首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temperature dependence of organic matter decomposition is a critically important determinant of any long‐term changes of soil‐carbon stocks in response to global warming. Because of practical experimental constraints, most knowledge of this temperature dependence is based on short‐term studies. These studies generally show a strong temperature dependence of organic matter decomposition. At the same time, many modelling studies, especially global studies, or studies that investigate the effects of climate change, use longer time steps, such as annual. It is investigated here to what extent the use of short‐term temperature dependencies are appropriate, or how they may need to be modified, for application over longer time steps. The work indicated that for global applications, it is critically important to explicitly consider seasonal temperature variations. Across the globe, observed annual mean temperature and the annual temperature range are negatively correlated. Inclusion of this correlation means that the strong short‐term temperature dependence becomes much weaker when data are expressed as annual averages for the temperatures experienced across the globe. For short‐term responses, the temperature dependence of organic matter decomposition is greater at low than high temperature and deviates strongly from an assumption of a constant Q10 across temperature. For annually averaged values, this pattern also weakens, and temperature dependencies change only slightly with temperature. Using short time steps for simulations leads to the expectation of more positive changes (sequestration) in soil carbon especially for cold regions of the globe than would be predicted for simulations at annual time steps without explicit consideration of seasonal temperature variations. These considerations help to reconcile some of the apparent differences in temperature dependencies obtained by different workers using different approaches.  相似文献   

2.
Decomposition of soil organic matter (SOM) is mediated by microbial extracellular hydrolytic enzymes (EHEs). Thus, given the large amount of carbon (C) stored as SOM, it is imperative to understand how microbial EHEs will respond to global change (and warming in particular) to better predict the links between SOM and the global C cycle. Here, we measured the Michaelis–Menten kinetics [maximal rate of velocity (Vmax) and half‐saturation constant (Km)] of five hydrolytic enzymes involved in SOM degradation (cellobiohydrolase, β‐glucosidase, β‐xylosidase, α‐glucosidase, and N‐acetyl‐β‐d ‐glucosaminidase) in five sites spanning a boreal forest to a tropical rainforest. We tested the specific hypothesis that enzymes from higher latitudes would show greater temperature sensitivities than those from lower latitudes. We then used our data to parameterize a mathematical model to test the relative roles of Vmax and Km temperature sensitivities in SOM decomposition. We found that both Vmax and Km were temperature sensitive, with Q10 values ranging from 1.53 to 2.27 for Vmax and 0.90 to 1.57 for Km. The Q10 values for the Km of the cellulose‐degrading enzyme β‐glucosidase showed a significant (= 0.004) negative relationship with mean annual temperature, indicating that enzymes from cooler climates can indeed be more sensitive to temperature. Our model showed that Km temperature sensitivity can offset SOM losses due to Vmax temperature sensitivity, but the offset depends on the size of the SOM pool and the magnitude of Vmax. Overall, our results suggest that there is a local adaptation of microbial EHE kinetics to temperature and that this should be taken into account when making predictions about the responses of C cycling to global change.  相似文献   

3.
Microbial‐mediated decomposition of soil organic matter (SOM) ultimately makes a considerable contribution to soil respiration, which is typically the main source of CO2 arising from terrestrial ecosystems. Despite this central role in the decomposition of SOM, few studies have been conducted on how climate change may affect the soil microbial community and, furthermore, on how possible climate‐change induced alterations in the ecology of microbial communities may affect soil CO2 emissions. Here we present the results of a seasonal study on soil microbial community structure, SOM decomposition and its temperature sensitivity in two representative Mediterranean ecosystems where precipitation/throughfall exclusion has taken place during the last 10 years. Bacterial and fungal diversity was estimated using the terminal restriction fragment length polymorphism technique. Our results show that fungal diversity was less sensitive to seasonal changes in moisture, temperature and plant activity than bacterial diversity. On the other hand, fungal communities showed the ability to dynamically adapt throughout the seasons. Fungi also coped better with the 10 years of precipitation/throughfall exclusion compared with bacteria. The high resistance of fungal diversity to changes with respect to bacteria may open the controversy as to whether future ‘drier conditions’ for Mediterranean regions might favor fungal dominated microbial communities. Finally, our results indicate that the fungal community exerted a strong influence over the temporal and spatial variability of SOM decomposition and its sensitivity to temperature. The results, therefore, highlight the important role of fungi in the decomposition of terrestrial SOM, especially under the harsh environmental conditions of Mediterranean ecosystems, for which models predict even drier conditions in the future.  相似文献   

4.
Soil carbon is a major component in the global carbon cycle. Understanding the relationship between environmental changes and rates of soil respiration is critical for projecting changes in soil carbon fluxes in a changing climate. Although significant attention has been focused on the temperature sensitivity of soil organic matter decomposition, the factors that affect this temperature sensitivity are still debated. In this study, we examined the effects of substrate availability on the temperature sensitivity of soil respiration in several different kinds of soils. We found that increased substrate availability had a significant positive effect on temperature sensitivity, as measured by soil Q 10 values, and that this effect was inversely proportional to original substrate availability. This observation can be explained if decomposition follows Michaelis–Menten kinetics. The simple Q 10 model was most appropriate in soils with high substrate availability.  相似文献   

5.
Elevated CO2, rhizosphere processes,and soil organic matter decomposition   总被引:12,自引:0,他引:12  
Cheng  Weixin  Johnson  Dale W. 《Plant and Soil》1998,202(2):167-174
The rhizosphere is one of the key fine-scale components of C cycles. This study was undertaken to improve understanding of the potential effects of atmospheric CO2 increase on rhizosphere processes. Using C isotope techniques, we found that elevated atmospheric CO2 significantly increased wheat plant growth, dry mass accumulation, rhizosphere respiration, and soluble C concentrations in the rhizosphere. When plants were grown under elevated CO2 concentration, soluble C concentration in the rhizosphere increased by approximately 60%. The degree of elevated CO2 enhancement on rhizosphere respiration was much higher than on root biomass. Averaged between the two nitrogen treatments and compared with the ambient CO2 treatment, wheat rhizosphere respiration rate increased 60% and root biomass only increased 26% under the elevated CO2 treatment. These results indicated that elevated atmospheric CO2 in a wheat-soil system significantly increased substrate input to the rhizosphere due to both increased root growth and increased root activities per unit of roots. Nitrogen treatments changed the effect of elevated CO2 on soil organic matter decomposition. Elevated CO2 increased soil organic matter decomposition (22%) in the nitrogen-added treatment but decreased soil organic matter decomposition (18%) without nitrogen addition. Soil nitrogen status was therefore found to be important in determining the directions of the effect of elevated CO2 on soil organic matter decomposition.  相似文献   

6.
The temperature sensitivity of soil organic matter (SOM) decomposition has been a crucial topic in global change research, yet remains highly uncertain. One of the contributing factors to this uncertainty is the lack of understanding about the role of rhizosphere priming effect (RPE) in shaping the temperature sensitivity. Using a novel continuous 13C‐labeling method, we investigated the temperature sensitivity of RPE and its impact on the temperature sensitivity of SOM decomposition. We observed an overall positive RPE. The SOM decomposition rates in the planted treatments increased 17–163% above the unplanted treatments in three growth chamber experiments including two plant species, two growth stages, and two warming methods. More importantly, warming by 5 °C increased RPE up to threefold, hence, the overall temperature sensitivity of SOM decomposition was consistently enhanced (Q10 values increased 0.3–0.9) by the presence of active rhizosphere. In addition, the proportional contribution of SOM decomposition to total soil respiration was increased by soil warming, implying a higher temperature sensitivity of SOM decomposition than that of autotrophic respiration. Our results, for the first time, clearly demonstrated that root–soil interactions play a crucial role in shaping the temperature sensitivity of SOM decomposition. Caution is required for interpretation of any previously determined temperature sensitivity of SOM decomposition that omitted rhizosphere effects using either soil incubation or field root‐exclusion. More attention should be paid to RPE in future experimental and modeling studies of SOM decomposition.  相似文献   

7.
The global soil carbon pool is approximately three times larger than the contemporary atmospheric pool, therefore even minor changes to its integrity may have major implications for atmospheric CO2 concentrations. While theory predicts that the chemical composition of organic matter should constitute a master control on the temperature response of its decomposition, this relationship has not yet been fully demonstrated. We used laboratory incubations of forest soil organic matter (SOM) and fresh litter material together with NMR spectroscopy to make this connection between organic chemical composition and temperature sensitivity of decomposition. Temperature response of decomposition in both fresh litter and SOM was directly related to the chemical composition of the constituent organic matter, explaining 90% and 70% of the variance in Q10 in litter and SOM, respectively. The Q10 of litter decreased with increasing proportions of aromatic and O‐aromatic compounds, and increased with increased contents of alkyl‐ and O‐alkyl carbons. In contrast, in SOM, decomposition was affected only by carbonyl compounds. To reveal why a certain group of organic chemical compounds affected the temperature sensitivity of organic matter decomposition in litter and SOM, a more detailed characterization of the 13C aromatic region using Heteronuclear Single Quantum Coherence (HSQC) was conducted. The results revealed considerable differences in the aromatic region between litter and SOM. This suggests that the correlation between chemical composition of organic matter and the temperature response of decomposition differed between litter and SOM. The temperature response of soil decomposition processes can thus be described by the chemical composition of its constituent organic matter, this paves the way for improved ecosystem modeling of biosphere feedbacks under a changing climate.  相似文献   

8.
Although a significant amount of the organic C stored in soil resides in subsurface horizons, the dynamics of subsurface C stores are not well understood. The objective of this study was to determine if changes in soil moisture, temperature, and nutrient levels have similar effects on the mineralization of surface (0–25 cm) and subsurface (below 25 cm) C stores. Samples were collected from a 2 m deep unsaturated mollisol profile located near Santa Barbara, CA, USA. In a series of experiments, we measured the influence of nutrient additions (N and P), soil temperature (10–35°C), and soil water potential (?0.5 to ?10 MPa) on the microbial mineralization of native soil organic C. Surface and subsurface soils were slightly different with respect to the effects of water potential on microbial CO2 production; C mineralization rates in surface soils were more affected by conditions of moderate drought than rates in subsurface soils. With respect to the effects of soil temperature and nutrient levels on C mineralization rates, subsurface horizons were significantly more sensitive to increases in temperature or nutrient availability than surface horizons. The mean Q10 value for C mineralization rates was 3.0 in surface horizons and 3.9 in subsurface horizons. The addition of either N or P had negligible effects on microbial CO2 production in surface soil layers; in the subsurface horizons, the addition of either N or P increased CO2 production by up to 450% relative to the control. The results of these experiments suggest that alterations of the soil environment may have different effects on CO2 production through the profile and that the mineralization of subsurface C stores may be particularly susceptible to increases in temperature or nutrient inputs to soil.  相似文献   

9.
We examined the effects of elevated atmospheric CO2 on soil carbon decomposition in an experimental anaerobic wetland system. Pots containing either bare C4‐derived soil or the C3 sedge Scirpus olneyi planted in C4‐derived soil were incubated in greenhouse chambers at either ambient or twice‐ambient atmospheric CO2. We measured CO2 flux from each pot, quantified soil organic matter (SOM) mineralization using δ13C, and determined root and shoot biomass. SOM mineralization increased in response to elevated CO2 by 83–218% (P<0.0001). In addition, soil redox potential was significantly and positively correlated with root biomass (P= 0.003). Our results (1) show that there is a positive feedback between elevated atmospheric CO2 concentrations and wetland SOM decomposition and (2) suggest that this process is mediated by the release of oxygen from the roots of wetland plants. Because this feedback may occur in any wetland system, including peatlands, these results suggest a limitation on the size of the carbon sink presented by anaerobic wetland soils in a future elevated‐CO2 atmosphere.  相似文献   

10.
Kinetic theory suggests that the temperature sensitivity of decomposition of soil organic matter should increase with increasing recalcitrance. This ‘temperature–quality hypothesis’ was tested in a laboratory experiment. Microcosms with wheat straw, spruce needle litter and mor humus were initially placed at 5, 15 and 25 °C until the same cumulative amount of CO2 had been respired. Thereafter, microcosms from each single temperature were moved to a final set of incubation temperatures of 5, 15 and 25 °C. Straw decomposed faster than needle litter at 25 and 15 °C, but slower than needle litter at 5 °C, and showed a higher temperature sensitivity (expressed as Q10) than needle litter at low temperatures. When moved to the same temperature, needle litter initially incubated at 5 and 15 °C had significantly higher respiration rates in the final incubation than litters initially placed at 25 °C. Mor humus placed at equal temperatures during the initial and final incubations had higher cumulative respiration during the final incubation than humus experiencing a shift in temperature, both up‐ and downwards. These results indicate that other factors than substrate quality are needed to fully explain the temperature dependence. In agreement with the hypothesis, Q10 was always higher for the temperature step between 5 and 15 °C than between 15 and 25 °C. Also in agreement with the temperature–quality hypothesis, Q10 significantly increased with increasing degree of decomposition in five out of the six constant temperature treatments with needle litter and mor humus. Q10s for substrates moved between temperatures tended to be higher than for substrates remaining at the initial temperature and an upward shift in temperature increased Q10 more than a downward shift. This study largely supports the temperature–quality hypothesis. However, other factors like acclimation and synthesis of recalcitrant compounds can modify the temperature response.  相似文献   

11.
A reduction in the length of the snow‐covered season in response to a warming of high‐latitude and high‐elevation ecosystems may increase soil carbon availability both through increased litter fall following longer growing seasons and by allowing early winter soil frosts that lyse plant and microbial cells. To evaluate how an increase in labile carbon during winter may affect ecosystem carbon balance we investigated the relationship between carbon availability and winter CO2 fluxes at several locations in the Colorado Rockies. Landscape‐scale surveys of winter CO2 fluxes from sites with different soil carbon content indicated that winter CO2 fluxes were positively related to carbon availability and experimental additions of glucose to soil confirmed that CO2 fluxes from snow‐covered soil at temperatures between 0 and ?3°C were carbon limited. Glucose added to snow‐covered soil increased CO2 fluxes by 52–160% relative to control sites within 24 h and remained 62–70% higher after 30 days. Concurrently a shift in the δ13C values of emitted CO2 toward the glucose value indicated preferential utilization of the added carbon confirming the presence of active heterotrophic respiration in soils at temperatures below 0°C. The sensitivity of these winter fluxes to substrate availability, coupled with predicted changes in winter snow cover, suggests that feedbacks between growing season carbon uptake and winter heterotrophic activity may have unforeseen consequences for carbon and nutrient cycling in northern forests. For example, published winter CO2 fluxes indicate that on average 50% of growing season carbon uptake currently is respired during the winter; changes in winter CO2 flux in response to climate change have the potential to reduce substantially the net carbon sink in these ecosystems.  相似文献   

12.
Increasing atmospheric carbon dioxide (CO2) concentration is both a strong driver of primary productivity and widely believed to be the principal cause of recent increases in global temperature. Soils are the largest store of the world's terrestrial C. Consequently, many investigations have attempted to mechanistically understand how microbial mineralisation of soil organic carbon (SOC) to CO2 will be affected by projected increases in temperature. Most have attempted this in the absence of plants as the flux of CO2 from root and rhizomicrobial respiration in intact plant‐soil systems confounds interpretation of measurements. We compared the effect of a small increase in temperature on respiration from soils without recent plant C with the effect on intact grass swards. We found that for 48 weeks, before acclimation occurred, an experimental 3 °C increase in sward temperature gave rise to a 50% increase in below ground respiration (ca. 0.4 kg C m?2; Q10 = 3.5), whereas mineralisation of older SOC without plants increased with a Q10 of only 1.7 when subject to increases in ambient soil temperature. Subsequent 14C dating of respired CO2 indicated that the presence of plants in swards more than doubled the effect of warming on the rate of mineralisation of SOC with an estimated mean C age of ca. 8 years or older relative to incubated soils without recent plant inputs. These results not only illustrate the formidable complexity of mechanisms controlling C fluxes in soils but also suggest that the dual biological and physical effects of CO2 on primary productivity and global temperature have the potential to synergistically increase the mineralisation of existing soil C.  相似文献   

13.
土壤有机碳和氮分解对温度变化的响应趋势与研究方法   总被引:2,自引:0,他引:2  
吴建国 《应用生态学报》2007,18(12):2896-2904
总结了土壤中碳和氮贮量与温度的关系、土壤碳和氮分解对温度时空差异和直接加热升温的响应,以及土壤碳和氮分解对低温冻结及冻融循环的响应趋势,讨论了其研究方法的误差和不确定性,并对今后的研究提出了一些建议.气候变暖在短期内将使土壤碳和氮分解加速并引起CO2释放量增加,而长期过程中却并不一定会引起土壤碳和氮分解加速.合理解释不同研究结果的差异,除了需要系统分析土壤碳和氮分解对温度变化响应的机制外,还需要充分认识土壤碳和氮分解对温度变化响应的长期过程和短期过程的差异,以及研究方法、植被、土壤和气候等因素的影响.  相似文献   

14.
Enhanced release of CO2 to the atmosphere from soil organic carbon as a result of increased temperatures may lead to a positive feedback between climate change and the carbon cycle, resulting in much higher CO2 levels and accelerated global warming. However, the magnitude of this effect is uncertain and critically dependent on how the decomposition of soil organic C (heterotrophic respiration) responds to changes in climate. Previous studies with the Hadley Centre's coupled climate–carbon cycle general circulation model (GCM) (HadCM3LC) used a simple, single‐pool soil carbon model to simulate the response. Here we present results from numerical simulations that use the more sophisticated ‘RothC’ multipool soil carbon model, driven with the same climate data. The results show strong similarities in the behaviour of the two models, although RothC tends to simulate slightly smaller changes in global soil carbon stocks for the same forcing. RothC simulates global soil carbon stocks decreasing by 54 Gt C by 2100 in a climate change simulation compared with an 80 Gt C decrease in HadCM3LC. The multipool carbon dynamics of RothC cause it to exhibit a slower magnitude of transient response to both increased organic carbon inputs and changes in climate. We conclude that the projection of a positive feedback between climate and carbon cycle is robust, but the magnitude of the feedback is dependent on the structure of the soil carbon model.  相似文献   

15.
It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in a boreal rich fen into a process‐based model to understand how soil organic carbon (SOC) of the rich fen might respond to projected climate change. This model, the peatland version of the dynamic organic soil Terrestrial Ecosystem Model (peatland DOS‐TEM), was calibrated with data collected during 2005–2011 from the control treatment of a boreal rich fen in the Alaska Peatland Experiment (APEX). The performance of the model was validated with the experimental data measured from the raised and lowered water‐table treatments of APEX during the same period. The model was then applied to simulate future SOC dynamics of the rich fen control site under various CO2 emission scenarios. The results across these emissions scenarios suggest that the rate of SOC sequestration in the rich fen will increase between year 2012 and 2061 because the effects of warming increase heterotrophic respiration less than they increase carbon inputs via production. However, after 2061, the rate of SOC sequestration will be weakened and, as a result, the rich fen will likely become a carbon source to the atmosphere between 2062 and 2099. During this period, the effects of projected warming increase respiration so that it is greater than carbon inputs via production. Although changes in precipitation alone had relatively little effect on the dynamics of SOC, changes in precipitation did interact with warming to influence SOC dynamics for some climate scenarios.  相似文献   

16.
Soil surface carbon dioxide (CO2) flux (RS) was measured for 2 years at the Boreal Soil and Air Warming Experiment site near Thompson, MB, Canada. The experimental design was a complete random block design that consisted of four replicate blocks, with each block containing a 15 m × 15 m control and heated plot. Black spruce [Picea mariana (Mill.) BSP] was the overstory species and Epilobium angustifolium was the dominant understory. Soil temperature was maintained (~5 °C) above the control soil temperature using electric cables inside water filled polyethylene tubing for each heated plot. Air inside a 7.3‐m‐diameter chamber, centered in the soil warming plot, contained approximately nine black spruce trees was heated ~5 °C above control ambient air temperature allowing for the testing of soil‐only warming and soil+air warming. Soil surface CO2 flux (RS) was positively correlated (P < 0.0001) to soil temperature at 10 cm depth. Soil surface CO2 flux (RS) was 24% greater in the soil‐only warming than the control in 2004, but was only 11% greater in 2005, while RS in the soil+air warming treatments was 31% less than the control in 2004 and 23% less in 2005. Live fine root mass (< 2 mm diameter) was less in the heated than control treatments in 2004 and statistically less (P < 0.01) in 2005. Similar root mass between the two heated treatments suggests that different heating methods (soil‐only vs. soil+air warming) can affect the rate of decomposition.  相似文献   

17.
18.
通过在华西雨屏区苦竹(Pleioblastus amarus)人工林内建立固定样地、定期监测等方法,研究该人工林生态系统土壤呼吸各组分特征及其温度敏感性.结果表明:2010年2月-2011年1月,苦竹林平均土壤呼吸速率为1.13 μmol·m-2·s-1,仲夏最高,深冬最低;凋落物层、无根土壤和植物根系对苦竹林土壤呼吸的贡献率分别为30.9%、20.8%和48.3%,各呼吸组分的季节动态均与土壤总呼吸类似,并与温度和凋落量等因素相关;苦竹林土壤总呼吸(RST)、凋落物层CO2排放(RSL)、无根土壤CO2排放(RSS)和植物根系呼吸(RSR)的年碳排放量分别为4.27、1.32、0.87和2.08 MgC· hm-2 ·a-1;土壤总呼吸及其各组分与凋落量呈显著正线性相关,与土壤10 cm温度和气温均呈显著正指数相关;基于土壤温度计算的RST、RSL、RSS和RSR的Q10值分别为2.90、2.28、3.09和3.19,凋落物层CO2排放的温度敏感性显著低于总呼吸和其他各组分.  相似文献   

19.
To fully understand how soil respiration is partitioned among its component fluxes and responds to climate, it is essential to relate it to belowground carbon allocation, the ultimate carbon source for soil respiration. This remains one of the largest gaps in knowledge of terrestrial carbon cycling. Here, we synthesize data on gross and net primary production and their components, and soil respiration and its components, from a global forest database, to determine mechanisms governing belowground carbon allocation and their relationship with soil respiration partitioning and soil respiration responses to climatic factors across global forest ecosystems. Our results revealed that there are three independent mechanisms controlling belowground carbon allocation and which influence soil respiration and its partitioning: an allometric constraint; a fine‐root production vs. root respiration trade‐off; and an above‐ vs. belowground trade‐off in plant carbon. Global patterns in soil respiration and its partitioning are constrained primarily by the allometric allocation, which explains some of the previously ambiguous results reported in the literature. Responses of soil respiration and its components to mean annual temperature, precipitation, and nitrogen deposition can be mediated by changes in belowground carbon allocation. Soil respiration responds to mean annual temperature overwhelmingly through an increasing belowground carbon input as a result of extending total day length of growing season, but not by temperature‐driven acceleration of soil carbon decomposition, which argues against the possibility of a strong positive feedback between global warming and soil carbon loss. Different nitrogen loads can trigger distinct belowground carbon allocation mechanisms, which are responsible for different responses of soil respiration to nitrogen addition that have been observed. These results provide new insights into belowground carbon allocation, partitioning of soil respiration, and its responses to climate in forest ecosystems and are, therefore, valuable for terrestrial carbon simulations and projections.  相似文献   

20.
Thermal adaptation of soil microbial respiration to elevated temperature   总被引:1,自引:0,他引:1  
In the short‐term heterotrophic soil respiration is strongly and positively related to temperature. In the long‐term, its response to temperature is uncertain. One reason for this is because in field experiments increases in respiration due to warming are relatively short‐lived. The explanations proposed for this ephemeral response include depletion of fast‐cycling, soil carbon pools and thermal adaptation of microbial respiration. Using a > 15 year soil warming experiment in a mid‐latitude forest, we show that the apparent ‘acclimation’ of soil respiration at the ecosystem scale results from combined effects of reductions in soil carbon pools and microbial biomass, and thermal adaptation of microbial respiration. Mass‐specific respiration rates were lower when seasonal temperatures were higher, suggesting that rate reductions under experimental warming likely occurred through temperature‐induced changes in the microbial community. Our results imply that stimulatory effects of global temperature rise on soil respiration rates may be lower than currently predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号