共查询到20条相似文献,搜索用时 0 毫秒
1.
FIZ F. PÉREZ XOSÉ A. PADÍN YOLANDA PAZOS MIGUEL GILCOTO MANUEL CABANAS PAULA C. PARDO Ma DOLORES DOVAL LUIS FARINA‐BUSTO 《Global Change Biology》2010,16(4):1258-1267
Coastal upwelling regions, which are affected by equatorward‐wind variability, are among the most productive areas of the oceans. It has been suggested that global warming will lead to a general strengthening of coastal upwelling, with important ecological implications and an impact on fisheries. However, in the case of the Iberian upwelling, the long‐term analysis of climatological variables described here reveals a weakening in coastal upwelling. This is linked to a decrease of zonal sea level pressure gradient, and correlated with an observed increase of sea surface temperature and North Atlantic Oscillation. Weakening of coastal upwelling has led to quantifiable modifications of the ecosystem. In outer shelf waters a drop in new production over the last 40 years is likely related to the reduction of sardine landings at local harbors. On the other hand, in inner shelf and Ria waters, the observed weakening of upwelling has slowed down the residual circulation that introduces nutrients to the euphotic layer, and has increased the stability of the water column. The drop in nutrient levels has been compensated by an increase of organic matter remineralization. The phytoplankton community has responded to those environmental trends with an increase in the percentage of dinoflagellates and Pseudonitzschia spp. and a reduction in total diatoms. The former favors the proliferation of harmful algal blooms and reduces the permitted harvesting period for the mussel aquaculture industry. The demise of the sardine fishery and the potential threat to the mussel culture could have serious socio‐economic consequences for the region. 相似文献
2.
Ocean acidification (OA) is predicted to result in reduced survival, growth, reproduction, and overall biodiversity of marine invertebrates, and yet we lack information about the response to OA of some major groups of marine organisms. In particular, we know relatively little about how OA will impact temperate sponges, which will experience more extreme low pH conditions than tropical species. In this study, we quantified OA-induced changes in early life history patterns (larval mortality and condition, settlement rate, recruit survival, and size) in the non-calcifying breadcrumb sponge Halichondria panicea collected from a temperate intertidal site in the California Current Large Marine Ecosystem. Sponge larvae were exposed to OA conditions for 15 days, and early life history patterns were observed. Compared with baseline (“present”) conditions, larval mortality and settlement rates increased in the acidified treatment (“future”). This effect was restricted to larval stages; treatment had no effect on the growth and survival of recruits. This study is significant in that it shows that H. panicea may be particularly vulnerable to changes in ocean pH during the larval stage, which could ultimately reduce total sponge abundance by diminishing the number of larvae that survive to settlement. 相似文献
3.
N. Mieszkowska M. A. Kendall S. J. Hawkins R. Leaper P. Williamson N. J. Hardman-Mountford A. J. Southward 《Hydrobiologia》2006,555(1):241-251
Since the 1990s there has been a period of rapid climate warming in Europe. Long-term broad scale datasets coupled with time
series at specific locations for rocky intertidal species dating back to the 1950s have been collected in Britain and Ireland.
Resurveys of the original locations in 2001–2003 have been undertaken to identify changes in the biogeographical range and
abundance of these species. The results show that some ‘southern’ species including Osilinus lineatus da Costa and Gibbula umbilicalis da Costa have undergone north and north-eastern range extensions. Populations have increased in abundance and adult size has
decreased since the previous surveys were conducted. These changes have been synchronous throughout Britain, strongly suggesting
that climate is responsible. The use of intertidal species as indicators of climate change is proposed. 相似文献
4.
Kristin N. Marshall Isaac C. Kaplan Emma E. Hodgson Albert Hermann D. Shallin Busch Paul McElhany Timothy E. Essington Chris J. Harvey Elizabeth A. Fulton 《Global Change Biology》2017,23(4):1525-1539
The benefits and ecosystem services that humans derive from the oceans are threatened by numerous global change stressors, one of which is ocean acidification. Here, we describe the effects of ocean acidification on an upwelling system that already experiences inherently low pH conditions, the California Current. We used an end‐to‐end ecosystem model (Atlantis), forced by downscaled global climate models and informed by a meta‐analysis of the pH sensitivities of local taxa, to investigate the direct and indirect effects of future pH on biomass and fisheries revenues. Our model projects a 0.2‐unit drop in pH during the summer upwelling season from 2013 to 2063, which results in wide‐ranging magnitudes of effects across guilds and functional groups. The most dramatic direct effects of future pH may be expected on epibenthic invertebrates (crabs, shrimps, benthic grazers, benthic detritivores, bivalves), and strong indirect effects expected on some demersal fish, sharks, and epibenthic invertebrates (Dungeness crab) because they consume species known to be sensitive to changing pH. The model's pelagic community, including marine mammals and seabirds, was much less influenced by future pH. Some functional groups were less affected to changing pH in the model than might be expected from experimental studies in the empirical literature due to high population productivity (e.g., copepods, pteropods). Model results suggest strong effects of reduced pH on nearshore state‐managed invertebrate fisheries, but modest effects on the groundfish fishery because individual groundfish species exhibited diverse responses to changing pH. Our results provide a set of projections that generally support and build upon previous findings and set the stage for hypotheses to guide future modeling and experimental analysis on the effects of OA on marine ecosystems and fisheries. 相似文献
5.
Lisa Zeigler Allen Eric E Allen Jonathan H Badger John P McCrow Ian T Paulsen Liam DH Elbourne Mathangi Thiagarajan Doug B Rusch Kenneth H Nealson Shannon J Williamson J Craig Venter Andrew E Allen 《The ISME journal》2012,6(7):1403-1414
Metagenomic data sets were generated from samples collected along a coastal to open ocean transect between Southern California Bight and California Current waters during a seasonal upwelling event, providing an opportunity to examine the impact of episodic pulses of cold nutrient-rich water into surface ocean microbial communities. The data set consists of ∼5.8 million predicted proteins across seven sites, from three different size classes: 0.1–0.8, 0.8–3.0 and 3.0–200.0 μm. Taxonomic and metabolic analyses suggest that sequences from the 0.1–0.8 μm size class correlated with their position along the upwelling mosaic. However, taxonomic profiles of bacteria from the larger size classes (0.8–200 μm) were less constrained by habitat and characterized by an increase in Cyanobacteria, Bacteroidetes, Flavobacteria and double-stranded DNA viral sequences. Functional annotation of transmembrane proteins indicate that sites comprised of organisms with small genomes have an enrichment of transporters with substrate specificities for amino acids, iron and cadmium, whereas organisms with larger genomes have a higher percentage of transporters for ammonium and potassium. Eukaryotic-type glutamine synthetase (GS) II proteins were identified and taxonomically classified as viral, most closely related to the GSII in Mimivirus, suggesting that marine Mimivirus-like particles may have played a role in the transfer of GSII gene functions. Additionally, a Planctomycete bloom was sampled from one upwelling site providing a rare opportunity to assess the genomic composition of a marine Planctomycete population. The significant correlations observed between genomic properties, community structure and nutrient availability provide insights into habitat-driven dynamics among oligotrophic versus upwelled marine waters adjoining each other spatially. 相似文献
6.
Ramiro Riquelme‐Bugueño Jaime Gómez‐Gutiérrez Jocelyn Silva‐Aburto Rubén Escribano Wolfgang Schneider 《Invertebrate Biology》2017,136(3):260-270
The Humboldt Current krill, Euphausia mucronata (Crustacea: Euphausiacea), is an endemic and keystone species in the food web of this highly productive eastern border current ecosystem. The morphology and ontogeny of E. mucronata is known from calyptopis I to the adult phase, but the embryonic and early‐life stages (nauplius and metanauplius) of this broadcast spawning species are unknown. We describe the morphology and development time of these life stages to complete the knowledge of its life cycle. Embryos were obtained from purple‐gonad gravid females collected off Dichato, central Chile, during November 2012. Eight gravid females (mean=16 mm total length) were incubated in seawater at 12°C under laboratory conditions. The average development time from single‐cell embryos to the metanauplius stage was 2.2 d and hatching occurred between 20 and 25 h. The average growth rate was 0.35 mm d?1 from the late limb bud to the metanauplius stage (range=0.21–0.48 mm d?1). Embryos of E. mucronata had a mean chorion diameter of 0.460 mm, embryo diameter of 0.343 mm, and perivitelline space of 0.056 mm. Our biological information reported here constitutes a baseline for future ecological studies on distribution and temporal variability of spawning activity and reproductive strategies of E. mucronata in the highly variable and productive Humboldt Current ecosystem. 相似文献
7.
Barbara J. Spiecker;Bruce A. Menge; 《Ecology and evolution》2024,14(3):e10704
Top-down and bottom-up factors and their interaction highlight the interdependence of resources and consumer impacts on food webs and ecosystems. Variation in the strength of upwelling-mediated ecological controls (i.e., light availability and herbivory) between early and late succession stages is less well understood from the standpoint of influencing algal functional group composition. We experimentally tested the effect of light, grazing, and disturbance on rocky intertidal turf-forming algal communities. Studies were conducted on the South Island of New Zealand at Raramai on the east coast (a persistent downwelling region) and Twelve Mile Beach on the west coast (an intermittent upwelling region). Herbivory, light availability, and algal cover were manipulated and percent cover of major macroalgal functional groups and sessile invertebrates were measured monthly from October 2017 to March 2018. By distinguishing between algal functional groups and including different starting conditions in our design, we found that the mosaic-like pattern of bare rock intermingled with diverse turf-forming algae at Twelve Mile Beach was driven by a complex array of species interactions, including grazing, predation, preemptive competition and interference competition, colonization rates, and these interactions were modulated by light availability and other environmental conditions. Raramai results contrasted with those at Twelve Mile Beach in showing stronger effects of grazing and relatively weak effects of other interactions, low colonization rates of invertebrates, and light effects limited to crustose algae. Our study highlights the potential importance of an upwelling-mediated 3-way interaction among herbivory, light availability, and preemption in structuring contrasting low rocky intertidal macroalgal communities. 相似文献
8.
Jos Miguel Cerda Franco Lpez Pamela Palacios‐Fuentes F. Patricio Ojeda 《Zeitschrift fur angewandte Ichthyologie》2019,35(5):1147-1153
Connectivity among most marine species depends of their life cycles, and the main phase that can regulate dispersal is the larval stage of an organism. Girella laevifrons (Girellidae) is an omnivore fish inhabiting in intertidal pools as juveniles and subtidal reefs as adults from northern to central Chile. It has a pelagic larval duration for approximately 69 days. In this study, we used eight molecular markers (microsatellites) to explore the genetic structure of their populations along 400 km of the central Chilean coast.20 juveniles were sampled from four different populations. Microsatellite loci did not detect a genetic structure within a 400 km scale along the coast of Central Chile. There is evidence (Fst = ?0.0038, p = 0.8954) suggesting that populations between Coquimbo and Littoral Central behave as a single whole population. This could be an estimate that may define future management units for the species. 相似文献
9.
Sardine, pilchard and anchovy stocks form the basis of commercially important purse seine fisheries in eastern boundary upwelling regions. High levels of environmentally driven recruitment variability have, however, made them especially difficult to manage. Reliable forecasts of recruitment success would greatly help with the setting of catch quotas prior to each fishing season. Theories of how environmental conditions influence recruitment success, according to survival/mortality of the early life-history stages, can be divided into mechanistic and sythesis theories. Mechanistic theories are concerned with specific physical processes, whereas synthesis theories attempt to unite the various mechanistic processes within a single conceptual framework. Despite the successful testing of some theories, there has been little success in reliably predicting recruitment success from a knowledge of environmental conditions. Possible reasons include the following: non-linearity in the relationship between environmental parameters and recruitment; the poor spatial and temporal resolution of much oceanographic data; the wide range of different factors involved in determining recruitment success; and the choice of environmental index. The recent compilation of time series of satellite images for these regions offers a solution to some of these problems, and in doing so reopens the possibility of finding sufficiently good relationships between environmental conditions and recruitment success for management purposes. In particular, the high resolution of these time series allows for the construction of environmental indices across many different spatial and temporal scales. These time series also open up the possibility of quantifying the behaviour of upwelling systems according to the evolution of their spatial structure through time, using pattern analysis techniques. 相似文献
10.
Climatic regime shifts and decadal-scale variability in calanoid copepod populations off southern California 总被引:3,自引:1,他引:3
Ginger A. Rebstock 《Global Change Biology》2002,8(1):71-89
Decadal‐scale climatic regimes and the shifts between them have important impacts on marine ecosystems. Climatic regime shifts have been observed or hypothesized in the North Pacific basin in 1976–77 and 1989. This paper examines long‐term (1951–99) trends in calanoid copepod populations off southern California, and the evidence for responses to regime shifts. Most of the species of calanoid copepod that were analysed underwent one or more step changes during the 49 years covered by the study. All but one of these changes occurred in five periods: the late 1950s, late 1960s, mid‐1970s, early 1980s and around 1990. The late 1960s changes are considered to be artifacts of an increase in sampling depth. Strong El Niño conditions affected California waters during the late 1950s and early 1980s. The step changes of the mid‐1970s and late 1980s to early 1990s may have been responses to regime shifts or other climatic events. 28% of the species and subspecies responded to the 1976–77 event, all increasing in abundance. Another 28% of the copepod categories underwent step changes around 1990, most decreasing. Evidence for regime shifts in the hydrographic variables that were examined is mixed. The 10‐m temperature increased in the mid‐1970s. Abrupt changes in variables around 1990 were short‐lived. However, the population responses around 1990 and to the El Niños of the late 1950s and early 1980s indicate that some species of calanoid copepods may respond on longer time scales to environmental conditions that persist only a few years. 相似文献
11.
To evaluate how climate change might impact a competitively dominant ecological engineer, we analysed the growth response of the mussel Mytilus californianus to climate patterns [El Niño-Southern Oscillation, Pacific Decadal Oscillation (PDO)]. Mussels grew faster during warmer climatic events. Growth was initially faster on a more productive cape compared to a less productive cape. Growth rates at the two capes merged in 2002, coincidentally with a several year-long shift from warm to cool PDO conditions. To determine the mechanism underlying this response, we examined growth responses to intertidal sea and air temperatures, phytoplankton, sea level and tide height. Together, water temperature (32%) and food (12.5%) explained 44.5% of the variance in mussel growth; contributions of other factors were not significant. In turn, water temperature and food respond to climate-driven variation in upwelling and other, unknown factors. Understanding responses of ecosystem engineers to climate change will require knowing direct thermal effects and indirect effects of factors altered by temperature change. 相似文献
12.
María Ana Fernández-Alamo Laura Sanvicente-Añorve Miguel Angel Alatorre-Mendieta 《Hydrobiologia》2003,496(1-3):329-336
The composition, abundance, species richness and structural changes of the planktonic polychaete assemblages were analysed along a latitudinal transect in the California Current System (California, U.S.A. and Baja California, Mexico). The biological (species and abundance) and physical (temperature and salinity) data were analysed using Principal Component Analysis (PCA). The principal water masses in the survey area were determined. Twenty-four holoplanktonic species belonging to families Alciopidae, Iospilidae, Lopadorhynchidae, Tomopteridae and Typhloscolecidae were identified. Three clear species assemblages were discerned in the PCA results: 1. A `north group' (from Oregon-California border to San Francisco), with relatively high species richness (11) and the highest mean abundance (121 ind. per 500 m3) was characterised by Tomopteris septentrionalis, T. planktonis, Plotohelmis tenuis, and Travisiopis lobifera. California Current Water and Subtropical Central Water were present in the area occupied by this assemblage. 2. A `south group' (from off Bahía Magdalena to Cabo San Lucas), with the highest species richness (16), but low mean abundance (37.8 ind. per 500 m3); it included tropical affinity species, such Lopadorhynchus henseni, Tomopteris nationalis, and Travisiopsis dubia. In concordance Surface Equatorial Water was identified in this region. 3. A `transition group' (between the north and south regions) recorded the lowest mean abundance (2.3 ind. per 500 m3) and species richness (9). Only the California Current Water was detected in this area. The spatial pattern of species richness found along of this transect, was at least, partially due to the planktonic productivity distribution in the epipelagic region and the influence of several water masses coming from different directions. 相似文献
13.
Alexander Jueterbock Irina Smolina James A. Coyer Galice Hoarau 《Ecology and evolution》2016,6(6):1712-1724
Rising temperatures are predicted to melt all perennial ice cover in the Arctic by the end of this century, thus opening up suitable habitat for temperate and subarctic species. Canopy‐forming seaweeds provide an ideal system to predict the potential impact of climate‐change on rocky‐shore ecosystems, given their direct dependence on temperature and their key role in the ecological system. Our primary objective was to predict the climate‐change induced range‐shift of Fucus distichus, the dominant canopy‐forming macroalga in the Arctic and subarctic rocky intertidal. More specifically, we asked: which Arctic/subarctic and cold‐temperate shores of the northern hemisphere will display the greatest distributional change of F. distichus and how will this affect niche overlap with seaweeds from temperate regions? We used the program MAXENT to develop correlative ecological niche models with dominant range‐limiting factors and 169 occurrence records. Using three climate‐change scenarios, we projected habitat suitability of F. distichus – and its niche overlap with three dominant temperate macroalgae – until year 2200. Maximum sea surface temperature was identified as the most important factor in limiting the fundamental niche of F. distichus. Rising temperatures were predicted to have low impact on the species' southern distribution limits, but to shift its northern distribution limits poleward into the high Arctic. In cold‐temperate to subarctic regions, new areas of niche overlap were predicted between F. distichus and intertidal macroalgae immigrating from the south. While climate‐change threatens intertidal seaweeds in warm‐temperate regions, seaweed meadows will likely flourish in the Arctic intertidal. Although this enriches biodiversity and opens up new seaweed‐harvesting grounds, it will also trigger unpredictable changes in the structure and functioning of the Arctic intertidal ecosystem. 相似文献
14.
Understory assemblages associated with canopy-forming species such as trees, kelps, and rockweeds should respond strongly to climate stressors due to strong canopy-understory interactions. Climate change can directly and indirectly modify these assemblages, particularly during more stressful seasons and climate scenarios. However, fully understanding the seasonal impacts of different climate conditions on canopy-reliant assemblages is difficult due to a continued emphasis on studying single-species responses to a single future climate scenario during a single season. To examine these emergent effects, we used mesocosm experiments to expose seaweed assemblages associated with the canopy-forming golden rockweed, Silvetia compressa, to elevated temperature and pCO2 conditions reflecting two projected greenhouse emission scenarios (RCP 2.6 [low] & RCP 4.5 [moderate]). Assemblages were grown in the presence and absence of Silvetia, and in two seasons. Relative to ambient conditions, predicted climate scenarios generally suppressed Silvetia biomass and photosynthetic efficiency. However, these effects varied seasonally—both future scenarios reduced Silvetia biomass in summer, but only the moderate scenario did so in winter. These reductions shifted the assemblage, with more extreme shifts occurring in summer. Contrarily, future scenarios did not shift assemblages within Silvetia Absent treatments, suggesting that climate primarily affected assemblages indirectly through changes in Silvetia. Mesocosm experiments were coupled with a field Silvetia removal experiment to simulate the effects of climate-mediated Silvetia loss on natural assemblages. Consistent with the mesocosm experiment, Silvetia loss resulted in season-specific assemblage shifts, with weaker effects observed in winter. Together, our study supports the hypotheses that climate-mediated changes to canopy-forming species can indirectly affect the associated assemblage, and that these effects vary seasonally. Such seasonality is important to consider as it may provide periods of recovery when conditions are less stressful, especially if we can reduce the severity of future climate scenarios. 相似文献
15.
Tessa B. Francis Mark D. Scheuerell Richard D. Brodeur Phillip S. Levin James J. Ruzicka Nick Tolimieri William T. Peterson 《Global Change Biology》2012,18(8):2498-2508
Climatic effects in the ocean at the community level are poorly described, yet accurate predictions about ecosystem responses to changing environmental conditions rely on understanding biotic responses in a food‐web context to support knowledge about direct biotic responses to the physical environment. Here we conduct time‐series analyses with multivariate autoregressive (MAR) models of marine zooplankton abundance in the Northern California Current from 1996 to 2009 to determine the influence of climate variables on zooplankton community interactions. Autoregressive models showed different community interactions during warm vs. cool ocean climate conditions. Negative ecological interactions among zooplankton groups characterized the major warm phase during the time series, whereas during the major cool phase, ocean transport largely structured zooplankton communities. Local environmental conditions (sea temperature) and large‐scale climate indices (El Niño/Southern Oscillation) were associated with changes in zooplankton abundance across the full time series. Secondary environmental correlates of zooplankton abundance varied with ocean climate phase, with most support during the warm phase for upwelling as a covariate, and most support during the cool phase for salinity. Through simultaneous quantitation of community interactions and environmental covariates, we show that marine zooplankton community structure varies with climate, suggesting that predictions about ecosystem responses to future climate scenarios in the Northern California Current should include potential changes to the base of the pelagic food. 相似文献
16.
Marine ecosystems are complex adaptive systems with physical and biological processes operating on multiple spatial and temporal scales. Here, we present an operational regional indicator for California's continental shelf system and investigate its skill in predicting a variety of biological responses across trophic levels. This updated Multivariate Ocean Climate Indicator (MOCI) version 2 includes data that are readily available from the Internet so the indicator can be automatically updated and shared regularly. MOCIv.2 is a simplified version of MOCIv.1, but it captures ocean-climate variability similarly. MOCIv.2 illustrates all major ENSO events that occurred over the past 25 years as well as the phasing and magnitude of the most recent North Pacific marine heat wave, dubbed ‘The Blob’. It also shows differences in the magnitude and timing of ocean-climate variability in different regions off California. MOCIv.2 has skill in nowcasting marine ecosystem dynamics, from zooplankton to top predators, and therefore may be useful in establishing bio-physical relationships important to ecosystem-based fisheries and wildlife management in California. 相似文献
17.
We examined the relative contribution of recruitment, intraspecific species interactions, and predation in controlling the upper intertidal border of the northern acorn barnacle, Semibalanusbalanoides, in a tidal estuary in Maine. We hypothesized that the contracted border at sites that experienced low tidal currents was due to flow-mediated recruitment that resulted in reduced survival due to the absence of neighbor buffering of thermal stress (i.e., positive intraspecific interactions). We tested this hypothesis by manipulating the density of recently settled barnacles and their thermal environment in a field experiment. Counter to our original hypothesis, barnacles with neighbors suffered severe mortality at low-flow sites. When density-dependent predation by the green crab (Carcinusmaenus) was experimentally eliminated, however, we did detect evidence for positive interactions at the low-flow sites but not at the high-flow sites. In spite of the close proximity of the sites, maximum daily rock temperatures at the low-flow sites were slightly, but consistently, greater than those at high-flow sites. Our findings suggest that the upper intertidal border of S. balanoides in the Damariscotta River is limited at low-flow sites by a combination of reduced recruitment, elevated mortality from thermal stress and enhanced predation by green crabs. More generally, our findings highlight how physical stress and predation interact to alter the nature of density-dependent species interactions in natural assemblages. Received: 6 August 1998 / Accepted: 11 October 1998 相似文献
18.
LOUISE B. FIRTH TASMAN P. CROWE PIPPA MOORE†‡ RICHARD C. THOMPSON‡ STEPHEN J. HAWKINS†§ 《Global Change Biology》2009,15(6):1413-1422
Climate change has strong potential to modify the structure and functioning of ecosystems, but experimental field studies into its effects are rare. On rocky shores, grazing limpets strongly affect ecosystem structure and their distribution in NW Europe is changing in response to climate change. Three limpet species co-occur in SW Britain ( Patella vulgata, Patella ulyssiponensis and Patella depressa ) on open rock and in pools. Shores in Ireland are similar, but currently lack P. depressa . It is anticipated that P. depressa will expand its range into Ireland as the climate warms, but we currently lack an empirical basis to predict the consequences of this change. Recent studies show that increasing abundance of P. depressa on British shores has been accompanied by a decline of P. vulgata suggesting interspecific competition. In this study, a new experimental framework was used to examine the potential for P. depressa to affect P. vulgata on Irish shores. P. vulgata was experimentally transplanted into enclosures on open rock and in pools in both Ireland and Britain. In pools, treatments also included transplanted P. ulyssiponensis to mimic natural assemblages. Growth and mortality of P. vulgata were measured over 6 months with no differences between Ireland and Britain. In Britain, P. vulgata caged in pools with transplanted P. depressa and P. ulyssiponensis showed reduced growth, compared with when caged in pools with P. ulyssiponensis alone. There was no effect of P. depressa on the growth rate of P. vulgata on open rock. Results indicate that if the range of P. depressa extends into Ireland, it would reduce the growth of P. vulgata where it co-occurs with P. ulyssiponensis in pools. The framework used here provides a field-based approach that could be used to examine the impacts of climate-induced range expansions on the structure and functioning of other ecosystems. 相似文献
19.
Aldwin Ndhlovu Justin A. Lathlean Christopher D. McQuaid Laurent Seuront 《Ecology and evolution》2021,11(21):15141
We tested the response of algal epifauna to the direct effects of predation and the indirect consequences of habitat change due to grazing and nutrient supply through upwelling using an abundant intertidal rhodophyte, Gelidium pristoides. We ran a mid‐shore field experiment at four sites (two upwelling sites interspersed with two non‐upwelling sites) along 450 km of the south coast of South Africa. The experiment was started in June 2014 and ran until June 2015. Four treatments (predator exclusion, grazer exclusion, control, and procedural control) set out in a block design (n = 5) were monitored monthly for algal cover for the first 6 months and every 2 months for the last 6 months. Epifaunal abundance, species composition, algal cover, and algal architectural complexity (measured using fractal geometry) were assessed after 12 months. Predation had no significant effect on epifaunal abundances, while upwelling interacted with treatment. Grazing reduced the architectural complexity of algae, with increased fractal dimensions in the absence of grazers, and also reduced algal cover at all sites, though the latter effect was only significant for upwelling sites. Epifaunal community composition was not significantly affected by the presence of herbivores or predators but differed among sites independently of upwelling; sites were more similar to nearby sites than those farther away. In contrast, total epifaunal abundance was significantly affected by grazing, when normalized to algal cover. Grazing reduced the cover of algae; thus, epifaunal abundances were not affected by the direct top‐down effects of predation but did respond to the indirect effects of grazing on habitat availability and quality. Our results indicate that epifaunal communities can be strongly influenced by the indirect consequences of biotic interactions. 相似文献
20.
There is substantial evidence from terrestrial and freshwater systems of species responding to climate change through changes in their phenology. In the marine environment, however, there is less evidence. Using historic (1946–1949) and contemporary (2003–2007) data, collected from rocky shores of south‐west Britain, we investigated the affect of recent climate warming on the reproductive phenology of two con‐specific intertidal limpet grazers, with cool/boreal and warm/lusitanian centres of distribution. Reproductive development in the southern limpet, Patella depressa, has advanced, on average, 10.2 days per decade since the 1940s, with a longer reproductive season and more of the population reproductively active. The peak in the proportion of the population in advanced stages of gonad development was positively correlated with sea surface temperature (SST) in late spring/early summer, which has increased between the 1940s and 2000s. The advance in peak reproductive development of this species is double the average observed for terrestrial and freshwater systems and indicates, along with other studies, that marine species may be responding faster to climate warming. In contrast, the northern limpet, Patella vulgata, has experienced a delay in the timing of its reproductive development (on average 3.3 days per decade), as well as an increase in reproductive failure years and a reduction in the proportion of the population reaching advanced gonad stages. These results are the first to demonstrate a delay in the reproductive development of a cool‐temperate, winter spawner, towards cooler more favourable environmental conditions in response to climate warming. Such a delay in spawning will potentially lead to trophic miss‐matches, resulting in a rapid nonlinear decline of this species. 相似文献