首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 572 毫秒
1.
1. A sediment core (representing 250–300 years) was taken from each of three lakes of conservation interest and contrasting trophic status in the English Lake District: Wastwater, Bassenthwaite Lake and Esthwaite Water. Lithostratigraphic analyses, radiometric dating and analysis of fossil diatoms were carried out.
2. Transfer functions, based on the diatoms, were used to reconstruct total phosphorus (TP) and, thus, eutrophication at the study lakes. In Wastwater, changes in lake pH were also reconstructed.
3. The lakes were also classified according to their present macrophyte flora, the latter being compared with previous records.
4. The fossil diatoms of Wastwater were continuously dominated by taxa typical of oligotrophic, circumneutral waters, indicating that the lake has not been enriched or acidified in the last 250 years. The aquatic macrophyte flora has probably remained unchanged since before the Industrial Revolution.
5. The diatom assemblages of both Bassenthwaite Lake and Esthwaite Water began to change in the mid-1800s. Further change occurred from the 1960s, at the onset of a recent period of eutrophication. These two lakes have experienced continued nutrient enrichment throughout the 1970s, 80s and 90s, largely associated with increasing phosphorus inputs from sewage effluent. There is no evidence of any recovery in response to recent reductions in external nutrient loads.
6. Only in Esthwaite Water has the change in aquatic macrophytes been pronounced.
7. Palaeolimnological reconstruction is useful in determining background conditions and natural variation in lake ecosystems.  相似文献   

2.
Diatoms in Lake Baikal exhibit significant spatial variation, related to prevailing climate, lake morphology and fluvial input into the lake. Here we have assessed the threats to endemic planktonic diatom species (through the development of empirical models), which form a major component of primary production within the lake. Multivariate techniques employed include redundancy analysis (RDA) and Huisman–Olff–Fresco (HOF) models. Our analyses suggest that eight environmental variables were significant in explaining diatom distribution across the lake, and in order of importance these are snow thickness on the ice, water depth, duration of days with white ice, suspended matter in the lake, days of total ice duration, temperature of the water surface in July, concentration of zooplankton and suspended organic matter. Impacts on dominant phytoplankton diatom species are highlighted using t‐value biplots. Predictions of future climate change on Lake Baikal are likely to result in shorter periods of ice cover, decreased snow cover across the lake in spring, increased fluvial input into the lake, and an increase in the intensification of surface water stratification during summer months. All these factors are likely to impact negatively on the slow‐growing, cold‐water endemics such as Aulacoseira baicalensis and Cyclotella minuta, which currently dominate diatom assemblages. Instead, taxa that are only intermittently abundant, at present, in offshore areas (e.g. Stephanodiscus meyerii) are likely to become more frequent. However, given the climatic gradient across the lake, the timing and extent of changes in community structure are likely to vary. Moreover, palaeolimnological records show that Lake Baikal diatom assemblages have been dynamic throughout the Holocene, with both endemic and cosmopolitan species exhibiting periods of dominance. Effects of climate change on the entire lake ecosystem may yet be profound as the structure of the pelagic food web may change from one based on endemic diatom taxa to one dominated by nondiatom picoplankton, and as limnological functioning (e.g. stratification and mixing) affects deepwater oxygen availability, nutrient cycling and trophic linkages.  相似文献   

3.
A 1100-year long record of lake ecosystem response to climate and catchment change with precise chronological control is reported. Diatom and pollen assemblages of an annually laminated (varved) sediment from a northern Swedish lake (Kassjön, Våsterbotten) were used as records of lake diatom communities and catchment vegetation. These data were compared with summer temperature estimates based on tree-ring records of the same geographical area to identify the effects of climate change and catchment disturbance on diatom assemblages in the lake. In a canonical ordination, 23% of the variability in the total diatom assemblages for the period AD1040–1804 was accounted for by changes in pollen data which reflect agricultural development in the catchment. Diatom species richness, however, exhibited a stronger relationship with summer temperature and, significantly, declined with the lower temperatures associated with the Little Ice Age minimum (early 17th century). Summer temperature accounted for 23% of the variability in diatom species richness 20 years later. The mechanism behind this time-lag is unclear, but may be related to catchment-mediated effects, given recent evidence for lags in the response of boreal-forest vegetation regeneration cycles to climatic variability. These results suggest that climate-related effects on lakes occurring over medium timescales can be resolved in lake sediments. Moreover, it is possible to identify these effects despite cultural-related signals, but as the latter become more extreme in the late 20th century the climate signal is obscured.  相似文献   

4.
1. Changes in nutrients and climate have occurred over approximately the same timescales in many European lake catchments. Here, we attempt to interpret the sedimentary diatom record of a large shallow lake, Loch Leven, in relation to these pressures using information gained from analysis of long‐term data sets of water quality, climate and planktonic diatoms. 2. The core data indicate the enrichment of Loch Leven starting in c. 1800–1850, most likely from agricultural practices in the catchment, with a more marked phase since c. 1940–1950 caused by increased phosphorus inputs from sewage treatment works, land drainage and a woollen mill. 3. While the recent diatom plankton remains are dominated by taxa associated with nutrient‐rich conditions, an increase in Aulacoseira subarctica relative to Stephanodiscus taxa since the mid‐1980s suggests that reductions in external catchment sources of nutrients (since 1985) may have resulted in partial recovery. This observation accords well with the long‐term monitoring series of water chemistry and phytoplankton. 4. On a decadal‐centennial scale, the eutrophication signal in the sediment record outweighs any evidence of climate as a control on the diatom community. However, at an inter‐annual scale, while the diatom data exhibit high variability, there are several changes in species composition in the recent fossil record that may be attributed to climatic controls. 5. The study highlights the value of a palaeolimnological approach, particularly when coupled with long‐term data sets, for developing our understanding of environmental change at a range of temporal scales. The diatom record in the sediment can be used effectively to track recovery from eutrophication, but requires greater understanding of contemporary ecology to fully interpret climate impacts. 6. The study illustrates the complexity of ecosystem response to synchronous changes in nutrients and climate, and the difficulty of disentangling the effects of these multiple, interacting pressures.  相似文献   

5.
1. How climate warming may interact with other pressures on aquatic ecosystems is an important issue for research and management. We combined lake monitoring data with a palaeolimnological study to explore the combined effects of eutrophication and subsequent oligotrophication with a long‐term temperature increase in epilimnetic waters. Our goals were (i) to evaluate how well sediment‐based reconstructions reflect the instrumental observations, (ii) to use the palaeo‐record to characterise a reference state for the lake and (iii) to explore whether data from the sediment record can aid in separating the effects of nutrient load and temperature in a large and deep lake. 2. Lake Mjøsa is a large and deep lake in south‐eastern Norway. Eutrophication symptoms peaked in the 1970s, which led to extensive measures to reduce the phosphorus load. A monitoring programme has run continuously from 1972. Monitoring has documented a marked decrease in phosphorus load and algal biomass and also revealed an increase in epilimnetic temperature and extended summer stratification. 3. Records of algal pigments and diatoms were extracted from sediment cores taken from 236 m depth. The pigment record documented dramatic changes in lake production consistent with the monitoring record. The diatom record reflected well the eutrophication history of the lake and also demonstrated that the assemblage of the recent recovery stage differs from that of the pre‐eutrophication period. 4. Ordination of diatom assemblages over time constrained by proxies for nutrient load and temperature indicated that the diatom assemblage correlated with both factors, which together accounted for 60% of the variation in diatom composition. No interaction was detected between these factors. The results suggest that the diatom assemblage has responded to varying nutrient loads as well as to changes in temperature and/or factors that correlate with temperature. 5. Reconstructions of algal biomass and total phosphorus content mirrored known changes through the monitoring period, although the absolute phosphorus estimates were too high relative to the instrumental record. The sediment record from Lake Mjøsa provides a baseline for lake production in terms of algal pigments and organic contents, and for the diatom assemblage composition in a pristine stage.  相似文献   

6.
7.
Multi‐decadal to centennial‐scale shifts in effective moisture over the past two millennia are inferred from sedimentary records from six lakes spanning a ~250 km region in northwest Ontario. This is the first regional application of a technique developed to reconstruct drought from drainage lakes (open lakes with surface outlets). This regional network of proxy drought records is based on individual within‐lake calibration models developed using diatom assemblages collected from surface sediments across a water‐depth gradient. Analysis of diatom assemblages from sediment cores collected close to the near‐shore ecological boundary between benthic and planktonic diatom taxa indicated this boundary shifted over time in all lakes. These shifts are largely dependent on climate‐driven influences, and can provide a sensitive record of past drought. Our lake‐sediment records indicate two periods of synchronous signals, suggesting a common large‐scale climate forcing. The first is a period of prolonged aridity during the Medieval Climate Anomaly (MCA, c. 900‐1400 CE). Documentation of aridity across this region expands the known spatial extent of the MCA megadrought into a region that historically has not experienced extreme droughts such as those in central and western north America. The second synchronous period is the recent signal of the past ~100 years, which indicates a change to higher effective moisture that may be related to anthropogenic forcing on climate. This approach has the potential to fill regional gaps, where many previous paleo‐lake depth methods (based on deeper centrally located cores) were relatively insensitive. By filling regional gaps, a better understanding of past spatial patterns in drought can be used to assess the sensitivity and realism of climate model projections of future climate change. This type of data is especially important for validating high spatial resolution, regional climate models.  相似文献   

8.
Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long‐term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole‐lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P < 0.01). A redundancy analysis (RDA) of the 41‐lake data set identified BiomEpiV as a significant (P < 0.05) variable in structuring sedimentary diatom assemblages. The MRT analysis classified the lakes into three groups. These groups were (A) high‐macrophyte, nutrient‐limited lakes (BiomEpiV ≥525 μg · L?1; total phosphorus [TP] <35 μg · L?1; 23 lakes); (B) low‐macrophyte, nutrient‐limited lakes (BiomEpiV <525 μg · L?1; TP <35 μg · L?1; 12 lakes); and (C) eutrophic lakes (TP ≥35 μg · L?1; six lakes). A semiquantitative model correctly predicted the MRT group of the lake 71% of the time (P < 0.001). These results suggest that submerged macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance.  相似文献   

9.
10.
1. In cultural landscapes, lake response to climate can be masked by land‐use change and nutrient loss from their catchments. Palaeolimnological methods were used to reconstruct the ecological response of diatoms in a eutrophic lowland lake (White Lough, Co. Tyrone, Northern Ireland) to altered nutrient P loading and precipitation variability over c. 100 years. 2. 210Pb‐dated sediment cores were analysed to determine diatom assemblage variability, biogenic silica concentration, geochemical phosphorus concentration and accumulation rate. Manure P and agricultural N surplus data were collated from documentary sources. Long‐term trends in annual temperature and precipitation were derived from the Armagh Observatory. 3. Diatom community turnover from 1890 until c. 1960 was limited, and assemblages were dominated by Aulacoseira subarctica; after this date, changes primarily reflected a eutrophication sequence owing to increased diffuse nutrient inputs associated with intensification of land use (external P loading increased by a factor of three). 4. Diatom and biogenic Si profiles were compared with North Atlantic Oscillation (NAO) records, an index of regional weather patterns. Biogenic Si exhibited a c. 7‐year cycle, which tracked a cycle of similar timescale in the Armagh climate record for dry summers. In turn, this cycle was related to the variation in the NAO. 5. Monitoring data from 1971 to 2007 of nitrate exports from the Blackwater River showed that these too followed a roughly 7‐year cycle at least up to 2000, in which dry summers were followed by sharp increases in nitrate export. It is argued that diatom production in White Lough reflects the cyclic behaviour in nitrate loading and the constraints that nitrogen availability places on the spring diatom bloom in a lake that is dominated by cyanobacteria.  相似文献   

11.
Climate warming and major land-use changes have profoundly affected the Mongolian landscape in the past several decades. Previous studies have recognized the impacts of a warmer, more arid climate and Mongolia’s 1991 transition from a command to a market economy on terrestrial ecosystems, including impaired sustainability of subsistence herding and threats to wild animals. In this study, we examined the combined effects of changing climate and herding practices on lake eutrophication in Western Mongolia. We sampled 65 lakes for modern nutrients and found the majority of lakes were eutrophic to hyper-eutrophic. Sediment cores were taken from five of the lakes to compare current lake status to paleolimnologial measures of lake eutrophication over the past 100–2000 years, including changes in diatom assemblages, diatom-inferred total phosphorus, biogenic silica, organic matter, and sediment accumulation rates. Variance partitioning analysis showed that recent shifts in diatom assemblages were related to changes in both climate and herding practices. The results presented here demonstrate a need for further study and long-term monitoring of water quality in Mongolia to understand the complicated interactions of climate and land use on aquatic resources and to preserve water quality in this remote and ecologically important region.  相似文献   

12.
Changes in the annual population densities of Ceratium spp. in three adjacent English lakes, Windermere, Esthwaite Water and Blelham Tarn, are summarised over the 41 year period 1945–1985. In these lakes the genus is represented by two species, C. hirundinella (O.F. Müll) Bergh. and C. furcoides (Levander) Langhans. Although the species have not been distinguished over the entire study period, they have been shown by examination of preserved samples to undergo marked changes of relative abundance in Esthwaite Water. Both long-term (years) and short-term (within year) changes of populations densities of Ceratium spp. are considered in relation to possible controlling factors including recruitment of the inoculum, nutrient enrichment, physical stability and fungal epidemics. Given an early inoculum, the relative success of Ceratium populations in these lakes decreases along gradients of increasing mixed depths, increasing turbulence and decreasing retention times. The potential for good population growth is regulated by energy inputs, lake bathymetry and hydraulic characteristics. The realisation of such growth is governed by nutrient availability and microbial grazing. The significance of large between-year differences of populations of Ceratium spp. for general lake metabolism is illustrated for summers of contrasting production in Esthwaite Water.  相似文献   

13.
The fossil record of diatoms in lake sediments can be used to assess the effects of climate variability on lake ecosystems if ecological relationships between diatom community structure and environmental parameters are well understood. Cyclotella sensu lato taxa are a key group of diatoms that are frequently dominant members of phytoplankton communities in low‐ to moderate‐productivity lakes. Their relative abundances have fluctuated significantly in palaeolimnological records spanning over a century in arctic, alpine, boreal and temperate lakes. This suggests that these species are sensitive to environmental change and may serve as early indicators of ecosystem effects of global change. Yet patterns of change in Cyclotella species are not synchronous or unidirectional across, or even within, regions, raising the question of how to interpret these widespread changes in diatom community structure. We suggest that the path forward in resolving seemingly disparate records is to identify clearly the autecology of Cyclotella species, notably the role of nutrients, dissolved organic carbon and light, coupled with better consideration of both the mechanisms controlling lake thermal stratification processes and the resulting effects of changing lake thermal regimes on light and nutrients. Here we begin by reviewing the literature on the resource requirements of common Cyclotella taxa, illustrating that many studies reveal the importance of light, nitrogen, phosphorus, and interactions among these resources in controlling relative abundances. We then discuss how these resource requirements can be linked to shifts in limnological processes driven by environmental change, including climate‐driven change in lakewater temperature, thermal stratification and nutrient loading, as well as acidification‐driven shifts in nutrients and water clarity. We examine three case studies, each involving two lakes from the same region that have disparate trends in the relative abundances of the same species, and illustrate how the mechanisms by which these species abundances are changing can be deciphered. Ultimately, changes in resource availability and water clarity are key factors leading to shifts in Cyclotella abundances. Tighter integration of the autecology of this important group of diatoms with environmental change and subsequent alterations in limnological processes will improve interpretations of palaeolimnological records, and clarify the drivers of seemingly disparate patterns in fossil records showing widespread and rapid changes across the northern hemisphere.  相似文献   

14.
Eutrophication is the most common water quality issue affecting freshwaters worldwide. Paleolimnological approaches have been used in temperate regions to track eutrophication over time, placing changes in historical context. Diatoms (Bacillariophyta) have a direct physiological response to changes in nutrients and are effective indicators of lake trophic status. Chironomids (Diptera) have also been used to track nutrient conditions; however, given that nutrients and oxygen are often tightly linked, it is difficult to disentangle which variable is driving shifts in assemblages. Here, we analyze chironomid and diatom remains in sediments from sewage-impacted ponds in the High Arctic. These ponds have the unusual characteristics of elevated nutrient and oxygen concentrations, unlike those of typical eutrophic lakes where deepwater oxygen is often depleted. Our data show that while diatom assemblages responded to changing nutrients, no concomitant changes in chironomid assemblage composition were recorded. Furthermore, the dominance of oligotrophic, cold stenothermic chironomid taxa, and lack of so-called “eutrophic” species in the eutrophic sewage ponds suggests that oxygen, not nutrients, structures chironomid assemblages at these sites.  相似文献   

15.
The classification of waterbodies under the Water Framework Directive is dependent on the ability of monitoring programmes to reflect habitat quality using biotic elements including benthic diatom communities. This study investigated the influence of specific riparian habitats, of mixed woodland, grassland and lake artificial structures such as jetties and slipways, on benthic diatom assemblages in nine lakes across gradients of total phosphorus, alkalinity and in the presence or absence of Dreissena polymorpha. The heterogeneity of the benthic diatom assemblages at riparian and lake scale was assessed by taking three replicates per site category per lake, following standard European Union protocols. Canonical correspondence analysis (CCA) and mixed effect modelling was used to investigate the main environmental controls on assemblage structure. Non-metric Multidimensional Scaling (NMDS) was used to examine patterns in assemblage structure. No single environmental gradient was found to control benthic diatom composition, with differences among assemblages influenced both by riparian habitat type within lakes and interaction of multiple environment gradients, including presence of D. polymorpha. Greater control was exerted on community structure at the lake than local riparian scale. The influence of scalar factors on diatom assemblages increased with increasing scale. We recommend that for effective monitoring and assessment of ecological status, standard sampling protocols should include localised littoral habitats with individual samples pooled across riparian habitat types, thereby accounting for both multiple environmental and spatial controls on community structure.  相似文献   

16.
1. As long‐term observational lake records continue to lengthen, the historical overlap with lake sediment records grows, providing increasing opportunities for placing the contemporary ecological status of lakes in a temporal perspective. 2. Comparisons between long‐term data sets and sediment records, however, require lake sediments to be accurately dated and for sediment accumulation rates to be sufficiently rapid to allow precise matching with observational data. 3. The critical role of the sediment record in this context is its value in tracking the changing impact of human activity on a lake from a pre‐disturbance reference through to the present day. 4. Here, we use data from a range of lakes across Europe presented as case studies in this Special Section. The seven sites considered all possess both long‐term observational records and high‐quality sediment records. Our objective is to assess whether recent climate change is having an impact on their trophic status and in particular whether that impact can be disentangled from the changes associated with nutrient pollution. 5. The palaeo‐data show clear evidence for the beginning of nutrient pollution varying from the mid‐nineteenth century at Loch Leven to the early and middle twentieth century at other sites. The monitoring data show different degrees of recovery when judged against the palaeo‐reference. 6. The reason for limited recovery is attributed to continuing high nutrient concentrations related to an increase in diffuse nutrient loading or to internal P recycling, but there is some evidence that climate change may be playing a role in offsetting recovery at some sites. If this is the case, then lake ecosystems suffering from eutrophication may not necessarily return to their pre‐eutrophication reference status despite the measures that have been taken to reduce external nutrient loading. 7. The extent to which future warming might further limit such recovery can be evaluated only by continued monitoring combined with the use of palaeo‐records that set the pre‐eutrophication reference.  相似文献   

17.
1. To elucidate factors contributing to dissolved oxygen (DO) depletion in the Stockton Deep Water Ship Channel in the lower San Joaquin River, spatial and temporal changes in algae and nutrient concentrations were investigated in relation to flow regime under the semiarid climate conditions. 2. Chlorophyll‐a (chl‐a) concentration and loads indicated that most algal biomass was generated by in‐stream growth in the main stem of the river. The addition of algae from tributaries and drains was small (c.15% of total chl‐a load), even though high concentrations of chl‐a were measured in some source waters. 3. Nitrate and soluble‐reactive phosphorus (SRP) were available in excess as a nutrient source for algae. Although nitrate and SRP from upstream tributaries contributed (16.9% of total nitrate load and 10.8% of total SRP load), nutrients derived from agriculture and other sources in the middle and lower river reaches were mostly responsible (20.2% for nitrate and 48.0% for SRP) for maintaining high nitrate and SRP concentrations in the main stem. 4. A reduction in nutrient discharge would attenuate the algal blooms that accelerate DO depletion in the Stockton Deep Water Ship Channel. The N : P ratio, in the main stem suggests that SRP reduction would be a more viable option for algae reduction than nitrogen reduction. 5. Very high algal growth rates in the main stem suggest that reducing the algal seed source in upstream areas would also be an effective strategy.  相似文献   

18.
The phytoplankton lake community model PROTECH (Phytoplankton RespOnses To Environmental CHange) was applied to the eutrophic lake, Esthwaite Water (United Kingdom). It was validated against monitoring data from 2003 and simulated well the seasonal pattern of total chlorophyll, diatom chlorophyll and Cyanobacteria chlorophyll with respective R2‐values calculated between observed and simulated of 0.68, 0.72 and 0.77 (all P<0.01). This simulation was then rerun through various combinations of factorized changes covering a range of half to double the flushing rate and from ?1 to +4 °C changes in water temperature. Their effect on the phytoplankton was measured as annual, spring, summer and autumn means of the total and species chlorophyll concentrations. In addition, Cyanobacteria mean percentage abundance (%Cb) and maximum percentage abundance (Max %Cb) was recorded, as were the number of days that Cyanobacteria chlorophyll concentration exceed two World Health Organization (WHO) derived risk thresholds (10 and 50 mg m?3). The phytoplankton community was dominated in the year by three of the eight phytoplankton simulated. The vernal bloom of the diatom Asterionella showed little annual or seasonal response to the changing drivers but this was not the case for the two Cyanobacteria that also dominated, Anabaena and Aphanizomenon . These Cyanobacteria showed enhanced abundance, community dominance and increased duration above the highest WHO risk threshold with increasing water temperature and decreasing flushing rate: this effect was greatest in the summer period. However, the response was ultimately controlled by the availability of nutrients, particularly phosphorus and nitrogen, with occasional declines in the latter's concentration helping the dominance of these nitrogen‐fixing phytoplankton.  相似文献   

19.
1. Historical nutrient changes in Grasmere were investigated using a 300‐year record derived from six sediment cores. One core was investigated at high resolution for diatoms, total sedimentary phosphorus, and loss‐on‐ignition (LOI), and was dated using 210Pb and 137Cs. Six other cores were scanned for magnetic susceptibility, diatoms and LOI to confirm the stratigraphic integrity of the primary record. 2. A rise in nutrient levels occurred after 1855 AD. This event was marked by a shift away from benthic diatom assemblages and a rise in Asterionella formosa. The onset of eutrophication from 1855 corresponds to the expansion of the local and tourist population in the area. 3. The replacement of A. formosa with Cyclotella spp. ca 1945–65 indicates reduced nutrient loads, possibly because of enhanced flushing brought about by the seasonal rainfall distribution. 4. After 1965 a step‐wise increase in both absolute and relative amounts of Asterionella was found. High sedimentary P and diatom inferred TP confirmed the high nutrient loading of the lake. Nutrient increase is attributable to problems with the Grasmere village sewage system and the installation of a wastewater treatment works (WwTW) on the River Rothay in 1971. Modifications to the WwTW in 1982 caused an initial improvement, but have not led to a full recovery to pre‐1965 ecological conditions. 5. The diatom record indicates a further improvement after 1990 by a return toward Achnanthes minutissima. 6. The sedimentary archive of sensitive sites provides important benchmarks against which to judge the attainment of water quality targets.  相似文献   

20.
1. In the absence of historical water chemistry data, predictive biological indicator groups preserved in lake sediments can be employed to reconstruct the history of lake eutrophication. Diatoms are well established in this role, but to augment diatom‐based inferences of nutrient status we investigate the potential use of chironomid midges (Insecta: Chironomidae). 2. Canonical correspondence analysis (CCA) of modern chironomid assemblages in surface sediments from 44 lakes in the English Midlands and Wales, U.K., shows that five environmental variables (total phosphorus (TP), bottom dissolved oxygen, maximum lake depth, Secchi depth and surface water temperature) make a statistically significant (P < 0.05) contribution to explaining the variance in the chironomid data, of which TP makes the largest contribution (29%). 3. The relationship is used to develop a series of weighted averaging (WA) and partial least squares (PLS), (WA‐PLS) models to infer log10TP. The models are evaluated by leave‐one‐out (jack‐knifing) cross‐validation. The simplest minimal adequate model is provided by WA with unweighted inverse deshrinking of root mean square error of prediction (RMSEPjack=0.34 and r2jack=0.60). 4. Using this model, the trophic history of Betton Pool, Shropshire, U.K., is reconstructed from the mid‐19th century to the present day and the results from the chironomid‐TP model are compared with inferences from a diatom‐TP model ( 13 ). Both reconstructions suggest that there was a gradual rise in TP since 1850 AD until about 1974, followed by a more pronounced and rapid increase that has continued until the present. Inferred TP values from the WA chironomid inference model agree with diatom‐inferred values. 5. The study demonstrates that fossil chironomid assemblages can be used to investigate quantitatively the trophic history of lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号