首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mediterranean ecosystems are among the highest in species richness and endemism globally and are also among the most sensitive to climate and land‐use change. Fire is an important driver of ecosystem processes in these systems; however, fire regimes have been substantially changed by human activities. Climate change is predicted to further alter fire regimes and species distributions, leading to habitat loss and threatening biodiversity. It is currently unknown what the population‐level effects of these landscape‐level changes will be. We linked a spatially explicit stochastic population model to dynamic bioclimate envelopes to investigate the effects of climate change, habitat loss and fragm entation and altered fire regime on population abundances of a long‐lived obligate seeding shrub, Ceanothus verrucosus, a rare endemic species of southern California. We tested a range of fire return intervals under the present and two future climate scenarios. We also assessed the impact of potential anthropogenic land‐use change by excluding land identified as developable by local governments. We found that the 35–50 year fire return interval resulted in the highest population abundances. Expected minimum population abundance (EMA) declined gradually as fire return interval increased, but declined dramatically for shorter fire intervals. Simulated future development resulted in a 33% decline in EMA, but relatively stable population trajectories over the time frame modeled. Relative changes in EMA for alternative fire intervals were similar for all climate and habitat loss scenarios, except under the more severe climate scenario which resulted in a change in the relative ranking of the fire scenarios. Our results show climate change to be the most serious threat facing obligate seeding shrubs embedded in urban landscapes, resulting in population decline and increased local extirpation, and that likely interactions with other threats increase risks to these species. Taking account of parameter uncertainty did not alter our conclusions.  相似文献   

2.
The distributional ranges of many species are contracting with habitat conversion and climate change. For vertebrates, informed strategies for translocations are an essential option for decisions about their conservation management. The pygmy bluetongue lizard, Tiliqua adelaidensis, is an endangered reptile with a highly restricted distribution, known from only a small number of natural grassland fragments in South Australia. Land‐use changes over the last century have converted perennial native grasslands into croplands, pastures and urban areas, causing substantial contraction of the species' range due to loss of essential habitat. Indeed, the species was thought to be extinct until its rediscovery in 1992. We develop coupled‐models that link habitat suitability with stochastic demographic processes to estimate extinction risk and to explore the efficacy of potential climate adaptation options. These coupled‐models offer improvements over simple bioclimatic envelope models for estimating the impacts of climate change on persistence probability. Applying this coupled‐model approach to T. adelaidensis, we show that: (i) climate‐driven changes will adversely impact the expected minimum abundance of populations and could cause extinction without management intervention, (ii) adding artificial burrows might enhance local population density, however, without targeted translocations this measure has a limited effect on extinction risk, (iii) managed relocations are critical for safeguarding lizard population persistence, as a sole or joint action and (iv) where to source and where to relocate animals in a program of translocations depends on the velocity, extent and nonlinearities in rates of climate‐induced habitat change. These results underscore the need to consider managed relocations as part of any multifaceted plan to compensate the effects of habitat loss or shifting environmental conditions on species with low dispersal capacity. More broadly, we provide the first step towards a more comprehensive framework for integrating extinction risk, managed relocations and climate change information into range‐wide conservation management.  相似文献   

3.
Aim While niche models are typically used to assess the vulnerability of species to climate change, they have been criticized for their limited assessment of threats other than climate change. We attempt to evaluate this limitation by combining niche models with life‐history models to investigate the relative influence of climate change and a range of fire regimes on the viability of a long‐lived plant population. Specifically, we investigate whether range shift due to climate change is a greater threat to an obligate seeding fire‐prone shrub than altered fire frequency and how these two threatening processes might interact. Location Australian sclerophyll woodland and heathland. Methods The study species is Leucopogon setiger, an obligate seeding fire‐prone shrub. A spatially explicit stochastic matrix model was constructed for this species and linked with a dynamic niche model and fire risk functions representing a suite of average fire return intervals. We compared scenarios with a variety of hypothetical patches, a patch framework based upon current habitat suitability and one with dynamic habitat suitability based on climate change scenarios A1FI and A2. Results Leucopogon setiger was found to be sensitive to fire frequency, with shorter intervals reducing expected minimum abundances (EMAs). Spatial decoupling of fires across the landscape reduced the vulnerability of the species to shortened fire frequencies. Shifting habitat, while reducing EMAs, was less of a threat to the species than frequent fire. Main conclusions Altered fire regime, in particular more frequent fires relative to the historical regime, was predicted to be a strong threat to this species, which may reflect a vulnerability of obligate seeders in general. Range shifts induced by climate change were a secondary threat when habitat reductions were predicted. Incorporating life‐history traits into habitat suitability models by linking species distribution models with population models allowed for the population‐level evaluation of multiple stressors that affect population dynamics and habitat, ultimately providing a greater understanding of the impacts of global change than would be gained by niche models alone. Further investigations of this type could elucidate how particular bioecological factors can affect certain types of species under global change.  相似文献   

4.
Aim Species distribution models are increasingly used to predict the impacts of global change on whole ecological communities by modelling the individualistic niche responses of large numbers of species. However, it is not clear whether this single‐species ensemble approach is preferable to community‐wide strategies that represent interspecific associations or shared responses to environmental gradients. Here, we test the performance of two multi‐species modelling approaches against equivalent single‐species models. Location Great Britain. Methods Single‐ and multi‐species distribution models were fitted for 701 native British plant species at a 10‐km grid scale. Two machine learning methods were used – classification and regression trees (CARTs) and artificial neural networks (ANNs). The single‐species versions are widely used in ecology but their multivariate extensions are less well known and have not previously been evaluated against one another. We compared their abilities to predict species distributions, community compositions and species richness in an independent geographical region reserved from model‐fitting. Results The single‐ and multi‐species models performed similarly, although the community models gave slightly poorer predictive accuracy by all measures. However, from the point of view of the whole community they were much simpler than the array of single‐species models, involving orders of magnitude fewer parameters. Multi‐species approaches also left greater residual spatial autocorrelation than the individualistic models and, contrary to expectation, were relatively less accurate for rarer species. However, the fitted multi‐species response curves had lower tendency for pronounced discontinuities that are unlikely to be a feature of realized niche responses. Main conclusions Although community distribution models were slightly less accurate than single‐species models, they offered a highly simplified way of modelling spatial patterns in British plant diversity. Moreover, an advantage of the multi‐species approach was that the modelling of shared environmental responses resolved more realistic response curves. However, there was a slight tendency for community models to predict rare species less accurately, which is potentially disadvantageous for conservation applications. We conclude that multi‐species distribution models may have potential for understanding and predicting the structure of ecological communities, but were slightly inferior to single‐species ensembles for our data.  相似文献   

5.
Global change is expected to impose new selection pressures on natural populations. Phenotypic responses, such as earlier phenology in response to climate warming, have been repeatedly observed in the field. The recent pollinator decline is also expected to change selection on reproductive traits in flowering plants. However, it remains unclear whether short‐term adaptation of plant reproductive strategies occurs in response to global change. In this study, we report the evolution of some important reproductive traits of the annual self‐incompatible weed Centaurea cyanus. In a common garden experiment, we germinated stored seeds, sampled 18 years apart from the same location, in a region where warmer springs and indices of pollinator decline have been reported. Compared to the ancestral population (1992), our results showed that plants of the descendant population (2010) flowered earlier and also produced larger capitula with longer receptivity and a larger floral display. QSTFST comparisons indicated that natural selection has likely contributed to the evolution of some of the traits investigated. Lower FST within temporal samples than among spatial samples further suggests a limited role of gene flow from neighbouring populations. We therefore propose that trait shifts could partly be due to adaptation to global change.  相似文献   

6.
7.
Temperature, oxygen, and food availability directly affect marine life. Climate models project a global warming of the ocean's surface (~+3 °C), a de‐oxygenation of the ocean's interior (~?3%) and a decrease in total marine net primary production (~?8%) under the ‘business as usual’ climate change scenario (RCP8.5). We estimated the effects of these changes on biological communities using a coupled biogeochemical (PISCES) – ecosystems (APECOSM) model forced by the physical outputs of the last generation of the IPSL‐CM Earth System Model. The APECOSM model is a size‐structured bio‐energetic model that simulates the 3D dynamical distributions of three interactive pelagic communities (epipelagic, mesopelagic, and migratory) under the effects of multiple environmental factors. The PISCES‐APECOSM model ran from 1850 to 2100 under historical forcing followed by RCP8.5. Our RCP8.5 simulation highlights significant changes in the spatial distribution, biomass, and maximum body‐size of the simulated pelagic communities. Biomass and maximum body‐size increase at high latitude over the course of the century, reflecting the capacity of marine organisms to respond to new suitable environment. At low‐ and midlatitude, biomass and maximum body‐size strongly decrease. In those regions, large organisms cannot maintain their high metabolic needs because of limited and declining food availability. This resource reduction enhances the competition and modifies the biomass distribution among and within the three communities: the proportion of small organisms increases in the three communities and the migrant community that initially comprised a higher proportion of small organisms is favored. The greater resilience of small body‐size organisms resides in their capacity to fulfill their metabolic needs under reduced energy supply and is further favored by the release of predation pressure due to the decline of large organisms. These results suggest that small body‐size organisms might be more resilient to climate change than large ones.  相似文献   

8.
9.
Ongoing rapid climate change is predicted to cause local extinction of plant species in mountain regions. However, some plant species could have persisted during Quaternary climate oscillations without shifting their range, despite the limited evidence from fossils. Here, we tested two candidate mechanisms of persistence by comparing the macrorefugia and microrefugia (MR) hypotheses. We used the rare and endemic Saxifraga florulenta as a model taxon and combined ensembles of species distribution models (SDMs) with a high‐resolution paleoclimatic and topographic dataset to reconstruct its potential current and past distribution since the last glacial maximum. To test the macrorefugia hypothesis, we verified whether the species could have persisted in or shifted to geographic areas defined by its realized niche. We then identified potential MR based on climatic and topographic properties of the landscape and applied refined scenarios of MR dynamics and functions over time. Last, we quantified the number of known occurrences that could be explained by either the macrorefugia or MR model. A consensus of two or three SDM techniques predicted absence between 14–10, 3–4 and 1 ka bp , which did not support the macrorefugia model. In contrast, we showed that S. florulenta could have contracted into MR during periods of absence predicted by the SDMs and later re‐colonized suitable areas according to the macrorefugia model. Assuming a limited and realistic seed dispersal distance for our species, we explained a large number of the current occurrences (61–96%). Additionally, we showed that MR could have facilitated range expansions or shifts of S. florulenta. Finally, we found that the most recent and the most stable MR were the ones closest to current occurrences. Hence, we propose a novel paradigm to explain plant persistence by highlighting the importance of supporting functions of MR when forecasting the fate of plant species under climate change.  相似文献   

10.
11.
Species attributes are commonly used to infer impacts of environmental change on multiyear species trends, e.g. decadal changes in population size. However, by themselves attributes are of limited value in global change attribution since they do not measure the changing environment. A broader foundation for attributing species responses to global change may be achieved by complementing an attributes‐based approach by one estimating the relationship between repeated measures of organismal and environmental changes over short time scales. To assess the benefit of this multiscale perspective, we investigate the recent impact of multiple environmental changes on European farmland birds, here focusing on climate change and land use change. We analyze more than 800 time series from 18 countries spanning the past two decades. Analysis of long‐term population growth rates documents simultaneous responses that can be attributed to both climate change and land‐use change, including long‐term increases in populations of hot‐dwelling species and declines in long‐distance migrants and farmland specialists. In contrast, analysis of annual growth rates yield novel insights into the potential mechanisms driving long‐term climate induced change. In particular, we find that birds are affected by winter, spring, and summer conditions depending on the distinct breeding phenology that corresponds to their migratory strategy. Birds in general benefit from higher temperatures or higher primary productivity early on or in the peak of the breeding season with the largest effect sizes observed in cooler parts of species' climatic ranges. Our results document the potential of combining time scales and integrating both species attributes and environmental variables for global change attribution. We suggest such an approach will be of general use when high‐resolution time series are available in large‐scale biodiversity surveys.  相似文献   

12.
With improvements in mapping regional distributions of vegetation using satellite‐derived information, there is an increasing interest in the assessment of current limitations on forest growth and in making projections of how productivity may be altered in response to changing climatic conditions and management policies. We utilised a simplified physiologically based process model (3‐PG) across a 54 000 km2 mountainous region of southwestern Oregon, USA, to evaluate the degree to which maximum periodic mean annual increment (PAI) of forests could be predicted at a set of 448 forest inventory plots. The survey data were pooled into six broad forest types (coastal rain forest, interior coast range forest, mixed conifer, dry‐site Douglas‐fir, subalpine forest, and pine forest) and compared to the 3‐PG predictions at a spatial resolution of 1 km2. We found good agreement (r2 = 0.84) between mean PAI values of forest productivity for the six forest types with those obtained from field surveys. With confidence at this broader level of integration, we then ran model simulations to evaluate the constraints imposed by (i) soil fertility under current climatic conditions, (ii) the effect of doubling monthly precipitation across the region, and (iii) a widely used climatic change scenario that involves modifications in monthly mean temperatures and precipitation, as well as a doubling in atmospheric CO2 concentrations. These analyses showed that optimum soil fertility would more than double growth, with the greatest response in the subalpine type and the least increase in the coastal rain forests. Doubling the precipitation increased productivity in the pine type (> 50%) with reduced responses elsewhere. The climate change scenario with doubled atmospheric CO2 increased growth by 50% on average across all forest types, primarily as a result of a projected 33% increase in photosynthetic capacity. This modelling exercise indicates that, at a regional scale, a general relationship exists between simulated maximum leaf area index and maximum aboveground growth, supporting the contention that satellite‐derived estimates of leaf area index may be good measures of the potential productivity of temperate evergreen forests.  相似文献   

13.
Climate change and ocean acidification are altering marine ecosystems and, from a human perspective, creating both winners and losers. Human responses to these changes are complex, but may result in reduced government investments in regulation, resource management, monitoring and enforcement. Moreover, a lack of peoples’ experience of climate change may drive some towards attributing the symptoms of climate change to more familiar causes such as management failure. Taken together, we anticipate that management could become weaker and less effective as climate change continues. Using diverse case studies, including the decline of coral reefs, coastal defences from flooding, shifting fish stocks and the emergence of new shipping opportunities in the Arctic, we argue that human interests are better served by increased investments in resource management. But greater government investment in management does not simply mean more of “business‐as‐usual.” Management needs to become more flexible, better at anticipating and responding to surprise, and able to facilitate change where it is desirable. A range of technological, economic, communication and governance solutions exists to help transform management. While not all have been tested, judicious application of the most appropriate solutions should help humanity adapt to novel circumstances and seek opportunity where possible.  相似文献   

14.
Understanding species’ responses to fire regimes, particularly rare or threatened species, is important for land managers tasked with managing for biodiversity. Hickman's Allanaspides (Allanaspides hickmani, Anaspidesidae) is a rare, primitive, shrimp‐like crustacean, with high conservation value. It is restricted to a single catchment in the island state of Tasmania, Australia, where it occurs within moorland pools typically containing crayfish (Ombrastacoides spp.) burrows. Although its moorland habitat has a long history of firing, adverse fire regimes are a potential threat to the species. A large part of its range is subject to planned burning to help manage the detrimental effects of high‐intensity wildfires. The resilience of A. hickmani to low–moderate‐intensity fires was investigated over 13 years using a replicated before‐after‐control‐impact design. The fires resulted in an initial reduction in vegetation cover and surface water and an increase in water temperature. There was no effect of fire on A. hickmani captures 4 months after small‐scale, low‐intensity autumn burns. However, 5 months later, following an unintended larger‐scale, medium‐intensity spring burn, there was an 80–90% reduction in A. hickmani captures and their numbers did not recover until 6–9 years post‐fire. It is not known whether the reduced catch was due to a reduction in the number of A. hickmani or their movement from pools into crayfish burrows. These findings together with evidence of a varied fire history, including high‐intensity wildfires, within their range suggests that A. hickmani and its habitat are resilient to a range of fire frequencies and intensities provided that the fire regime does not degrade or lead to a complete loss of peat. Climate change predictions for warmer and drier summers in western Tasmania will increase the risk of peat loss. Planned burning is likely to be important for the protection of A. hickmani habitat from predicted adverse fire regimes.  相似文献   

15.
The factors responsible for maintaining diverse groundcover plant communities of high conservation value in frequently burned wet pine savannas are poorly understood. While most management involves manipulating extrinsic factors important in maintaining species diversity (e.g., fire regimes), most ecological theory (e.g., niche theory and neutral theory) examines how traits exhibited by the species promote species coexistence. Furthermore, although many ecologists focus on processes that maintain local species diversity, conservation biologists have argued that other indices (e.g., phylogenetic diversity) are better for evaluating assemblages in terms of their conservation value. I used a null model that employed beta‐diversity calculations based on Raup–Crick distances to test for deterministic herbaceous species losses associated with a 65‐year chronosequence of woody species encroachment within each of three localities. I quantified conservation value of assemblages by measuring taxonomic distinctness, endemism, and floristic quality of plots with and without woody encroachment. Reductions in herb species richness per plot attributable to woody encroachment were largely stochastic, as indicated by a lack of change in the mean or variance in beta‐diversity caused by woody encroachment in the savannas studied here. Taxonomic distinctness, endemism, and floristic quality (when summed across all species) were all greater in areas that had not experienced woody encroachment. However, when corrected for local species richness, only average endemism and floristic quality of assemblages inclusive of herbs and woody plants were greater in areas that had not experienced woody encroachment, due to the more restricted ranges and habitat requirements of herbs. Results suggest that frequent fires maintain diverse assemblages of fire‐dependent herb species endemic to the region. The stochastic loss of plant species, irrespective of their taxonomic distinctness, to woody encroachment suggests that the relevance of niche partitioning or phylogenetic diversity to the management of biodiversity in wet pine savannas is minimal.  相似文献   

16.
Ecological theory suggests that communities are not random combinations of species but rather the results of community assembly processes filtering and sorting species that are able to coexist together. To date, such processes (i.e., assembly rules) have been inferred from observed spatial patterns of biodiversity combined with null model approaches, but relatively few attempts have been made to assess how these processes may be changing through time. Specifically, in the context of the ongoing biodiversity crisis and global change, understanding how processes shaping communities may be changing and identifying the potential drivers underlying these changes become increasingly critical. Here, we used time series of 460 French freshwater fish communities and assessed both functional and phylogenetic diversity patterns to determine the relative importance of two key assembly rules (i.e., habitat filtering and limiting similarity) in shaping these communities over the last two decades. We aimed to (a) describe the temporal changes in both functional and phylogenetic diversity patterns, (b) determine to what extent temporal changes in processes inferred through the use of standardized diversity indices were congruent, and (c) test the relationships between the dynamics of assembly rules and both climatic and biotic drivers. Our results revealed that habitat filtering, although already largely predominant over limiting similarity, became more widespread over time. We also highlighted that phylogenetic and trait‐based approaches offered complementary information about temporal changes in assembly rules. Finally, we found that increased environmental harshness over the study period (especially higher seasonality of temperature) led to an increase in habitat filtering and that biological invasions increased functional redundancy within communities. Overall, these findings underlie the need to develop temporal perspectives in community assembly studies, as understanding ongoing temporal changes could provide a better vision about the way communities could respond to future global changes.  相似文献   

17.
Commercial fishing and climate change have influenced the composition of marine fish assemblages worldwide, but we require a better understanding of their relative influence on long‐term changes in species abundance and body‐size distributions. In this study, we investigated long‐term (1911–2007) variability within a demersal fish assemblage in the western English Channel. The region has been subject to commercial fisheries throughout most of the past century, and has undergone interannual changes in sea temperature of over 2.0 °C. We focussed on a core 30 species that comprised 99% of total individuals sampled in the assemblage. Analyses showed that temporal trends in the abundance of smaller multispecies size classes followed thermal regime changes, but that there were persistent declines in abundance of larger size classes. Consistent with these results, larger‐growing individual species had the greatest declines in body size, and the most constant declines in abundance, while abundance changes of smaller‐growing species were more closely linked to preceding sea temperatures. Together these analyses are suggestive of dichotomous size‐dependent responses of species to long‐term climate change and commercial fishing over a century scale. Small species had rapid responses to the prevailing thermal environment, suggesting their life history traits predisposed populations to respond quickly to changing climates. Larger species declined in abundance and size, reflecting expectations from sustained size‐selective overharvesting. These results demonstrate the importance of considering species traits when developing indicators of human and climatic impacts on marine fauna.  相似文献   

18.
As most regions of the earth transition to altered climatic conditions, new methods are needed to identify refugia and other areas whose conservation would facilitate persistence of biodiversity under climate change. We compared several common approaches to conservation planning focused on climate resilience over a broad range of ecological settings across North America and evaluated how commonalities in the priority areas identified by different methods varied with regional context and spatial scale. Our results indicate that priority areas based on different environmental diversity metrics differed substantially from each other and from priorities based on spatiotemporal metrics such as climatic velocity. Refugia identified by diversity or velocity metrics were not strongly associated with the current protected area system, suggesting the need for additional conservation measures including protection of refugia. Despite the inherent uncertainties in predicting future climate, we found that variation among climatic velocities derived from different general circulation models and emissions pathways was less than the variation among the suite of environmental diversity metrics. To address uncertainty created by this variation, planners can combine priorities identified by alternative metrics at a single resolution and downweight areas of high variation between metrics. Alternately, coarse‐resolution velocity metrics can be combined with fine‐resolution diversity metrics in order to leverage the respective strengths of the two groups of metrics as tools for identification of potential macro‐ and microrefugia that in combination maximize both transient and long‐term resilience to climate change. Planners should compare and integrate approaches that span a range of model complexity and spatial scale to match the range of ecological and physical processes influencing persistence of biodiversity and identify a conservation network resilient to threats operating at multiple scales.  相似文献   

19.
The potential of reef‐building corals to adapt to increasing sea‐surface temperatures is often debated but has rarely been comprehensively modeled on a region‐wide scale. We used individual‐based simulations to model adaptation to warming in a coral metapopulation comprising 680 reefs and representing the whole of the Central Indo‐West Pacific. Encouragingly, some reefs—most notably Vietnam, Japan, Taiwan, New Caledonia and the southern half of the Great Barrier Reef—exhibited high capacity for adaptation and, in our model, maintained coral cover even under a rapid “business‐as‐usual” warming scenario throughout the modeled period (200 years). Higher resilience of these reefs was observed under all tested parameter settings except the models prohibiting selection and/or migration during warming. At the same time, the majority of reefs in the region tended to collapse within the first 100 years of warming. The adaptive potential (odds of maintaining high coral cover) of a given reef could be predicted based on two metrics: the reef's present‐day temperature, and the proportion of recruits immigrating from warmer locations. The latter metric explains the most variation in adaptive potential, and significantly correlates with actual coral cover changes observed throughout the region between the 1970s and the early 2000s. These findings will help prioritize coral conservation efforts and plan assisted gene flow interventions to boost the adaptive potential of specific coral populations.  相似文献   

20.
Climate and land‐use change jointly affect the future of biodiversity. Yet, biodiversity scenarios have so far concentrated on climatic effects because forecasts of land use are rarely available at appropriate spatial and thematic scales. Agent‐based models (ABMs) represent a potentially powerful but little explored tool for establishing thematically and spatially fine‐grained land‐use scenarios. Here, we use an ABM parameterized for 1,329 agents, mostly farmers, in a Central European model region, and simulate the changes to land‐use patterns resulting from their response to three scenarios of changing socio‐economic conditions and three scenarios of climate change until the mid of the century. Subsequently, we use species distribution models to, first, analyse relationships between the realized niches of 832 plant species and climatic gradients or land‐use types, respectively, and, second, to project consequent changes in potential regional ranges of these species as triggered by changes in both the altered land‐use patterns and the changing climate. We find that both drivers determine the realized niches of the studied plants, with land use having a stronger effect than any single climatic variable in the model. Nevertheless, the plants' future distributions appear much more responsive to climate than to land‐use changes because alternative future socio‐economic backgrounds have only modest impact on land‐use decisions in the model region. However, relative effects of climate and land‐use changes on biodiversity may differ drastically in other regions, especially where landscapes are still dominated by natural or semi‐natural habitat. We conclude that agent‐based modelling of land use is able to provide scenarios at scales relevant to individual species distribution and suggest that coupling ABMs with models of species' range change should be intensified to provide more realistic biodiversity forecasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号