首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 348 毫秒
1.
The phylogenetic relationships within Hydrophiloidea have been a matter of controversial discussion for many years and the supposedly repeated changes between aquatic and terrestrial lifestyles are not well understood. In order to address these issues we used an extensive molecular data set comprising sequences from six nuclear and mitochondrial genes. The analyses accomplished with the entire data set resulted in largely congruent tree topologies concerning the main branches, independent from the analytical procedures. However, only Bayesian analyses yielded sufficient high posterior probabilities, whereas bootstrap support values for most nodes were generally low. Our results are only partially congruent with hypotheses based on morphological analyses. Spercheidae were placed as the sister group of the remaining hydrophiloid subgroups. Hydrophiloidea excluding Spercheidae split into two clades: the 'helophorid lineage' comprising the small groups Epimetopidae, Hydrochidae, Georissidae and Helophoridae, and the largest family, Hydrophilidae. Within Hydrophilidae, Hydrophilinae do not form a monophylum. The predominantly terrestrial Sphaeridiinae were placed as a subordinate clade within this subfamily. Furthermore, our data suggest a single origin of the aquatic lifestyle in Hydrophiloidea, with numerous secondary changes to terrestrial habits and tertiary changes to aquatic habitats within Sphaeridiinae.  相似文献   

2.
ABSTRACT: BACKGROUND: Ommatidae is arguably the "most ancestral" extant beetle family. Recent species of this group are only found in South America and Australia, but the fossil record reveals a much broader geographical distribution in the Mesozoic. Up to now, thirteen fossil genera with more than 100 species of ommatids have been described. However, the systematic relationships of the extant and extinct Ommatidae have remained obscure. RESULTS: In this study, four new species, Pareuryomma ancistrodonta sp. nov., Pareuryomma cardiobasis sp. nov., Omma delicata sp. nov., and Tetraphalerus decorosus sp. nov., are described. Based on well-preserved fossil specimens and previously published data the phylogenetic relationships of extant and extinct lineages of Ommatidae were analyzed for the first time cladistically. Based on the results we propose a new classification with six tribes of Ommatidae: Pronotocupedini, Notocupedini, Lithocupedini, Brochocoleini, Ommatini and Tetraphalerini. These taxa replace the traditional four subfamilies. CONCLUSION: There is good support for the monophyly of the ingroup. Notocupedini, as defined by Ponomarenko, are paraphyletic. Notocupoides + Eurydictyon are the sister group of the remaining fossil and extant ommatids. Together they form the clade Pronotocupedini. Notocupedini and Lithocupedini are the next two branches. The tribe Brochocoleini is the sister group of a clade comprising Tetraphalerini and Ommatini.  相似文献   

3.
Puffins, auks and their allies in the wing‐propelled diving seabird clade Pan‐Alcidae (Charadriiformes) have been proposed to be key pelagic indicators of faunal shifts in Northern Hemisphere oceans. However, most previous phylogenetic analyses of the clade have focused only on the 23 extant alcid species. Here we undertake a combined phylogenetic analysis of all previously published molecular sequence data (~ 12 kb) and morphological data (n = 353 characters) with dense species level sampling that also includes 28 extinct taxa. We present a new estimate of the patterns of diversification in the clade based on divergence time estimates that include a previously vetted set of twelve fossil calibrations. The resultant time trees are also used in the evaluation of previously hypothesized paleoclimatic drivers of pan‐alcid evolution. Our divergence dating results estimate the split of Alcidae from its sister taxon Stercorariidae during the late Eocene (~ 35 Ma), an evolutionary hypothesis for clade origination that agrees with the fossil record and that does not require the inference of extensive ghost lineages. The extant dovekie Alle alle is identified as the sole extant member of a clade including four extinct Miocene species. Furthermore, whereas an Uria + Alle clade has been previously recovered from molecular analyses, the extinct diversity of closely related Miocepphus species yields morphological support for this clade. Our results suggest that extant alcid diversity is a function of Miocene diversification and differential extinction at the Pliocene–Pleistocene boundary. The relative timing of the Middle Miocene climatic optimum and the Pliocene–Pleistocene climatic transition and major diversification and extinction events in Pan‐Alcidae, respectively, are consistent with a potential link between major paleoclimatic events and pan‐alcid cladogenesis.  相似文献   

4.
The Central Asian racerunner, Eremias velox, is a widely distributed lizard of the Eurasian lacertid genus Eremias. Nucleotide sequences of mitochondrial genes, cyt b and 12S rDNA from 13 geographically distant localities in Iran and Central Asia, were analysed. Phylogenetic analyses of the sequence data unambiguously recovered five major clades within the E. velox complex with a high level of genetic divergence, indicating long periods of isolation. The basal position of the Iranian clades in the phylogenetic trees suggests that the E. velox clade originated on the Iranian plateau in the Middle Miocene. According to our calibrations, the northern Iranian clade diverged first some 10–11 Ma and that the Central Asian lineages split from the northeastern Iranian lineage approximately 6 Ma, most likely as a result of uplifting of the Kopet‐Dagh Mountains in the northern margin of the Iranian plateau. Topology of the phylogenetic trees, combined with the degree of the genetic distances among the independent lineages recovered in this study, provide a solid foundation for a fundamental revision of the taxonomic status of the major clades within this species complex.  相似文献   

5.
A phylogenetic analysis using characters from egg cases, larvae, pupae and adults was conducted; the outgroups included the beetle families Silphidae, Hydraenidae and Histeridae. Characters from the immature stages were obtained mostly from material reared in the laboratory, those from the adults were obtained from Hansen's generic revision for the superfamily. The results support the position of Hydraenidae within the Staphylinoidea, and not as part of Hydrophiloidea; Histeroidea is proposed as the sister group of Hydrophiloidea. At family level two clades are distinguished; the relationships within the first clade are ((Georissidae Epimetopidae) Helophoridae), those within the second are ((Hydrophilidae Spercheidae) Hydrochidae). Larval characters were most informative at the base of the tree, especially those associated with the spiracular atrium; adult characters were most informative at the apex of the tree.  相似文献   

6.
7.
Chloroplast DNA (cpDNA) restriction site variation was examined in 32 species, representing five subgenera, of Bromus (Poaceae). Thirty-seven phylogenetically informative restriction sites were detected. Cladistic analysis of the restriction site data produced a single most-parsimonious tree of 50 steps. The cladogram indicated two major clades within the genus. One clade included B. trinii of subgenus Neobromus and species of subgenus Ceratochloa. The other was composed of subgenera Festucaria, Stenobromus, and Bromus. Within the second clade, species of subgenus Festucaria appeared in three lineages. The second clade also contained an assemblage of species belonging to subgenera Stenobromus and Bromus in a separate lineage. There was very little resolution of relationships in this assemblage since several species appeared individually in separate lineages. The cpDNA phylogenetic hypothesis did not separate species of subgenera Stenobromus and Bromus into well-defined clades as circumscribed by morphology and cytogenetics. The cpDNA tree is in agreement with the phylogenetic scheme based on traditional data in that: 1) subgenera Neobromus and Ceratochloa were the first to diverge, while Bromus and Stenobromus diverged later; 2) within the genus Bromus species with small chromosomes are ancestral; and 3) subgenera Bromus and Stenobromus probably originated from similar ancestors as Festucaria. The tree based on cpDNA data does not support that: 1) subgenera Neobromus and Ceratochloa did not have a common origin; 2) subgenus Festucaria is monophyletic; and 3) subgenera Stenobromus and Bromus are distinct entities. The mean nucleotide sequence divergence values between pairs of subgenera ranged from p = 0.0 to 0.9. These values suggest that cpDNA evolution in Bromus is slow.  相似文献   

8.
Large-scale adaptive radiations might explain the runaway success of a minority of extant vertebrate clades. This hypothesis predicts, among other things, rapid rates of morphological evolution during the early history of major groups, as lineages invade disparate ecological niches. However, few studies of adaptive radiation have included deep time data, so the links between extant diversity and major extinct radiations are unclear. The intensively studied Mesozoic dinosaur record provides a model system for such investigation, representing an ecologically diverse group that dominated terrestrial ecosystems for 170 million years. Furthermore, with 10,000 species, extant dinosaurs (birds) are the most speciose living tetrapod clade. We assembled composite trees of 614–622 Mesozoic dinosaurs/birds, and a comprehensive body mass dataset using the scaling relationship of limb bone robustness. Maximum-likelihood modelling and the node height test reveal rapid evolutionary rates and a predominance of rapid shifts among size classes in early (Triassic) dinosaurs. This indicates an early burst niche-filling pattern and contrasts with previous studies that favoured gradualistic rates. Subsequently, rates declined in most lineages, which rarely exploited new ecological niches. However, feathered maniraptoran dinosaurs (including Mesozoic birds) sustained rapid evolution from at least the Middle Jurassic, suggesting that these taxa evaded the effects of niche saturation. This indicates that a long evolutionary history of continuing ecological innovation paved the way for a second great radiation of dinosaurs, in birds. We therefore demonstrate links between the predominantly extinct deep time adaptive radiation of non-avian dinosaurs and the phenomenal diversification of birds, via continuing rapid rates of evolution along the phylogenetic stem lineage. This raises the possibility that the uneven distribution of biodiversity results not just from large-scale extrapolation of the process of adaptive radiation in a few extant clades, but also from the maintenance of evolvability on vast time scales across the history of life, in key lineages.  相似文献   

9.
Neale Monks 《Palaeontology》2002,45(4):689-707
The Hamitidae are a family of mid–Cretaceous heteromorph ammonites including lineages leading to four other families. Problems are outlined in trying to describe the phylogeny of completely extinct groups such as these heteromorph ammonites using the existing cladistic terminology, which is largely concerned with extant taxa and their ancestors. To solve these problems, two new terms are proposed: †crown groups and †stem groups, which are equivalent to crown and stem groups in terms of the evolutionary history of a clade, but are not defined on the basis of extant taxa. Instead they are defined by the topology of the phylogenetic tree, the †crown group being a clade defined by synapomorphies but which gave rise to no descendants. A †stem group is a branch of a phylogenetic tree which comprises the immediate sister groups of a given †crown group but is not itself a clade. Examples of these terms are described here with reference to the phylogeny of the Hamitidae and their descendants. The Hamitidae are paraphyletic and form †stem groups to a number of †crown groups, namely the Anisoceratidae, Baculitidae, Scaphitidae, and Turrilitidae. The definitions of the genera and subgenera are refined with respect to the type species and the clades within which they occur, and four new genera are described: Eohamites , Helicohamites , Sziveshamites , and Planohamites .  相似文献   

10.
External and internal features of the head of adults of Helophorus spp. were examined and described in detail. The 6 species under consideration show very little morphological variation. The only distinctive characters, which characterise groups of species, are the presence or absence of the mandibular retinaculum and the symmetric or asymmetric shape of the ultimate maxillary palpomere. Helophoridae is supported by several autapomorphies, e.g. a group of long hairs on the posterodorsal margin of galeomere II and the distinctly serrate hind margin of the right mola. Characters with a potential phylogenetic relevance are listed, presented as a data matrix and analysed cladistically. The monophyly of Hydrophiloidea + Histeroidea, Hydrophiloidea (excl. Hydraenidae), ((Helophoridae + Hydrochidae) + (Georissidae [+ Epimetopidae?])), Hydrophilidae and Sphaeridiinae was supported in all trees. The position of Spercheus remains ambiguous. It is either the sistergroup of the remaining Hydrophiloidea or of Hydrophilidae. Head structures of adults of Helophoridae and Hydrochidae show a remarkable similarity. The following apomorphic character states are shared by both taxa: dorsal side of labrum divided into 2 areas with different surface structure, mentum with 2 longitudinal ridges. A clade comprising these 2 families + Georissidae (and probably Epimetopidae) is supported by the metallic granulation of the dorsal side of the head capsule and a grooved frontoclypeal suture. The presence of tubular mandibular glands may be a derived groundplan feature of Hydrophiloidea + Histeroidea. The proposed interrelationships are partly in contrast to current hypothesis. The hypothesised character evolution may change, if a more extensive set of taxa (e.g. Horelophinae, Horelophopsinae) and characters, especially larval features are used (e.g. stigmatic atrium). Several derived characteristics of the clades listed above may have been secondarily lost in Hydrophilidae.  相似文献   

11.
We present a summary of the fossil evidence documenting the worldwide occurrence of the family Hydrophilidae (Insecta: Coleoptera: Polyphaga: Hydrophiloidea) in the Late Jurassic and Early Cretaceous. We present the first known fossils of the family from the Mesozoic, being c. 100 Myr older than the fossil record available until now. Two Late Jurassic fossils are documented: P rotochares brevipalpis gen. nov., sp. nov. from the Talbragar Fish Bed (New South Wales, Australia) and ‘Mesosperchusschultzi Ponomarenko, 1985 from Solnhofen (Bavaria, Germany). The occurrence of the Hydrophilidae in the Early Cretaceous is documented by six species, all of which may be already assigned to modern subfamilies/tribes: B aissalarva hydrobioides gen. nov., sp. nov. from the Baissa outcrops (Buryat Republic, Russia) and C retoxenus australis gen. nov., sp. nov. from Koonwarra outcrops (Victoria, Australia) are both assigned to the tribe Hydrobiusini (Hydrophilinae); A legorius yixianus gen. nov., sp. nov. and Alegorius sp. from the Yixian Formation (Liaoning, China) may represent the Acidocerinae or Enochrinae, H ydroyixia elongata gen. nov., sp. nov. and H . latissima sp. nov. from the same locality are assigned to the Acidocerinae. The phylogenetic position of Baissalarva hydrobioides is also tested by a phylogenetic analysis. The presence of extant clades (Hydrophilinae: Hydrobiusini, Acidocerinae) in the Early Cretaceous and the wide distribution of the Hydrobiusini in both Gondwana and Laurasia at the same time suggests that the principal extant clades of the Hydrophilidae are at least of Early–Middle Jurassic origin. © 2014 The Linnean Society of London  相似文献   

12.
We present a comprehensively sampled three‐gene phylogeny of the monophyletic Forcipulatacea, one of three major lineages within the crown‐group Asteroidea. We present substantially more Southern Hemisphere and deep‐sea taxa than were sampled in previous molecular studies of this group. Morphologically distinct groups, such as the Brisingida and the Zoroasteridae, are upheld as monophyletic. Brisingida is supported as the derived sister group to the Asteriidae (restricted), rather than as a basal taxon. The Asteriidae is paraphyletic, and is broken up into the Stichasteridae and four primary asteriid clades: (1) a highly diverse boreal clade, containing members from the Arctic and sub‐Arctic in the Northern Hemisphere; (2) the genus Sclerasterias; (3) and (4) two sister clades that contain asteriids from the Antarctic and pantropical regions. The Stichasteridae, which was regarded as a synonym of the Asteriidae, is resurrected by our results, and represents the most diverse Southern Hemisphere forcipulatacean clade (although two deep‐sea stichasterid genera occur in the Northern Hemisphere). The Labidiasteridae is artificial, and should be synonymized into the Heliasteridae. The Pedicellasteridae is paraphyletic, with three separate clades containing pedicellasterid taxa emerging among the basal Forcipulatacea. Fossils and timing estimates from species‐level phylogeographic studies are consistent with prior phylogenetic hypotheses for the Forcipulatacea, suggesting diversification of basal taxa in the early Mesozoic, with some evidence for more widely distributed ranges from Cretacous taxa. Our analysis suggests a hypothesis of an older fauna present in the Antarctic during the Eocene, which was succeeded by a modern Antarctic fauna that is represented by the recently derived Antarctic Asteriidae and other forcipulatacean lineages. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 646–660.  相似文献   

13.
14.
Podicipediformes is a cosmopolitan clade of foot‐propelled diving birds that, despite inhabiting marine and lacustrine environments, have a poor fossil record. In this contribution, we describe three new grebe fossils from the diatomite beds of the Late Miocene Truckee Formation (10.2 ± 0.2 Ma) of Nevada (USA). Two postcranial skeletons and an associated set of wing elements indicate that at least two distinct grebe species occupied the large, shallow Lake Truckee during the Miocene. Phylogenetic analysis of morphological data supports a basal divergence between a clade uniting the dabchicks (Tachybaptus, Limnodytes, Poliocephalus) and a clade uniting Podilymbus, Rollandia, Podiceps and Aechmophorus. Missing data, combined with a paucity of informative skeletal characters, make it difficult to place the Truckee grebes within either of these major clades. Given the weak projection of the cnemial crests compared with extant grebes, it also remains plausible that these specimens represent stem lineage grebes. Although more material is needed to resolve the phylogenetic position of the Truckee grebes, our analysis offers insight into the tempo of grebe evolution by placing the Miocene taxon Thiornis sociata within the dabchick clade. Thiornis sociata provides a minimum age calibration of 8.7 Ma for the basal divergence among dabchicks. Based on the recovery of a nonmonophyletic Tachybaptus and placement of the Western Hemisphere ‘Tachybaptusdominicus as the basal member of the otherwise exclusively Eastern Hemisphere dabchick clade, we resurrect the genus Limnodytes for this extant species (Limnodytes dominicus). Our results also nest the large, long‐necked Aechmophorus grebes within the genus Podiceps, as the sister taxon to Podiceps major.  相似文献   

15.
We performed the first combined‐data phylogenetic analysis of ictalurids including most living and fossil species. We sampled 56 extant species and 16 fossil species representing outgroups, the seven living genera, and the extinct genus ?Astephus long thought to be an ictalurid. In total, 209 morphological characters were curated and illustrated in MorphoBank from published and original work, and standardized using reductive coding. Molecular sequences harvested from GenBank for one nuclear and four mitochondrial genes were combined with the morphological data for total evidence analysis. Parsimony analysis recovers a crown clade Ictaluridae composed of seven living genera and numerous extinct species. The oldest ictalurid fossils are the Late Eocene members of Ameiurus and Ictalurus. The fossil clade ?Astephus placed outside of Ictaluridae and not as its sister taxon. Previous morphological phylogenetic studies of Ictaluridae hypothesized convergent evolution of troglobitic features among the subterranean species. In contrast, we found morphological evidence to support a single clade of the four troglobitic species, the sister taxon of all ictalurids. This result holds whether fossils are included or not. Some previously published clock‐based age estimates closely approximate our minimum ages of clades.  相似文献   

16.
Balaenidae (right whales) are large, critically endangered baleen whales represented by four living species. The evolutionary relationships of balaenids are poorly known, with the number of genera, relationships to fossil taxa, and position within Mysticeti in contention. This study employs a comprehensive set of morphological characters to address aspects of balaenid phylogeny. A sister‐group relationship between neobalaenids and balaenids is strongly supported, although this conflicts with molecular evidence, which may be an artifact of long‐branch attraction (LBA). Monophyly of Balaenidae is supported, and three major clades are recognized: (1) extinct genus Balaenula, (2) extant and extinct species of the genus Eubalaena, and (3) extant and extinct species of the genus Balaena plus the extinct taxon, Balaenella. The relationships of these clades to one another, as well as to the early Miocene stem balaenid, Morenocetus parvus, remain unresolved. Pliocene taxa, Balaenula astensis and Balaenula balaenopsis, form a clade that is the sister group to the Japanese Pliocene Balaenula sp. Eubalaena glacialis and Pliocene Eubalaena belgica, are in an unresolved polytomy with a clade including E. japonica and E. australis. Extant and fossil species of Balaena form a monophyletic group that is sister group to the Dutch Pliocene Balaenella, although phylogenetic relationships within Balaena remain unresolved.  相似文献   

17.
Phylogeny of the grass family (Poaceae) from rpl16 intron sequence data   总被引:3,自引:0,他引:3  
DNA sequence data from the chloroplast noncoding rpl16 intron are used to address phylogenetic relationships among the major lineages of the grass family, with particular emphasis on the highly heterogeneous subfamily Bambusoideae and the basal lineages. Thirty-five grass sequences representing all six currently recognized major groups of the family and one outgroup sequence were analyzed using both parsimony and distance methods. The phylogenetic analyses indicated: (1) Puelia, a traditionally isolated bambusoid genus, is the most basal lineage in the BOP clade (Bambusoideae, Oryzoideae, and Pooideae); (2) the bambusoid clade is a sister group to the pooid clade; and (3) the monophyletic oryzoid clade is well separated from the bambusoid clade. The study further confirmed the recognition of two primary groups in the grass family: the BOP clade and the PACC clade (Panicoideae, Arundinoideae, Chloridoideae, and Centothecoideae); it also provided further evidence that the traditional subfamily Bambusoideae is highly heterogeneous and phylogenetically unacceptable. The data support Streptochaeteae, Anomochloeae, and Phareae as the most basal lineages among the extant grasses. Within the BOP clade, oryzoids and pooids are confirmed as two monophyletic clades, but the bambusoid clade, including only the woody bamboo tribe Bambuseae and the herbaceous bamboo tribe Olyreae, is relatively weakly supported. The study also indicated that the chloroplast noncoding region sequence data could be useful in phylogenetic analysis at relatively high taxonomic levels.  相似文献   

18.
The high-level classification of Chrysomelidae (leaf beetles) currently recognizes 12 or 13 well-established subfamilies, but the phylogenetic relationships among them remain ambiguous. Full mitochondrial genomes were newly generated for 27 taxa and combined with existing GenBank data to provide a dataset of 108 mitochondrial genomes covering all subfamilies. Phylogenetic analysis under maximum likelihood and Bayesian inference recovered the monophyly of all subfamilies, except that Timarcha was split from Chrysomelinae in some analyses. Three previously recognized major clades of Chrysomelidae were broadly supported: the ‘chrysomeline’ clade consisting of (Chrysomelinae (Galerucinae + Alticinae)); the ‘sagrine’ clade with internal relationships of ((Bruchinae + Sagrinae) + (Criocerinae + Donaciinae)), and the ‘eumolpine’ clade comprising (Spilopyrinae (Cassidinae (Eumolpinae (Cryptocephalinae + Lamprosomatinae)))). Relationships among these clades differed between data treatments and phylogenetic algorithms, and were complicated by two additional deep lineages, Timarcha and Synetinae. Various topological tests favoured the PhyloBayes software as the preferred inference method, resulting in the arrangement of (chrysomelines (eumolpines + sagrines)), with Timarcha placed as sister to the chrysomeline clade and Synetinae as a deep lineage splitting near the base. Whereas mitogenomes provide a solid framework for the phylogeny of Chrysomelidae, the basal relationships do not agree with the topology of existing molecular studies and remain one of the most difficult problems of Chrysomelidae phylogenetics.  相似文献   

19.
The systematic knowledge of Simpsonichthys has changed substantially in recent years, with five subgenera having been elevated to the genus category. In view of these taxonomic changes, the aim of the present study was to identify the phylogenetic relationships among this group in order to test a hypothesis of the division of Simpsonichthys. The ATPase 8 and 6 gene sequences of 53 specimens of Simpsonichthys, Xenurolebias, Ophthalmolebias, Spectrolebias and Hypsolebias genera were assessed. The final topology divided the Simpsonichthys subgenera into five clades: clade I (Hypsolebias antenori group and Ophtalmolebias), clade II (Simpsonichtys and Spectrolebias), clade III (Hypsolebias flammeus and H. magnificus groups), clade IV (H. notatus group) and clade V, which included the Xenurolebias genus as a sister group to all the other Simpsonichthys subgenera. Simpsonichthys, Spectrolebias and Hypsolebias could therefor not be described as monophyletic groups, as has been proposed in some hypotheses. The H. antenori, H. notatus and H. magnificus groups, however, were monophyletic. The molecular results also suggested that H. ocellatus belongs to the Hypsolebias flammeus group. The phylogenetic position of H. fasciatus suggested a new group within Hypsolebias, or possibly even a new genus. The characteristics of the Hypsolebias antenori group and their phylogenetic position suggested that only the species of this group should be included in the Hypsolebias genus. The basal position of the Hypsolebias notatus group and its morphological character may represent a new genus. Although the monophyletism of Simpsonichtys could not be recovered, the branches supported the division of the western and eastern clades, possibly due to allopatric speciation. These facts suggest the division of the genus into at least two major clades. In addition, the study of morphological and molecular data is suggested to obtain a better understanding of such complex organisms, and a major taxonomic review is required.  相似文献   

20.
Marine reptiles and mammals are phylogenetically so distant from each other that their marine adaptations are rarely compared directly. We reviewed ecophysiological features in extant non-avian marine tetrapods representing 31 marine colonizations to test whether there is a common pattern across higher taxonomic groups, such as mammals and reptiles. Marine adaptations in tetrapods can be roughly divided into aquatic and haline adaptations, each of which seems to follow a sequence of three steps. In combination, these six categories exhibit five steps of marine adaptation that apply across all clades except snakes: Step M1, incipient use of marine resources; Step M2, direct feeding in the saline sea; Step M3, water balance maintenance without terrestrial fresh water; Step M4, minimized terrestrial travel and loss of terrestrial feeding; and Step M5, loss of terrestrial thermoregulation and fur/plumage. Acquisition of viviparity is not included because there is no known case where viviparity evolved after a tetrapod lineage colonized the sea. A similar sequence is found in snakes but with the haline adaptation step (Step M3) lagging behind aquatic adaptation (haline adaptation is Step S5 in snakes), most likely because their unique method of water balance maintenance requires a supply of fresh water. The same constraint may limit the maximum body size of fully marine snakes. Steps M4 and M5 in all taxa except snakes are associated with skeletal adaptations that are mechanistically linked to relevant ecophysiological features, allowing assessment of marine adaptation steps in some fossil marine tetrapods. We identified four fossil clades containing members that reached Step M5 outside of stem whales, pinnipeds, sea cows and sea turtles, namely Eosauropterygia, Ichthyosauromorpha, Mosasauroidea, and Thalattosuchia, while five other clades reached Step M4: Saurosphargidae, Placodontia, Dinocephalosaurus, Desmostylia, and Odontochelys. Clades reaching Steps M4 and M5, both extant and extinct, appear to have higher species diversity than those only reaching Steps M1 to M3, while the total number of clades is higher for the earlier steps. This suggests that marine colonizers only diversified greatly after they minimized their use of terrestrial resources, with many lineages not reaching these advanced steps. Historical patterns suggest that a clade does not advance to Steps M4 and M5 unless these steps are reached early in the evolution of the clade. Intermediate forms before a clade reached Steps M4 and M5 tend to become extinct without leaving extant descendants or fossil evidence. This makes it difficult to reconstruct the evolutionary history of marine adaptation in many clades. Clades that reached Steps M4 and M5 tend to last longer than other marine tetrapod clades, sometimes for more than 100 million years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号