首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoculture croplands are a major source of global anthropogenic emissions of nitrous oxide (N2O), a potent greenhouse gas that contributes to ozone depletion. Agroforestry has the potential to reduce N2O emissions. Presently, there is no systematic comparison of soil N2O emissions between cropland agroforestry and monoculture systems in Central Europe. We investigated the effects of converting the monoculture cropland system into the alley cropping agroforestry system on soil N2O fluxes at three sites (each site has paired agroforestry and monoculture) in Germany, where agroforestry combined crop rows and poplar short-rotation coppice (SRC). We measured soil N2O fluxes monthly over 2 years (March 2018–January 2020) using static vented chambers. Annual soil N2O emissions from agroforestry ranged from 0.21 to 2.73 kg N ha−1 year−1, whereas monoculture N2O emissions ranged from 0.34 to 3.00 kg N ha−1 year−1. During the rotation of corn crop, with high fertilization rates, agroforestry reduced soil N2O emissions by 9% to 56% compared to monocultures. This was mainly caused by low soil N2O emissions from the unfertilized agroforestry tree rows. Soil N2O fluxes were predominantly controlled by soil mineral N in both agroforestry and monoculture systems. Our findings suggest that optimized fertilizer input will further enhance the potential of agroforestry for mitigating N2O emissions.  相似文献   

2.
Sources and sinks of nitrous oxide (N2O) in deep lakes   总被引:2,自引:1,他引:2  
As reported from marine systems, we found that also in15 prealpine lakes N2O concentrations werestrongly correlated with O2 concentrations. Inoxic waters below the mixed surface layer, N2Oconcentrations usually increased with decreasingO2 concentrations. N2O is produced in oxicepilimnia, in oxic hypolimnia and at oxic-anoxicboundaries, either in the water or at the sediment-waterinterface. It is consumed, however, incompletely anoxic layers. Anoxic water layers weretherefore N2O undersaturated. All studied lakeswere sources for atmospheric N2O, including thosewith anoxic, N2O undersaturated hypolimnia.However, compared to agriculture, lakes seem not tocontribute significantly to atmospheric N2Oemissions.  相似文献   

3.
Soil nitrogen (N) budgets are used in a global, distributed flow-path model with 0.5° × 0.5° resolution, representing denitrification and N2O emissions from soils, groundwater and riparian zones for the period 1900–2000 and scenarios for the period 2000–2050 based on the Millennium Ecosystem Assessment. Total agricultural and natural N inputs from N fertilizers, animal manure, biological N2 fixation and atmospheric N deposition increased from 155 to 345 Tg N yr−1 (Tg = teragram; 1 Tg = 1012 g) between 1900 and 2000. Depending on the scenario, inputs are estimated to further increase to 408–510 Tg N yr−1 by 2050. In the period 1900–2000, the soil N budget surplus (inputs minus withdrawal by plants) increased from 118 to 202 Tg yr−1, and this may remain stable or further increase to 275 Tg yr−1 by 2050, depending on the scenario. N2 production from denitrification increased from 52 to 96 Tg yr−1 between 1900 and 2000, and N2O–N emissions from 10 to 12 Tg N yr−1. The scenarios foresee a further increase to 142 Tg N2–N and 16 Tg N2O–N yr−1 by 2050. Our results indicate that riparian buffer zones are an important source of N2O contributing an estimated 0.9 Tg N2O–N yr−1 in 2000. Soils are key sites for denitrification and are much more important than groundwater and riparian zones in controlling the N flow to rivers and the oceans.  相似文献   

4.
N2O is a potent greenhouse gas involved in the destruction of the protective ozone layer in the stratosphere and contributing to global warming. The ecological processes regulating its emissions from soil are still poorly understood. Here, we show that the presence of arbuscular mycorrhizal fungi (AMF), a dominant group of soil fungi, which form symbiotic associations with the majority of land plants and which influence a range of important ecosystem functions, can induce a reduction in N2O emissions from soil. To test for a functional relationship between AMF and N2O emissions, we manipulated the abundance of AMF in two independent greenhouse experiments using two different approaches (sterilized and re-inoculated soil and non-mycorrhizal tomato mutants) and two different soils. N2O emissions were increased by 42 and 33% in microcosms with reduced AMF abundance compared to microcosms with a well-established AMF community, suggesting that AMF regulate N2O emissions. This could partly be explained by increased N immobilization into microbial or plant biomass, reduced concentrations of mineral soil N as a substrate for N2O emission and altered water relations. Moreover, the abundance of key genes responsible for N2O production (nirK) was negatively and for N2O consumption (nosZ) positively correlated to AMF abundance, indicating that the regulation of N2O emissions is transmitted by AMF-induced changes in the soil microbial community. Our results suggest that the disruption of the AMF symbiosis through intensification of agricultural practices may further contribute to increased N2O emissions.  相似文献   

5.
With increasing nitrogen (N) application to croplands required to support growing food demand, mitigating N2O emissions from agricultural soils is a global challenge. National greenhouse gas emissions accounting typically estimates N2O emissions at the country scale by aggregating all crops, under the assumption that N2O emissions are linearly related to N application. However, field studies and meta‐analyses indicate a nonlinear relationship, in which N2O emissions are relatively greater at higher N application rates. Here, we apply a super‐linear emissions response model to crop‐specific, spatially explicit synthetic N fertilizer and manure N inputs to provide subnational accounting of global N2O emissions from croplands. We estimate 0.66 Tg of N2O‐N direct global emissions circa 2000, with 50% of emissions concentrated in 13% of harvested area. Compared to estimates from the IPCC Tier 1 linear model, our updated N2O emissions range from 20% to 40% lower throughout sub‐Saharan Africa and Eastern Europe, to >120% greater in some Western European countries. At low N application rates, the weak nonlinear response of N2O emissions suggests that relatively large increases in N fertilizer application would generate relatively small increases in N2O emissions. As aggregated fertilizer data generate underestimation bias in nonlinear models, high‐resolution N application data are critical to support accurate N2O emissions estimates.  相似文献   

6.
Urine patches in pastures rank among the highest sources of the greenhouse gas nitrous oxide (N2O) from animal production systems. Previous laboratory studies indicate that N2O emissions for urine-N in pastures may increase with a factor five or eight in combination with soil compaction and dung, respectively. These combinations of urine, compaction and dung occur regularly in pastures, especially in so-called camping areas. The aims of this study were (i) to experimentally quantify the effect of compaction and dung on emission factors of N2O from urine patches under field conditions; (ii) to detect any seasonal changes in emission from urine patches; and (iii) to quantify possible effects of urine concentration and -volume. A series of experiments on the effects of compaction, dung, urine-N concentration and urine volume was set up at a pasture on a sandy soil (typic Endoaquoll) in Wageningen, the Netherlands. Artificial urine was applied 8 times in the period August 2000–November 2001, and N2O emissions were monitored for a minimum of 1 month after each application. The average emission factor for urine-only treatments was 1.55%. Over the whole period, only soil compaction had a clear significant effect, raising the average N2O emissions from urine patches from 1.30% to 2.92% of the applied N. Dung had no consistent effect; although it increased the average emissions from 1.60% to 2.82%, this was clearly significant (P< 0.01) for only one application date and marginally significant (P=0.054) for the whole experiment. Both compaction and dung increased water-filled pore space (WFPS) of the topsoil for a more prolonged time than high urine volumes. No effect of amount of urine-N or urine volume on N2O emissions relative to added N was detected for the whole experiment. There were clear differences between application dates, with highest emissions for urine-only treatments of 4.25% in October, 2000, and lowest of –0.11% in June, 2001. Emissions peaked at 60–70% WFPS, and decreased rapidly with both higher and lower WFPS. We conclude that compaction leads to a considerable increase in the N2O emissions under field conditions, mainly through higher WFPS. Dung addition may have the same effect, although this was not consistent throughout our experiment. Seasonal variations seemed mainly driven by differences in WFPS. Based on this study, mitigation strategies should focus on minimizing the grazing period with wet conditions leading to WFPS > 50%, avoiding camping areas in pastures, and on avoiding grazing under moist soil conditions. Greenhouse gas budgets for grazing conditions should include the effects of soil compaction and dung to represent actual emissions.  相似文献   

7.
8.
Arable soil continues to be the dominant anthropogenic source of nitrous oxide (N2O) emissions owing to application of nitrogen (N) fertilizers and manures across the world. Using laboratory and in situ studies to elucidate the key factors controlling soil N2O emissions remains challenging due to the potential importance of multiple complex processes. We examined soil surface N2O fluxes in an arable soil, combined with in situ high-frequency measurements of soil matrix oxygen (O2) and N2O concentrations, in situ 15N labeling, and N2O 15N site preference (SP). The in situ O2 concentration and further microcosm visualized spatiotemporal distribution of O2 both suggested that O2 dynamics were the proximal determining factor to matrix N2O concentration and fluxes due to quick O2 depletion after N fertilization. Further SP analysis and in situ 15N labeling experiment revealed that the main source for N2O emissions was bacterial denitrification during the hot-wet summer with lower soil O2 concentration, while nitrification or fungal denitrification contributed about 50.0% to total emissions during the cold-dry winter with higher soil O2 concentration. The robust positive correlation between O2 concentration and SP values underpinned that the O2 dynamics were the key factor to differentiate the composite processes of N2O production in in situ structured soil. Our findings deciphered the complexity of N2O production processes in real field conditions, and suggest that O2 dynamics rather than stimulation of functional gene abundances play a key role in controlling soil N2O production processes in undisturbed structure soils. Our results help to develop targeted N2O mitigation measures and to improve process models for constraining global N2O budget.  相似文献   

9.
Daum  Diemo  Schenk  Manfred K. 《Plant and Soil》1998,203(2):279-288
The influence of nutrient solution pH on the emission of N2O and N2 was investigated during cultivation of cucumbers in a closed-loop rockwool system. Between pH 4 and 7 these gaseous nitrogen losses increased from 1.6 to 21.1% of the N fertilizer input. This was equivalent to average flux rates of 0.06 and 0.85 kg nitrogen per hectare greenhouse area and day, respectively. The N2O/N2 ratio was inversely related to the total gaseous nitrogen losses. At neutral pH dinitrogen was the main emission product, whereas more acidic conditions favoured the emission of nitrous oxide. The pH effects were probably not indirectly affected by root respiration or exudation as much as by a direct inhibition of the activity of denitrifying microorganisms due to high H+ concentrations since similar results were obtained in unplanted nutrient solution systems with the addition of glucose as carbon source. Despite the low microbial denitrification activity under acidic conditions, nitrogen balance deficits of up to one-fifth of the N input still occurred. It is suggested these losses were predominantly caused by chemodenitrification.  相似文献   

10.
Nitrous oxide (N2O) emissions from soil contribute to global warming and are in turn substantially affected by climate change. However, climate change impacts on N2O production across terrestrial ecosystems remain poorly understood. Here, we synthesized 46 published studies of N2O fluxes and relevant soil functional genes (SFGs, that is, archaeal amoA, bacterial amoA, nosZ, narG, nirK and nirS) to assess their responses to increased temperature, increased or decreased precipitation amounts, and prolonged drought (no change in total precipitation but increase in precipitation intervals) in terrestrial ecosystem (i.e. grasslands, forests, shrublands, tundra and croplands). Across the data set, temperature increased N2O emissions by 33%. However, the effects were highly variable across biomes, with strongest temperature responses in shrublands, variable responses in forests and negative responses in tundra. The warming methods employed also influenced the effects of temperature on N2O emissions (most effectively induced by open‐top chambers). Whole‐day or whole‐year warming treatment significantly enhanced N2O emissions, but daytime, nighttime or short‐season warming did not have significant effects. Regardless of biome, treatment method and season, increased precipitation promoted N2O emission by an average of 55%, while decreased precipitation suppressed N2O emission by 31%, predominantly driven by changes in soil moisture. The effect size of precipitation changes on nirS and nosZ showed a U‐shape relationship with soil moisture; further insight into biotic mechanisms underlying N2O emission response to climate change remain limited by data availability, underlying a need for studies that report SFG. Our findings indicate that climate change substantially affects N2O emission and highlights the urgent need to incorporate this strong feedback into most climate models for convincing projection of future climate change.  相似文献   

11.
Uruguay is pursuing renewable energy production pathways using feedstocks from its agricultural sector to supply transportation fuels, among them ethanol produced from commercial technologies that use sweet and grain sorghum. However, the environmental performance of the fuel is not known. We investigate the life cycle environmental and cost performance of these two major agricultural crops used to produce ethanol that have begun commercial production and are poised to grow to meet national energy targets for replacing gasoline. Using both attributional and consequential life cycle assessment (LCA) frameworks for system boundaries to quantify the carbon intensity, and engineering cost analysis to estimate the unit production cost of ethanol from grain and sweet sorghum, we determined abatement costs. We found 1) an accounting error in estimating N2O emissions for a specific crop in multiple crop rotations when using Intergovernmental Panel on Climate Change(IPCC) Tier 1 methods within an attributional LCA framework, due to N legacy effects; 2) choice of baseline and crop identity in multiple crop rotations evaluated within the consequential LCA framework both affect the global warming intensity (GWI) of ethanol; and 3) although abatement costs for ethanol from grain sorghum are positive and from sweet sorghum they are negative, both grain and sweet sorghum pathways have a high potential for reducing transport fuel GWI by more than 50% relative to gasoline, and are within the ranges targeted by the US renewable transportation fuel policies.  相似文献   

12.
The recent rise in atmospheric methane (CH4) concentrations accelerates climate change and offsets mitigation efforts. Although wetlands are the largest natural CH4 source, estimates of global wetland CH4 emissions vary widely among approaches taken by bottom-up (BU) process-based biogeochemical models and top-down (TD) atmospheric inversion methods. Here, we integrate in situ measurements, multi-model ensembles, and a machine learning upscaling product into the International Land Model Benchmarking system to examine the relationship between wetland CH4 emission estimates and model performance. We find that using better-performing models identified by observational constraints reduces the spread of wetland CH4 emission estimates by 62% and 39% for BU- and TD-based approaches, respectively. However, global BU and TD CH4 emission estimate discrepancies increased by about 15% (from 31 to 36 TgCH4 year−1) when the top 20% models were used, although we consider this result moderately uncertain given the unevenly distributed global observations. Our analyses demonstrate that model performance ranking is subject to benchmark selection due to large inter-site variability, highlighting the importance of expanding coverage of benchmark sites to diverse environmental conditions. We encourage future development of wetland CH4 models to move beyond static benchmarking and focus on evaluating site-specific and ecosystem-specific variabilities inferred from observations.  相似文献   

13.
Soils are a major source of global nitric oxide (NO) emissions. However, estimates of soil NO emissions have large uncertainties due to limited observations and multifactorial impacts. Here, we mapped global soil NO emissions, integrating 1356 in-situ NO observations from globally distributed sites with high-resolution climate, soil, and management practice data. We then calculated global and national total NO budgets and revealed the contributions of cropland, grassland, and forest to global soil NO emissions at the national level. The results showed that soil NO emissions were explained mainly by N input, water input and soil pH. Total above-soil NO emissions of the three vegetation cover types were 9.4 Tg N year−1 in 2014, including 5.9 Tg N year−1 (1.04, 95% confidence interval [95% CI]: 0.09–1.99 kg N ha−1 year−1) emitted from forest, 1.7 Tg N year−1 (0.68, 95% CI: 0.10–1.26 kg N ha−1 year−1) from grassland, and 1.8 Tg N year−1 (0.98, 95% CI: 0.42–1.53 kg N ha−1 year−1) from cropland. Soil NO emissions in approximately 57% of 213 countries surveyed were dominated by forests. Our results provide updated inventories of global and national soil NO emissions based on robust data-driven models. These estimates are critical to guiding the mitigation of soil NO emissions and can be used in combination with biogeochemical models.  相似文献   

14.
No‐tillage and reduced tillage (NT/RT) management practices are being promoted in agroecosystems to reduce erosion, sequester additional soil C and reduce production costs. The impact of NT/RT on N2O emissions, however, has been variable with both increases and decreases in emissions reported. Herein, we quantitatively synthesize studies on the short‐ and long‐term impact of NT/RT on N2O emissions in humid and dry climatic zones with emissions expressed on both an area‐ and crop yield‐scaled basis. A meta‐analysis was conducted on 239 direct comparisons between conventional tillage (CT) and NT/RT. In contrast to earlier studies, averaged across all comparisons, NT/RT did not alter N2O emissions compared with CT. However, NT/RT significantly reduced N2O emissions in experiments >10 years, especially in dry climates. No significant correlation was found between soil texture and the effect of NT/RT on N2O emissions. When fertilizer‐N was placed at ≥5 cm depth, NT/RT significantly reduced area‐scaled N2O emissions, in particular under humid climatic conditions. Compared to CT under dry climatic conditions, yield‐scaled N2O increased significantly (57%) when NT/RT was implemented <10 years, but decreased significantly (27%) after ≥10 years of NT/RT. There was a significant decrease in yield‐scaled N2O emissions in humid climates when fertilizer‐N was placed at ≥5 cm depth. Therefore, in humid climates, deep placement of fertilizer‐N is recommended when implementing NT/RT. In addition, NT/RT practices need to be sustained for a prolonged time, particularly in dry climates, to become an effective mitigation strategy for reducing N2O emissions.  相似文献   

15.
Simulation models are extensively used to predict agricultural productivity and greenhouse gas emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multi‐species agricultural contexts. We report an international model comparison and benchmarking exercise, showing the potential of multi‐model ensembles to predict productivity and nitrous oxide (N2O) emissions for wheat, maize, rice and temperate grasslands. Using a multi‐stage modelling protocol, from blind simulations (stage 1) to partial (stages 2–4) and full calibration (stage 5), 24 process‐based biogeochemical models were assessed individually or as an ensemble against long‐term experimental data from four temperate grassland and five arable crop rotation sites spanning four continents. Comparisons were performed by reference to the experimental uncertainties of observed yields and N2O emissions. Results showed that across sites and crop/grassland types, 23%–40% of the uncalibrated individual models were within two standard deviations (SD) of observed yields, while 42 (rice) to 96% (grasslands) of the models were within 1 SD of observed N2O emissions. At stage 1, ensembles formed by the three lowest prediction model errors predicted both yields and N2O emissions within experimental uncertainties for 44% and 33% of the crop and grassland growth cycles, respectively. Partial model calibration (stages 2–4) markedly reduced prediction errors of the full model ensemble E‐median for crop grain yields (from 36% at stage 1 down to 4% on average) and grassland productivity (from 44% to 27%) and to a lesser and more variable extent for N2O emissions. Yield‐scaled N2O emissions (N2O emissions divided by crop yields) were ranked accurately by three‐model ensembles across crop species and field sites. The potential of using process‐based model ensembles to predict jointly productivity and N2O emissions at field scale is discussed.  相似文献   

16.
《植物生态学报》2018,42(1):105
土壤氧化亚氮(N2O)排放是大气N2O不可忽视的来源。然而, 目前学术界在气候变暖对土壤N2O排放影响方面的认识仍存在较大争议, 且调控土壤N2O排放的微生物机制尚不明确。为此, 该研究以青藏高原高寒草原生态系统为研究对象, 使用透明开顶箱(OTCs)模拟气候变暖, 并基于静态箱法测定了2014和2015年生长季(5-10月)的土壤N2O通量, 同时利用定量PCR技术测定了表层(0-10 cm)土壤中氨氧化古菌(AOA)和氨氧化细菌(AOB)的基因丰度。结果显示: 增温处理导致2014和2015年生长季表层(0-10 cm)土壤温度分别升高了1.7 ℃和1.6 ℃, 土壤体积含水量下降了2.5%和3.3%, 其他的土壤理化性质没有发生显著变化。土壤N2O通量呈现年际差异, 2014和2015年生长季的平均值分别为3.23和1.47 μg·m -2·h -1, 然而, 增温处理并没有显著改变土壤N2O通量。2014年生长季主导硝化作用的AOA和AOB的基因丰度分别为5.0 × 10 7和4.7 × 10 5拷贝·g -1, 2015年为15.2 × 10 7和10.0 × 10 5拷贝·g -1。尽管基因丰度存在显著的年际差异, 但在两年中与对照相比并未发生显著变化。在生长季尺度上, 增温导致的土壤N2O变化量与其引起的土壤水分变化量之间显著正相关, 而与土壤温度的变化量之间没有显著相关关系。以上结果表明, 增温导致的土壤干旱会抑制土壤N2O通量对增温的响应, 意味着未来评估气候变暖情景下土壤N2O排放量时需考虑增温引发的土壤干旱等间接效应。  相似文献   

17.
Soils are among the important sources of atmospheric nitric oxide (NO) and nitrous oxide (N2O), acting as a critical role in atmospheric chemistry. Updated data derived from 114 peer‐reviewed publications with 520 field measurements were synthesized using meta‐analysis procedure to examine the N fertilizer‐induced soil NO and the combined NO+N2O emissions across global soils. Besides factors identified in earlier reviews, additional factors responsible for NO fluxes were fertilizer type, soil C/N ratio, crop residue incorporation, tillage, atmospheric carbon dioxide concentration, drought and biomass burning. When averaged across all measurements, soil NO‐N fluxes were estimated to be 4.06 kg ha?1 yr?1, with the greatest (9.75 kg ha?1 yr?1) in vegetable croplands and the lowest (0.11 kg ha?1 yr?1) in rice paddies. Soil NO emissions were more enhanced by synthetic N fertilizer (+38%), relative to organic (+20%) or mixed N (+18%) sources. Compared with synthetic N fertilizer alone, synthetic N fertilizer combined with nitrification inhibitors substantially reduced soil NO emissions by 81%. The global mean direct emission factors of N fertilizer for NO (EFNO) and combined NO+N2O (EFc) were estimated to be 1.16% and 2.58%, with 95% confidence intervals of 0.71–1.61% and 1.81–3.35%, respectively. Forests had the greatest EFNO (2.39%). Within the croplands, the EFNO (1.71%) and EFc (4.13%) were the greatest in vegetable cropping fields. Among different chemical N fertilizer varieties, ammonium nitrate had the greatest EFNO (2.93%) and EFc (5.97%). Some options such as organic instead of synthetic N fertilizer, decreasing N fertilizer input rate, nitrification inhibitor and low irrigation frequency could be adopted to mitigate soil NO emissions. More field measurements over multiyears are highly needed to minimize the estimate uncertainties and mitigate soil NO emissions, particularly in forests and vegetable croplands.  相似文献   

18.
Miscanthus x giganteus's efficacy as an energy crop relies on maintaining low greenhouse gas (GHG) emissions. As demand for Miscanthus is expected to rise to meet bioenergy targets, fertilizers and composts may be employed to increase yields, but will also increase GHG emissions. Manipulation experiments are vital to investigate the consequences of any fertilizer additions, but there is currently no way to measure whole‐plant GHG fluxes from crops taller than 2.5 m, such as Miscanthus, at the experimental plot scale. We employed a unique combination of eddy covariance (EC), soil chambers and an entirely new automated chamber system, SkyBeam, to measure high frequency (ca. hourly) fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from a Miscanthus crop amended with green compost. Untreated controls were also monitored in a fully replicated experimental design. Net ecosystem exchange (NEE) of CO2 was partitioned into soil respiration (Rs), gross primary productivity (GPP) and ecosystem respiration, and the crop was harvested to determine the effect of compost on crop productivity. Compost increased NEE emissions by 100% (p < .05), which was the result of a 20% increase of Rs (p < .06) and a 32% reduction in GPP (p < .05) and biomass of 37% (p < .06). Methane fluxes were small and unaffected by compost addition. N2O emissions increased 34% under compost during an emission event; otherwise, fluxes were low and often negative, even under dry conditions. Diurnal variation in N2O fluxes, with uptake during the day and emission at night was observed. These fluxes displayed a negative relationship with soil temperature and a hitherto undescribed diurnal temperature hysteresis. We conclude that compost addition negatively affected the productivity and environmental effects of Miscanthus cultivation during the first year following application.  相似文献   

19.
Perennial crops can deliver a wide range of ecosystem services compared to annual crops. Some of these benefits are achieved by lengthening the growing season, which increases the period of crop water and nutrient uptake, pointing to a potential role for perennial systems to mitigate soil nitrous oxide (N2O) emissions. Employing a micrometeorological method, we tested this hypothesis in a 3‐year field experiment with a perennial grass‐legume mixture and an annual corn monoculture. Given that N2O emissions are strongly dependent on the method of fertilizer application, two manure application options commonly used by farmers for each crop were studied: injection vs. broadcast application for the perennial; fall vs. spring application for the annual. Across the 3 years, lower N2O emissions (P < 0.001) were measured for the perennial compared to the annual crop, even though annual N2O emissions increased tenfold for the perennial after ploughing. The percentage of N2O lost per unit of fertilizer applied was 3.7, 3.1 and 1.3 times higher for the annual for each consecutive year. Differences in soil organic matter due to the contrasting root systems of these crops are probably a major factor behind the N2O reduction. We found that a specific manure management practice can lead to increases or reductions in annual N2O emissions depending on environmental variables. The number of freeze‐thaw cycles during winter and the amount of rainfall after fertilization in spring were key factors. Therefore, general manure management recommendations should be avoided because interannual weather variability has the potential to determine if a specific practice is beneficial or detrimental. The lower N2O emissions of perennial crops deserve further research attention and must be considered in future land‐use decisions. Increasing the proportion of perennial crops in agricultural landscapes may provide an overlooked opportunity to regulate N2O emissions.  相似文献   

20.
Nitrous oxide (N2O) is a greenhouse gas that also plays the primary role in stratospheric ozone depletion. The use of nitrogen fertilizers is known as the major reason for atmospheric N2O increase. Empirical bottom‐up models therefore estimate agricultural N2O inventories using N loading as the sole predictor, disregarding the regional heterogeneities in soil inherent response to external N loading. Several environmental factors have been found to influence the response in soil N2O emission to N fertilization, but their interdependence and relative importance have not been addressed properly. Here, we show that soil pH is the chief factor explaining regional disparities in N2O emission, using a global meta‐analysis of 1,104 field measurements. The emission factor (EF) of N2O increases significantly (p < .001) with soil pH decrease. The default EF value of 1.0%, according to IPCC (Intergovernmental Panel on Climate Change) for agricultural soils, occurs at soil pH 6.76. Moreover, changes in EF with N fertilization (i.e. ΔEF) is also negatively correlated (p < .001) with soil pH. This indicates that N2O emission in acidic soils is more sensitive to changing N fertilization than that in alkaline soils. Incorporating our findings into bottom‐up models has significant consequences for regional and global N2O emission inventories and reconciling them with those from top‐down models. Moreover, our results allow region‐specific development of tailor‐made N2O mitigation measures in agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号