTLs per trait. The amount of variation explained by individual QTLs ranged from a low of 6.9% to a high of 59.8%, and many of the QTLs accounted for more than 20% of the variation. Thus, genes of both major and minor effect were involved in the differences between wild and cultivated rice. The results also showed that most of the genetic factors (qualitative or QTLs) controlling the domestication-related traits were concentrated in a few chromosomal blocks. Such a clustered distribution of the genes may provide explanations for the genetic basis of the “domestication syndrome” observed in evolutionary studies and also for the “linkage drag” that occurs in many breeding programs. The information on the genetic basis of some desirable traits possessed by the wild parent may also be useful for facilitating the utilization of these traits in rice-breeding programs. Received: 1 June 1998 / Accepted: 28 July 1998  相似文献   

18.
Bacterial blight is one of the major diseases affecting rice productivity. To improve the resistance of cultivated rice to bacterial blight, we introduced a bacterial blight resistance trait from Oryza meyeriana, a wild rice species, into an elite japonica rice cultivar (Dalixiang) using asymmetric somatic hybridization. One hundred and thirty-two independent lines were regenerated. The hybrid plants possessed several morphological features of the donor species, O. meyeriana. Random amplified polymorphic DNA analysis revealed that hybrid plants exhibited banding patterns derived from their parental genotypes. For the majority of the hybrids, resistance to bacterial blight pathogens was intermediate to that observed for O. meyeriana and O. sativa (cv. Dalixiang). Four of the hybrid lines exhibited a high bacterial blight resistance, but it was less than that observed for O. meyeriana. These results demonstrate that O. meyeriana can be used as a good genetic source for improving bacterial blight resistance in commercial rice cultivars through asymmetric somatic hybridization.Abbreviations 2,4-D: 2,4-Dichlorophenoxyacetic acid - IOA: Iodoacetamide - NAA: -Naphthaleneacetic acid - PEG: Polyethylene glycol Communicated by P. Lakshmanan  相似文献   

19.
Crop tolerance to flooding is an important agronomic trait. Although rice (Oryza sativa) is considered a flood‐tolerant crop, only limited cultivars display tolerance to prolonged submergence, which is largely attributed to the presence of the SUB1A gene. Wild Oryza species have the potential to unveil adaptive mechanisms and shed light on the basis of submergence tolerance traits. In this study, we screened 109 Oryza genotypes belonging to different rice genome groups for flooding tolerance. Oryza nivara and Oryza rufipogon accessions, belonging to the A‐genome group, together with Oryza sativa, showed a wide range of submergence responses, and the tolerance‐related SUB1A‐1 and the intolerance‐related SUB1A‐2 alleles were found in tolerant and sensitive accessions, respectively. Flooding‐tolerant accessions of Oryza rhizomatis and Oryza eichingeri, belonging to the C‐genome group, were also identified. Interestingly, SUB1A was absent in these species, which possess a SUB1 orthologue with high similarity to O. sativa SUB1C. The expression patterns of submergence‐induced genes in these rice genotypes indicated limited induction of anaerobic genes, with classical anaerobic proteins poorly induced in O. rhizomatis under submergence. The results indicated that SUB1A‐1 is not essential to confer submergence tolerance in the wild rice genotypes belonging to the C‐genome group, which show instead a SUB1A‐independent response to submergence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号