首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intra‐ and interannual variability of precipitation can lead to major modifications of grassland production and carbon storage capacity. Greater understanding of how climatic variability affects net CO2 exchange [i.e. net ecosystem exchange (NEE)] of grazed grasslands is important to adapt grassland management and reduce risks of carbon losses. Since 2002, we continuously measured NEE (i.e. eddy covariance technique) on an upland grassland site (7 ha), divided in two paddocks grazed by heifers (intensive: 1 LSU ha?1 yr?1, 213 kg N ha?1 yr?1 and extensive: 0.5 LSU ha?1 yr?1, no fertilization). For years with dry and warm growing seasons (i.e. 2003, 2005 and 2008), absolute annual NEE was higher in the intensive paddock compared with the extensive paddock. The opposite was observed during years of ample seasonal rainfall and soil moisture (i.e. 2004, 2006 and 2007). Contrasted management led to two distinct plant communities being different in leaf area index (LAI), soil bulk density and soil water holding capacity. Differences in annual NEEs could thus be assigned to interactions between in carbon and water fluxes during dry and wet growth periods. Dry growth periods led to a reduction in weekly gross primary productivity (GPP) in the extensively managed paddock, whereas the GPP was maintained in the intensive paddock. In turn, during wet growth periods, GPP was similar in both paddocks, whereas N amendment and frequent defoliation significantly increased ecosystem respiration in the intensive paddock, presumably through a higher heterotrophic respiration following on a better C substrate quality and availability (rhizodeposition and senescent fine roots). In the extensive paddock, where plant cover was denser (reducing soil temperature) and less decomposable, C losses through heterotrophic respiration were comparatively smaller under wet conditions. Our results demonstrate that grassland subjected to a moderately intensive management could be more resilient in terms of carbon storage during drought and heat waves, presumably because of a trade‐off between heterotrophic and autotrophic respiration.  相似文献   

2.
Thus far, grassland ecosystem research has mainly been focused on low‐lying grassland areas, whereas research on high‐altitude grassland areas, especially on the carbon budget of remote areas like the Qinghai‐Tibetan plateau is insufficient. To address this issue, flux of CO2 were measured over an alpine shrubland ecosystem (37°36′N, 101°18′E; 325 above sea level [a. s. l.]) on the Qinghai‐Tibetan Plateau, China, for 2 years (2003 and 2004) with the eddy covariance method. The vegetation is dominated by formation Potentilla fruticosa L. The soil is Mol–Cryic Cambisols. To interpret the biotic and abiotic factors that modulate CO2 flux over the course of a year we decomposed net ecosystem CO2 exchange (NEE) into its constituent components, and ecosystem respiration (Reco). Results showed that seasonal trends of annual total biomass and NEE followed closely the change in leaf area index. Integrated NEE were ?58.5 and ?75.5 g C m?2, respectively, for the 2003 and 2004 years. Carbon uptake was mainly attributed from June, July, August, and September of the growing season. In July, NEE reached seasonal peaks of similar magnitude (4–5 g C m?2 day?1) each of the 2 years. Also, the integrated night‐time NEE reached comparable peak values (1.5–2 g C m?2 day?1) in the 2 years of study. Despite the large difference in time between carbon uptake and release (carbon uptake time < release time), the alpine shrubland was carbon sink. This is probably because the ecosystem respiration at our site was confined significantly by low temperature and small biomass and large day/night temperature difference and usually soil moisture was not limiting factor for carbon uptake. In general, Reco was an exponential function of soil temperature, but with season‐dependent values of Q10. The temperature‐dependent respiration model failed immediately after rain events, when large pulses of Reco were observed. Thus, for this alpine shrubland in Qinghai‐Tibetan plateau, the timing of rain events had more impact than the total amount of precipitation on ecosystem Reco and NEE.  相似文献   

3.
Eddy‐covariance measurements of net ecosystem carbon exchange (NEE) were carried out above a grazed Mediterranean C3/C4 grassland in southern Portugal, during two hydrological years, 2004–2005 and 2005–2006, of contrasting rainfall. Here, we examine the seasonal and interannual variation in NEE and its major components, gross primary production (GPP) and ecosystem respiration (Reco), in terms of the relevant biophysical controls. The first hydrological year was dry, with total precipitation 45% below the long‐term mean (669 mm) and the second was normal, with total precipitation only 12% above the long‐term mean. The drought conditions during the winter and early spring of the dry year limited grass production and the leaf area index (LAI) was very low. Hence, during the peak of the growth period, the maximum daily rate of NEE and the light‐use and water‐use efficiencies were approximately half of those observed in the normal year. In the summer of 2006, the warm‐season C4 grass, Cynodon dactylon L., exerted an evident positive effect on NEE by converting the ecosystem into a carbon sink after strong rain events and extending the carbon sequestration for several days, after the end of senescence of the C3 grasses. On an annual basis, the GPP and NEE were 524 and 49 g C m?2, respectively, for the dry year, and 1261 and ?190 g C m?2 for the normal year. Therefore, the grassland was a moderate net source of carbon to the atmosphere, in the dry year, and a considerable net carbon sink, in the normal year. In these 2 years of experiment the total amount of precipitation was the main factor determining the interannual variation in NEE. In terms of relevant controls, GPP and NEE were strongly related to incident photosynthetic photon flux density on short‐term time scales. Changes in LAI explained 84% and 77% of the variation found in GPP and NEE, respectively. Variations in Reco were mainly controlled by canopy photosynthesis. After each grazing event, the reduction in LAI affected negatively the NEE.  相似文献   

4.
Understanding carbon dynamics of switchgrass ecosystems is crucial as switchgrass (Panicum virgatum L.) acreage is expanding for cellulosic biofuels. We used eddy covariance system and examined seasonal changes in net ecosystem CO2 exchange (NEE) and its components – gross ecosystem photosynthesis (GEP) and ecosystem respiration (ER) – in response to controlling factors during the second (2011) and third (2012) years of stand establishment in the southern Great Plains of the United States (Chickasha, OK). Larger vapor pressure deficit (VPD > 3 kPa) limited photosynthesis and caused asymmetrical diurnal NEE cycles (substantially higher NEE in the morning hours than in the afternoon at equal light levels). Consequently, rectangular hyperbolic light–response curve (NEE partitioning algorithm) consistently failed to provide good fits at high VPD. Modified rectangular hyperbolic light–VPD response model accounted for the limitation of VPD on photosynthesis and improved the model performance significantly. The maximum monthly average NEE reached up to ?33.02 ± 1.96 μmol CO2 m?2 s?1 and the highest daily integrated NEE was ?35.89 g CO2 m?2 during peak growth. Although large differences in cumulative seasonal GEP and ER were observed between two seasons, total seasonal ER accounted for about 75% of GEP regardless of the growing season lengths and differences in aboveground biomass production. It suggests that net ecosystem carbon uptake increases with increasing GEP. The ecosystem was a net sink of CO2 during 5–6 months and total seasonal uptakes were ?1128 ± 130 and ?1796 ± 217 g CO2 m?2 in 2011 and 2012, respectively. In conclusion, our findings suggest that the annual carbon status of a switchgrass ecosystem can be a small sink to small source in this region if carbon loss from biomass harvesting is considered. However, year‐round measurements over several years are required to assess a long‐term source‐sink status of the ecosystem.  相似文献   

5.
Scaling‐up knowledge of land‐atmosphere net ecosystem exchange (NEE) from a single experimental site to numerous perennial grass fields in the Northern Great Plains (NGP) requires appropriate scaling protocols. We addressed this problem using synoptic data available from the Landsat sensor for 10 growing seasons (April 15 to September 30) over a North Dakota field‐site, where we continuously measured CO2 exchange using a Bowen Ratio Energy Balance (BREB) system. NEE observed during the growing season at our field‐site from 1997 to 2006 vacillated with drought and deluge, with net carbon (C) losses to the atmosphere in 2006. We used stepwise linear regression with 10 years of Landsat and NEE data to construct and validate a model for estimating grassland growing‐season NEE from field to landscape scales. Eighty‐nine percent of the variability in NEE was explained by year, live biomass, carbon : nitrogen ratio, day of image acquisition, and annual precipitation. We then applied this model on 20 620 ha of North Dakota perennial grass fields enrolled in the Conservation Reserve Program (CRP), including 1272 fields east of the Missouri River and 165 fields west‐river. Growing‐season NEE for individual CRP fields was highly variable from 1997 to 2006, ranging from ?366 to 692 g C m?2 growing season?1. Mean annual growing‐season fluxes over 10 years for CRP fields located east‐river and west‐river were 317 g C m?2 growing season?1 and 239 g C m?2 growing season?1, respectively. Average cumulative growing‐season NEE modeled for fields east‐ and west‐river diverged from one another in 2002–2006, when west‐river fields received < 70% of the long‐term annual average precipitation during these years. Results indicate assessment of conservation practices on grassland CO2 exchange during the growing season can be remotely estimated at field and landscape scales under variable environmental conditions and should be followed up with similar, spatially explicit investigations of NEE during the dormant season.  相似文献   

6.
This paper presents an empirical model of net ecosystem CO2 exchange (NEE) developed for a subarctic fen near Churchill, Manitoba. The model with observed data helps explain the interannual variability in growing season NEE. Five years of tower‐flux data are used to test and examine the seasonal behaviour of the model simulations. Processes controlling the observed interannual variability of CO2 exchange at the fen are examined by exploring the sensitivity of the model to changes in air temperature, precipitation and leaf area index. Results indicate that the sensitivity of NEE to changing environmental controls is complex and varies interannually depending on the initial conditions of the wetland. Changes in air temperature and the timing of precipitation events have a strong influence on NEE, which is largely manifest in gross ecosystem photosynthesis (GEP). Climate change scenarios indicate that warmer air temperatures will increase carbon acquisition during wet years but may act to reduce wetland carbon storage in years that experience a large water deficit early in the growing season. Model simulations for this subarctic sedge fen indicate that carbon acquisition is greatest during wet and warm conditions. This suggests therefore that carbon accumulation was greatest at this subarctic fen during its early developmental stages when hydroclimatic conditions were relatively wet and warm at approximately 2500 years before present.  相似文献   

7.
Interannual variability in net CO2 exchange of a native tallgrass prairie   总被引:1,自引:0,他引:1  
Year‐round eddy covariance flux measurements were made in a native tallgrass prairie in north‐central Oklahoma, USA during 1997–2000 to quantify carbon exchange and its interannual variability. This prairie is dominated by warm season C4 grasses. The soil is a relatively shallow silty clay loam underlined with a heavy clay layer and a limestone bedrock. During the study period, the prairie was burned in the spring of each year, and was not grazed. In 1997 there was adequate soil moisture through the growing season, but 1998 had two extended periods of substantially low soil moisture (with concurrent high air temperatures and vapor pressure deficits), one early and one later in the growing season. There was also moisture stress in 1999, but it was less severe and occurred later in the season. The annual net ecosystem CO2 exchange, NEE (before including carbon loss during the burn) was 274, 46 and 124 g C m ? 2 yr ? 1 in 1997, 1998, and 1999, respectively (flux toward the surface is positive), and the associated variation seemed to mirror the severity of moisture stress. We also examined integrated values of NEE during different periods (e.g. day/night; growing season/senescence). Annually integrated carbon dioxide uptake during the daytime showed the greatest variability from year to year, and was primarily linked to the severity of moisture stress. Carbon loss during nighttime was a significant part of the annual daytime NEE, and was fairly stable from year to year. When carbon loss during the burn (estimated from pre‐ and post‐burn biomass samples) was incorporated in the annual NEE, the prairie was found to be approximately carbon neutral (i.e. net carbon uptake/release was near zero) in years with no moisture stress (1997) or with some stress late in the season (1999). During a year with severe moisture stress early in the season (1998), the prairie was a net source of carbon. It appears that moisture stress (severity as well as timing of occurrence) was a dominating factor regulating the annual carbon exchange of the prairie.  相似文献   

8.
The area under the cultivation of perennial bioenergy crops on organic soils in the northern countries is fast increasing. To understand the impact of reed canary grass (RCG, Phalaris arundinaceae L.) cultivation on the carbon dioxide (CO2) balance of an organic soil, net ecosystem CO2 exchange (NEE) was measured for four years in a RCG cultivated cutover peatland in eastern Finland using the eddy covariance technique. There were striking differences among the years in the annual precipitation. The annual precipitation was higher during 2004 and 2007 and lower during 2005 and 2006 than the 1971–2000 regional mean. During wet growing seasons, moderate temperatures, high surface soil moisture and low evaporative demand favoured high CO2 uptake. During dry seasons, owing to soil moisture and atmospheric stress, photosynthetic activity was severely restricted. The CO2 uptake [gross primary productivity (GPP)] was positively correlated with soil moisture, air temperature and inversely with vapour pressure deficit. Total ecosystem respiration (TER) increased with increasing soil temperature but decreased with increasing soil moisture. The relative responses of GPP and TER to moisture stress were different. While changes in TER for a given change in soil moisture were moderate, variations in GPP were drastic. Also, the seasonal variations in TER were not as conspicuous as those in GPP implying that GPP is the primary regulator of the interannual variability in NEE in this ecosystem. The ecosystem accumulated a total of 398 g C m?2 from the beginning of 2004 until the end of 2007. It retained some carbon during a wet year such as 2004 even after accounting for the loss of carbon in the form of harvested biomass. Based on this CO2 balance analysis, RCG cultivation is found to be a promising after‐use option on an organic soil.  相似文献   

9.
Global climate models predict significant changes to the rainfall regimes of the grassland biome, where C cycling is particularly sensitive to the amount and timing of precipitation. We explored the effects of both natural interannual rainfall variability and experimental rainfall additions on net C storage and loss in annual grasslands. Soil respiration and net primary productivity (NPP) were measured in treatment and control plots over four growing seasons (water years, or WYs) that varied in wet‐season length and the quantity of rainfall. In treatment plots, we increased total rainfall by 50% above ambient levels and simulated one early‐ and one late‐season storm. The early‐ and late‐season rain events significantly increased soil respiration for 2–4 weeks after wetting, while augmentation of wet‐season rainfall had no significant effect. Interannual variability in precipitation had large and significant effects on C cycling. We observed a significant positive relationship between annual rainfall and aboveground NPP across the study (P=0.01, r2=0.69). Changes in the seasonal timing of rainfall significantly affected soil respiration. Abundant rainfall late in the wet season in WY 2004, a year with average total rainfall, led to greater net ecosystem C losses due to a ~50% increase in soil respiration relative to other years. Our results suggest that C cycling in annual grasslands will be less sensitive to changes in rainfall quantity and more affected by altered seasonal timing of rainfall, with a longer or later wet season resulting in significant C losses from annual grasslands.  相似文献   

10.
A model of the daily carbon balance of a black spruce/feathermoss boreal forest ecosystem was developed and results compared to preliminary data from the 1994 BOREAS field campaign in northem Manitoba, Canada. The model, driven by daily weather conditions, simulated daily soil climate status (temperature and moisture profiles), spruce photosynthesis and respiration, moss photosynthesis and respiration, and litter decomposition. Model agreement with preliminary field data was good for net ecosystem exchange (NEE), capturing both the asymmetrical seasonality and short-term variability. During the growing season simulated daily NEE ranged from -4 g C m-2 d-1 (carbon uptake by ecosystem) to + 2 g C m-2 d-1 (carbon flux to atmosphere), with fluctuations from day to day. In the early winter simulated NEE values were + 0.5 g C m-2 d-1, dropping to + 0.2 g C m-2 d-1 in mid-winter. Simulated soil respiration during the growing season (+ 1 to + 5 g C m-2 d-1) was dominated by metabolic respiration of the live moss, with litter decomposition usually contributing less than 30% and live spruce root respiration less than 10% of the total. Both spruce and moss net primary productivity (NPP) rates were higher in early summer than late summer. Simulated annual NEE for 1994 was -51 g C m-2 y-1, with 83% going into tree growth and 17% into the soil carbon accumulation. Moss NPP (58 g C m-2 y-1) was considered to be litter (i.e. soil carbon input; no net increase in live moss biomass). Ecosystem respiration during the snow-covered season (84 g C m-2) was 58% of the growing season net carbon uptake. A simulation of the same site for 1968–1989 showed = 10–20% year-to-year variability in heterotrophic respiration (mean of + 113 g C m-2 y-1). Moss NPP ranged from 19 to 114 g C m-2 y-1; spruce NPP from 81 to 150 g C m-2 y-1; spruce growth (NPP minus litterfall) from 34 to 103 g C m-2 y-1; NEE ranged from +37 to -142 g C m-2 y-1. Values for these carbon balance terms in 1994 were slightly smaller than the 1969–89 means. Higher ecosystem productivity years (more negative NEE) generally had early springs and relatively wet summers; lower productivity years had late springs and relatively dry summers.  相似文献   

11.
Full accounting of ecosystem carbon (C) pools and fluxes in coastal plain ecosystems remains less studied compared with upland systems, even though the C stocks in these systems may be up to an order of magnitude higher, making them a potentially important component in regional C cycle. Here, we report C pools and CO2 exchange rates during three hydrologically contrasting years (i.e. 2005–2007) in a coastal plain loblolly pine plantation in North Carolina, USA. The daily temperatures were similar among the study years and to the long‐term (1971–2000) average, whereas the amount and timing of precipitation differed significantly. Precipitation was the largest in 2005 (147 mm above normal), intermediate in 2006 (48 mm below) and lowest in 2007 (486 mm below normal). The forest was a strong C sink during all years, sequestering 361 ± 67 (2005), 835 ± 55 (2006) and 724 ± 55 (2007) g C m?2 yr?1 according to eddy covariance measurements of net ecosystem CO2 exchange (NEE). The interannual differences in NEE were traced to drought‐induced declines in canopy and whole tree hydraulic conductances, which declined with growing precipitation deficit and decreasing soil volumetric water content (VWC). In contrast, the interannual differences were small in gross ecosystem productivity (GEP) and ecosystem respiration (ER), both seemingly insensitive to drought. However, the drought sensitivity of GEP was masked by higher leaf area index and higher photosynthetically active radiation during the dry year. Normalizing GEP by these factors enhanced interannual differences, but there were no signs of suppressed GEP at low VWC during any given year. Although ER was very consistent across the 3 years, and not suppressed by low VWC, the total respiratory cost as a fraction of net primary production increased with annual precipitation and the contribution of heterotrophic respiration (Rh) was significantly higher during the wettest year, exceeding new litter inputs by 58%. Although the difference was smaller during the other 2 years (Rh : litterfall ratio was 1.05 in 2006 and 1.10 in 2007), the soils lost about 109 g C m?2 yr?1, outlining their potential vulnerability to decomposition, and pointing to potential management considerations to protect existing soil C stocks.  相似文献   

12.
Aims Boreal forests play an important role in the global carbon cycle. Compared with the boreal forests in North America and Europe, relatively few research studies have been conducted in Siberian boreal forests. Knowledge related to the role of Siberian forests in the global carbon balance is thus essential for a full understanding of global carbon cycle.Methods This study investigated the net ecosystem exchange (NEE) during growing season (May–September) in an eastern Siberian boreal larch forest for a 3-year period in 2004–2006 with contrasting meteorological conditions.Important findings The study found that the forest served as a carbon sink during all of the 3 studied years; in addition, the meteorological conditions essentially influenced the specific annual value of the strength of the carbon sinks in each year. Although 2005 was the warmest year and much wetter than 2004, 2005 also featured the greatest amount of ecosystem respiration, which resulted in a minimum value of NEE. The study also found that the phenological changes observed during the three study years had a relatively small effect on annual NEE. Leaf expansion was 26 days earlier in 2005 than in the other 2 years, which resulted in a longer growing season in 2005. However, the NEE in 2005 was counterbalanced by the large rate of ecosystem respiration that was caused by the higher temperatures in the year. This study showed that meteorological variables had larger influences on the interannual variations in NEE for a Siberian boreal larch forest, as compared with phenological changes. The overall results of this study will improve our understanding of the carbon balance of Siberian boreal larch forests and thus can help to forecast the response of these forests to future climate change.  相似文献   

13.
Net ecosystem productivity (NEP) was measured on shortgrass steppe (SGS) vegetation at the USDA Central Plains Experimental Range in northeastern Colorado from 2001 to 2003. Large year‐to‐year differences were observed in annual NEP, with >95% of the net carbon uptake occurring during May and June. Low precipitation during the 2002 April to June time period greatly reduced annual net carbon uptake. Large precipitation events (>10 mm day?1) promoted carbon uptake, while small precipitation events (<10 mm day?1) enhanced heterotrophic respiration and resulted in a net loss of carbon from the system. Large precipitation event enhanced carbon uptake was attributed to increased soil water content (SWC), which promotes plant photosynthesis. The large precipitation events which occurred from July to October have lower increases in daytime net CO2 uptake (NEPd) due to the presence of low live plant biomass compared to earlier in the growing season. Live aboveground plant biomass (AGB), solar radiation, and SWC were the major variables that controlled NEPd, while AGB, SWC, and relative humidity control nighttime respiration losses (NEPn). Aboveground plant biomass is the most important variable for controlling both NEPd and NEPn dynamics. These results suggest that the major factor controlling growing season NEPn is the amount of carbon fixed via photosynthesis during the day. Heterotrophic soil respiration is greatly enhanced for one to 2 days following rainfall events with daily rainfall events >5 mm having a similar increase in respiration (>3.00 g m Cm?2 day?1). In addition, the size of the heterotrophic respiration pulse is independent of both the amount of time since the last rainfall event and the time of occurrence during the growing season.  相似文献   

14.
High Arctic landscapes are expansive and changing rapidly. However, our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near‐zero sink of atmospheric CO2 (NEE: ?0.3 ± 13.5 g C m?2). A nearby meadow wetland accumulated over 300 times more carbon (NEE: ?79.3 ± 20.0 g C m?2) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southerly latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on‐site was low (mean: 0.120–0.157) and similar to satellite measurements (mean: 0.155–0.163). However, weak plant growth resulted in poor satellite NDVI–NEE relationships and created challenges for remotely detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote sensing; however, high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases enough to offset poor soil moisture retention, climate‐related changes to productivity on polar semideserts may be restricted.  相似文献   

15.
Boreal peatlands store large amounts of carbon, reflecting their important role in the global carbon cycle. The short‐term exchange and the long‐term storage of atmospheric carbon dioxide (CO2) in these ecosystems are closely associated with the permanently wet surface conditions and are susceptible to drought. Especially, the single most important peat forming plant genus, Sphagnum, depends heavily on surface wetness for its primary production. Changes in rainfall patterns are expected to affect surface wetness, but how this transient rewetting affects net ecosystem exchange of CO2 (NEE) remains unknown. This study explores how the timing and characteristics of rain events during photosynthetic active periods, that is daytime, affect peatland NEE and whether rain event associated changes in environmental conditions modify this response (e.g. water table, radiation, vapour pressure deficit, temperature). We analysed an 11‐year time series of half‐hourly eddy covariance and meteorological measurements from Degerö Stormyr, a boreal peatland in northern Sweden. Our results show that daytime rain events systematically decreased the sink strength of peatlands for atmospheric CO2. The decrease was best explained by rain associated reduction in light, rather than by rain characteristics or drought length. An average daytime growing season rain event reduced net ecosystem CO2 uptake by 0.23–0.54 gC m?2. On an annual basis, this reduction of net CO2 uptake corresponds to 24% of the annual net CO2 uptake (NEE) of the study site, equivalent to a 4.4% reduction of gross primary production (GPP) during the growing season. We conclude that reduced light availability associated with rain events is more important in explaining the NEE response to rain events than rain characteristics and changes in water availability. This suggests that peatland CO2 uptake is highly sensitive to changes in cloud cover formation and to altered rainfall regimes, a process hitherto largely ignored.  相似文献   

16.
Global modeling efforts indicate semiarid regions dominate the increasing trend and interannual variation of net CO2 exchange with the atmosphere, mainly driven by water availability. Many semiarid regions are expected to undergo climatic drying, but the impacts on net CO2 exchange are poorly understood due to limited semiarid flux observations. Here we evaluated 121 site‐years of annual eddy covariance measurements of net and gross CO2 exchange (photosynthesis and respiration), precipitation, and evapotranspiration (ET) in 21 semiarid North American ecosystems with an observed range of 100 – 1000 mm in annual precipitation and records of 4–9 years each. In addition to evaluating spatial relationships among CO2 and water fluxes across sites, we separately quantified site‐level temporal relationships, representing sensitivity to interannual variation. Across the climatic and ecological gradient, photosynthesis showed a saturating spatial relationship to precipitation, whereas the photosynthesis–ET relationship was linear, suggesting ET was a better proxy for water available to drive CO2 exchanges after hydrologic losses. Both photosynthesis and respiration showed similar site‐level sensitivity to interannual changes in ET among the 21 ecosystems. Furthermore, these temporal relationships were not different from the spatial relationships of long‐term mean CO2 exchanges with climatic ET. Consequently, a hypothetical 100‐mm change in ET, whether short term or long term, was predicted to alter net ecosystem production (NEP) by 64 gCm?2 yr?1. Most of the unexplained NEP variability was related to persistent, site‐specific function, suggesting prioritization of research on slow‐changing controls. Common temporal and spatial sensitivity to water availability increases our confidence that site‐level responses to interannual weather can be extrapolated for prediction of CO2 exchanges over decadal and longer timescales relevant to societal response to climate change.  相似文献   

17.
Central Asia is covered by vast desert ecosystems, and the majority of these ecosystems have alkaline soils. Their contribution to global net ecosystem CO2 exchange (NEE) is of significance simply because of their immense spatial extent. Some of the latest research reported considerable abiotic CO2 absorption by alkaline soil, but the rate of CO2 absorption has been questioned by peer communities. To investigate the issue of carbon cycle in Central Asian desert ecosystems with alkaline soils, we have measured the NEE using eddy covariance (EC) method at two alkaline sites during growing season in Kazakhstan. The diurnal course of mean monthly NEE followed a clear sinusoidal pattern during growing season at both sites. Both sites showed significant net carbon uptake during daytime on sunny days with high photosynthetically active radiation (PAR) but net carbon loss at nighttime and on cloudy and rainy days. NEE has strong dependency on PAR and the response of NEE to precipitation resulted in an initial and significant carbon release to the atmosphere, similar to other ecosystems. These findings indicate that biotic processes dominated the carbon processes, and the contribution of abiotic carbon process to net ecosystem CO2 exchange may be trivial in alkaline soil desert ecosystems over Central Asia.  相似文献   

18.
Vegetation phenology, the study of the timing and length of the terrestrial growing season and its connection to climate, is increasingly important in integrated Earth system science. Phenological variability is an excellent barometer of short‐ and long‐term climatic variability, strongly influences surface meteorology, and may influence the carbon cycle. Here, using the 1895–1993 Vegetation/Ecosystem Modelling and Analysis dataset and the Biome‐BGC terrestrial ecosystem model, we investigated the relationship between phenological metrics and annual net ecosystem exchange (NEE) of carbon. For the 1167 deciduous broad leaf forest pixels, we found that NEE was extremely weakly related to canopy duration (days from leaf appearance to complete leaf fall). Longer canopy duration, did, however, sequester more carbon if warm season precipitation was above average. Carbon uptake period (number of days with net CO2 uptake from the atmosphere), which integrates the influence of all ecosystem states and processes, was strongly related to NEE. Results from the Harvard Forest eddy‐covariance site supported our findings. Such dramatically different results from two definitions of ‘growing season length’ highlight the potential for confusion among the many disciplines engaged in phenological research.  相似文献   

19.
Bioenergy has been identified as a key component of climate change mitigation. Therefore, quantifying the net carbon balance of bioenergy feedstocks is crucial for accurate projections of climate mitigation benefits. Switchgrass (Panicum virgatum) has many characteristics of an ideal bioenergy crop with high yields, low maintenance, and deep roots with potential for belowground carbon sequestration. However, the assessments of net annual carbon exchange between switchgrass fields and the atmosphere are rare. Here we present observations of net carbon fluxes in a minimally managed switchgrass field in Virginia (Ameriflux site US-SB2) over 5 years (3–7 years since establishment). Average annual net ecosystem exchange (NEE) of carbon was near zero (60 g C m?2 year?1) but the net ecosystem carbon balance that includes harvested carbon (HC) was a net source of carbon to the atmosphere (313 g C m?2 year?1). The field alternated between a large and small source of carbon annually, with the interannual variability most strongly correlated with the day of the last frost and the interaction of temperature and precipitation. Overall, the consistent source of carbon to the atmosphere at US-SB2 differs substantially from other eddy covariance studies that report switchgrass fields to be either neutral or a sink of carbon when accounting for both NEE and HC. This study illustrates that predictions of net carbon climate benefits from bioenergy crops cannot assume that the ecosystem will be a net sink of carbon from the atmosphere. Background climate, management, and land-use history may determine whether widespread deployment of switchgrass as a bioenergy feedstock results in realized climate change mitigation.  相似文献   

20.
Niu S  Wu M  Han Y  Xia J  Li L  Wan S 《The New phytologist》2008,177(1):209-219
Global warming and a changing precipitation regime could have a profound impact on ecosystem carbon fluxes, especially in arid and semiarid grasslands where water is limited. A field experiment manipulating temperature and precipitation has been conducted in a temperate steppe in northern China since 2005. A paired, nested experimental design was used, with increased precipitation as the primary factor and warming simulated by infrared radiators as the secondary factor. The results for the first 2 yr showed that gross ecosystem productivity (GEP) was higher than ecosystem respiration, leading to net C sink (measured by net ecosystem CO(2) exchange, NEE) over the growing season in the study site. The interannual variation of NEE resulted from the difference in mean annual precipitation. Experimental warming reduced GEP and NEE, whereas increased precipitation stimulated ecosystem C and water fluxes in both years. Increased precipitation also alleviated the negative effect of experimental warming on NEE. The results demonstrate that water availability plays a dominant role in regulating ecosystem C and water fluxes and their responses to climatic change in the temperate steppe of northern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号