首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrous oxide (N2O) emissions from soils contribute significantly to global warming. Mitigation of N2O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses – a possible role for soil fauna has until now largely been overlooked. We studied the effect of six groups of soil invertebrate fauna and tested the hypothesis that all of them increase N2O emissions, although to different extents. We conducted three microcosm experiments with sandy soil and hay residue. Faunal groups included in our experiments were as follows: fungal‐feeding nematodes, mites, springtails, potworms, earthworms and isopods. In experiment I, involving all six faunal groups, N2O emissions declined with earthworms and potworms from 78.4 (control) to 37.0 (earthworms) or 53.5 (potworms) mg N2O‐N m?2. In experiment II, with a higher soil‐to‐hay ratio and mites, springtails and potworms as faunal treatments, N2O emissions increased with potworms from 51.9 (control) to 123.5 mg N2O‐N m?2. Experiment III studied the effect of potworm density; we found that higher densities of potworms accelerated the peak of the N2O emissions by 5 days (< 0.001), but the cumulative N2O emissions remained unaffected. We propose that increased soil aeration by the soil fauna reduced N2O emissions in experiment I, whereas in experiment II N2O emissions were driven by increased nitrogen and carbon availability. In experiment III, higher densities of potworms accelerated nitrogen and carbon availability and N2O emissions, but did not increase them. Overall, our data show that soil fauna can suppress, increase, delay or accelerate N2O emissions from soil and should therefore be an integral part of future N2O studies.  相似文献   

2.
Willow coppice, energy maize and Miscanthus were evaluated regarding their soil‐derived trace gas emission potential involving a nonfertilized and a crop‐adapted slow‐release nitrogen (N) fertilizer scheme. The N application rate was 80 kg N ha?1 yr?1 for the perennial crops and 240 kg N ha?1 yr?1 for the annual maize. A replicated field experiment was conducted with 1‐year measurements of soil fluxes of CH4, CO2 and N2O in weekly intervals using static chambers. The measurements revealed a clear seasonal trend in soil CO2 emissions, with highest emissions being found for the N‐fertilized Miscanthus plots (annual mean: 50 mg C m?² h?1). Significant differences between the cropping systems were found in soil N2O emissions due to their dependency on amount and timing of N fertilization. N‐fertilized maize plots had highest N2O emissions by far, which accumulated to 3.6 kg N2O ha?1 yr?1. The contribution of CH4 fluxes to the total soil greenhouse gas subsumption was very small compared with N2O and CO2. CH4 fluxes were mostly negative indicating that the investigated soils mainly acted as weak sinks for atmospheric CH4. To identify the system providing the best ratio of yield to soil N2O emissions, a subsumption relative to biomass yields was calculated. N‐fertilized maize caused the highest soil N2O emissions relative to dry matter yields. Moreover, unfertilized maize had higher relative soil N2O emissions than unfertilized Miscanthus and willow. These results favour perennial crops for bioenergy production, as they are able to provide high yields with low N2O emissions in the field.  相似文献   

3.
A field trial was carried out on a 15 year old Miscanthus stand, subject to nitrogen fertilizer treatments of 0, 63 and 125 kg‐N ha?1, measuring N2O emissions, as well as annual crop yield over a full year. N2O emission intensity (N2O emissions calculated as a function of above‐ground biomass) was significantly affected by fertilizer application, with values of 52.2 and 59.4 g N2O‐N t?1 observed at 63 and 125 kg‐N ha?1, respectively, compared to 31.3 g N2O‐N t?1 in the zero fertilizer control. A life cycle analyses approach was applied to calculate the increase in yield required to offset N2O emissions from Miscanthus through fossil fuel substitution in the fuel chain. For the conditions observed during the field trial yield increases of 0.33 and 0.39 t ha?1 were found to be required to offset N2O emissions from the 63 kg‐N ha?1 treatment, when replacing peat and coal, respectively, while increases of 0.71 and 0.83 t ha?1 were required for the 125 kg‐N ha?1 treatment, for each fuel. These values are considerably less than the mean above‐ground biomass yield increases observed here of 1.57 and 2.79 t ha?1 at fertilization rates 63 and 125 kg‐N ha?1 respectively. Extending this analysis to include a range of fertilizer application rates and N2O emission factors found increases in yield necessary to offset soil N2O emissions ranging from 0.26 to 2.54 t ha?1. These relatively low yield increase requirements indicate that where nitrogen fertilizer application improves yield, the benefits of such a response will not be offset by soil N2O emissions.  相似文献   

4.
Requirements for mitigation of the continued increase in greenhouse gas (GHG ) emissions are much needed for the North China Plain (NCP ). We conducted a meta‐analysis of 76 published studies of 24 sites in the NCP to examine the effects of natural conditions and farming practices on GHG emissions in that region. We found that N2O was the main component of the area‐scaled total GHG balance, and the CH 4 contribution was <5%. Precipitation, temperature, soil pH , and texture had no significant impacts on annual GHG emissions, because of limited variation of these factors in the NCP . The N2O emissions increased exponentially with mineral fertilizer N application rate, with =  0.2389e0.0058x for wheat season and =  0.365e0.0071x for maize season. Emission factors were estimated at 0.37% for wheat and 0.90% for maize at conventional fertilizer N application rates. The agronomic optimal N rates (241 and 185 kg N ha?1 for wheat and maize, respectively) exhibited great potential for reducing N2O emissions, by 0.39 (29%) and 1.71 (56%) kg N2O‐N ha?1 season?1 for the wheat and maize seasons, respectively. Mixed application of organic manure with reduced mineral fertilizer N could reduce annual N2O emissions by 16% relative to mineral N application alone while maintaining a high crop yield. Compared with conventional tillage, no‐tillage significantly reduced N2O emissions by ~30% in the wheat season, whereas it increased those emissions by ~10% in the maize season. This may have resulted from the lower soil temperature in winter and increased soil moisture in summer under no‐tillage practice. Straw incorporation significantly increased annual N2O emissions, by 26% relative to straw removal. Our analysis indicates that these farming practices could be further tested to mitigate GHG emission and maintain high crop yields in the NCP .  相似文献   

5.
Sulfur dioxide (SO2) in the atmosphere has been demonstrated to have many adverse impacts on the environment and human health. In this study, deposition of SO2 ranging from 9.0 to 127.8 mg kg?1 with an average of 35.7 mg S kg?1 was found to substantially stimulate NO and N2O emissions from soils in the humid subtropical areas of Hainan, Fujian, Jiangxi, and Yunnan provinces of China under field conditions. Laboratory tests indicated that the stimulations were mediated biologically as the effects were not observed in sterilized soils. Acidification of soil resulting from SO2 deposition was not responsible for the stimulated NO and N2O emissions alone as the stimulation did not occur by acidifying soil with HNO3 treatment. By using the 15N tracing method, we found that the N2O emissions stimulated by SO2 deposition were from either denitrification, heterotrophic nitrification or both, but not from autotrophic nitrification. Therefore, atmospheric SO2 deposition would most likely stimulate NO and N2O emissions in acidic soils in which heterotrophic nitrification dominates NO and N2O production and waterlogged soils in which denitrification dominates NO and N2O production.  相似文献   

6.
Short‐rotation woody biomass crops (SRWC) have been proposed as a major feedstock source for bioenergy generation in the Northeastern US. To quantify the environmental effects and greenhouse gas (GHG) balance of crops including SRWC, investigators need spatially explicit data which encompass entire plantation cycles. A knowledge gap exists for the establishment period which makes current GHG calculations incomplete. In this study, we investigated the effects of converting pasture and hayfields to willow (Salix spp.) and hybrid‐poplar (Populus spp.) SRWC plantations on soil nitrogen (N) cycling, nitrous oxide (N2O) emissions, and nitrate (NO3?) leaching at six sites of varying soil and climate conditions across northern Michigan and Wisconsin, following these plantations from pre conversion through their first 2 years. All six sites responded to establishment with increased N2O emissions, available inorganic N, and, where it was measured, NO3? leaching; however, the magnitude of these impacts varied dramatically among sites. Soil NO3? levels varied threefold among sites, with peak extractable NO3? concentrations ranging from 15 to 49 g N kg?1 soil. Leaching losses were significant and persisted through the second year, with 44–112 kg N ha?1 leached in SRWC plots. N2O emissions in the first growing season varied 30‐fold among sites, from 0.5 to 17.0 Mg‐CO2eq ha?1 (carbon dioxide equivalents). N2O emissions over 2 years resulted in N2O emissions due to plantation establishment that ranged from 0.60 to 22.14 Mg‐CO2eq ha?1 above baseline control levels across sites. The large N losses we document herein demonstrate the importance of including direct effects of land conversion in life‐cycle analysis (LCA) studies of SRWC GHG balance. Our results also demonstrate the need for better estimation of spatial variability of N cycling processes to quantify the full environmental impacts of SRWC plantations.  相似文献   

7.
Hybrid poplar short‐rotation coppices (SRC) provide feedstocks for bioenergy production and can be established on lands that are suboptimal for food production. The environmental consequences of deploying this production system on marginal agricultural land need to be evaluated, including the investigation of common management practices i.e., fertilization and irrigation. In this work, we evaluated (1) the soil‐atmosphere exchange of carbon dioxide, methane, and nitrous oxide (N2O); (2) the changes in soil organic carbon (SOC) stocks; (3) the gross ammonification and nitrification rates; and (4) the nitrate leaching as affected by the establishment of a hybrid poplar SRC on a marginal agricultural land in southern Germany. Our study covered one 3‐year rotation period and 2 years after the first coppicing. We combined field and laboratory experiments with modeling. The soil N2O emissions decreased from 2.2 kg N2O‐N ha?1 a?1 in the year of SRC establishment to 1.1–1.4 kg N2O‐N ha?1 a?1 after 4 years. Likewise, nitrate leaching reduced from 13 to 1.5–8 kg N ha?1 a?1. Tree coppicing induced a brief pulse of soil N2O flux and marginal effects on gross N turnover rates. Overall, the N losses diminished within 4 years by 80% without fertilization (irrespective of irrigation) and by 40% when 40–50 kg N ha?1 a?1 were applied. Enhanced N losses due to fertilization and the minor effect of fertilization and irrigation on tree growth discourage its use during the first rotation period after SRC establishment. A SOC accrual rate of 0.4 Mg C ha?1 a?1 (uppermost 25 cm, P = 0.2) was observed 5 years after the SRC establishment. Overall, our data suggest that SRC cultivation on marginal agricultural land in the region is a promising option for increasing the share of renewable energy sources due to its net positive environmental effects.  相似文献   

8.
Sea level rise will change inundation regimes in salt marshes, altering redox dynamics that control nitrification – a potential source of the potent greenhouse gas, nitrous oxide (N2O) – and denitrification, a major nitrogen (N) loss pathway in coastal ecosystems and both a source and sink of N2O. Measurements of net N2O fluxes alone yield little insight into the different effects of redox conditions on N2O production and consumption. We used in situ measurements of gross N2O fluxes across a salt marsh elevation gradient to determine how soil N2O emissions in coastal ecosystems may respond to future sea level rise. Soil redox declined as marsh elevation decreased, with lower soil nitrate and higher ferrous iron in the low marsh compared to the mid and high marshes (P < 0.001 for both). In addition, soil oxygen concentrations were lower in the low and mid‐marshes relative to the high marsh (P < 0.001). Net N2O fluxes differed significantly among marsh zones (P = 0.009), averaging 9.8 ± 5.4 μg N m?2 h?1, ?2.2 ± 0.9 μg N m?2 h?1, and 0.67 ± 0.57 μg N m?2 h?1 in the low, mid, and high marshes, respectively. Both net N2O release and uptake were observed in the low and high marshes, but the mid‐marsh was consistently a net N2O sink. Gross N2O production was highest in the low marsh and lowest in the mid‐marsh (P = 0.02), whereas gross N2O consumption did not differ among marsh zones. Thus, variability in gross N2O production rates drove the differences in net N2O flux among marsh zones. Our results suggest that future studies should focus on elucidating controls on the processes producing, rather than consuming, N2O in salt marshes to improve our predictions of changes in net N2O fluxes caused by future sea level rise.  相似文献   

9.
Anticipated increases in precipitation intensity due to climate change may affect hydrological controls on soil N2O fluxes, resulting in a feedback between climate change and soil greenhouse gas emissions. We evaluated soil hydrologic controls on N2O emissions during experimental water table fluctuations in large, intact soil columns amended with 100 kg ha?1 KNO3‐N. Soil columns were collected from three landscape positions that vary in hydrological and biogeochemical properties (N= 12 columns). We flooded columns from bottom to surface to simulate water table fluctuations that are typical for this site, and expected to increase given future climate change scenarios. After the soil was saturated to the surface, we allowed the columns to drain freely while monitoring volumetric soil water content, matric potential and N2O emissions over 96 h. Across all landscape positions and replicate soil columns, there was a positive linear relationship between total soil N and the log of cumulative N2O emissions (r2= 0.47; P= 0.013). Within individual soil columns, N2O flux was a Gaussian function of water‐filled pore space (WFPS) during drainage (mean r2= 0.90). However, instantaneous maximum N2O flux rates did not occur at a consistent WFPS, ranging from 63% to 98% WFPS across landscape positions and replicate soil columns. In contrast, instantaneous maximum N2O flux rates occurred within a narrow range (?1.88 to ?4.48 kPa) of soil matric potential that approximated field capacity. The relatively consistent relationship between maximum N2O flux rates and matric potential indicates that water filled pore size is an important factor affecting soil N2O fluxes. These data demonstrate that matric potential is the strongest predictor of the timing of N2O fluxes across soils that differ in texture, structure and bulk density.  相似文献   

10.
While irrigation of farm dairy effluent (FDE) to land is becoming popular in New Zealand, it can lead to increased emissions of the greenhouse gas nitrous oxide (N2O). This paper reports the results from trials on N2O emissions from irrigation of FDE to two dairy-grazed pastures on two poorly drained silt-loam soils located at Waikato and Manawatu, New Zealand. These pasture soils were periodically irrigated with FDE under contrasting soil moisture conditions with water-filled pore-space (WFPS) ranging between 26% and 94%. Nitrous oxide emissions were measured from the FDE irrigated and unirrigated sites using large numbers of static chambers (12–20). Irrigation of FDE generally increased N2O emissions compared to the control. N2O emissions varied with changes in climatic conditions and soil WFPS. Overall N2O emissions from effluent-derived N ranged between 0.01% and 4.93% depending on irrigation time and soil WFPS. Lower N2O emissions from FDE were attributable to very low soil WFPS conditions during the dry seasons. Higher N2O emissions were measured from application of FDE to a recently grazed pasture on wet soil. Our results suggest strategic application of FDE during dry summer and autumn seasons can reduce N2O emissions from application of FDE. Delaying effluent-irrigation after grazing events could further reduce N2O emissions by reducing the levels of surplus mineral-N.  相似文献   

11.
Switchgrass (Panicum virgatum L.) production has the potential to improve soils and the environment. However, little is known about the long‐term future assessment of soil and environmental impacts associated with switchgrass production. In this study, soil organic carbon (SOC), soil nitrate (), water‐filled pore space (WFPS), carbon dioxide (CO2) and nitrous oxide (N2O) fluxes, and biomass yield from switchgrass field were predicted using DAYCENT models for 2016 through 2050. Measured data for model calibration and validation at this study site managed with nitrogen fertilization rates (N rates) (low, 0 kg N ha?1; medium, 56 kg N ha?1; and high, 112 kg N ha?1) and landscape positions (shoulder and footslope) for switchgrass production were collected from the previously published studies. Modeling results showed that the N fertilization can enhance SOC and soil NO3?, but increase soil N2O and CO2 fluxes. In this study, medium N fertilization was the optimum rate for enhancing switchgrass yield and reducing negative impact on the environment. Footslope position can be beneficial for improving SOC, , and yield, but contribute higher greenhouse gas (GHG) emissions compared to those of the shoulder. An increase in temperature and decrease in precipitation (climate scenarios) may reduce soil , WFPS, and N2O flux. Switchgrass production can improve and maintain SOC and , and reduce N2O and CO2 fluxes over the predicted years. These findings indicate that switchgrass could be a sustainable bioenergy crop on marginally yielding lands for improving soils without significant negative impacts on the environment in the long run.  相似文献   

12.
Oilseed rape is one of the leading feedstocks for biofuel production in Europe. The climate change mitigation effect of rape methyl ester (RME) is particularly challenged by the greenhouse gas (GHG) emissions during crop production, mainly as nitrous oxide (N2O) from soils. Oilseed rape requires high nitrogen fertilization and crop residues are rich in nitrogen, both potentially causing enhanced N2O emissions. However, GHG emissions of oilseed rape production are often estimated using emission factors that account for crop‐type specifics only with respect to crop residues. This meta‐analysis therefore aimed to assess annual N2O emissions from winter oilseed rape, to compare them to those of cereals and to explore the underlying reasons for differences. For the identification of the most important factors, linear mixed effects models were fitted with 43 N2O emission data points deriving from 12 different field sites. N2O emissions increased exponentially with N‐fertilization rates, but interyear and site‐specific variability were high and climate variables or soil parameters did not improve the prediction model. Annual N2O emissions from winter oilseed rape were 22% higher than those from winter cereals fertilized at the same rate. At a common fertilization rate of 200 kg N ha?1 yr?1, the mean fraction of fertilizer N that was lost as N2O‐N was 1.27% for oilseed rape compared to 1.04% for cereals. The risk of high yield‐scaled N2O emissions increased after a critical N surplus of about 80 kg N ha?1 yr?1. The difference in N2O emissions between oilseed rape and cereal cultivation was especially high after harvest due to the high N contents in oilseed rape's crop residues. However, annual N2O emissions of winter oilseed rape were still lower than predicted by the Stehfest and Bouwman model. Hence, the assignment of oilseed rape to the crop‐type classes of cereals or other crops should be reconsidered.  相似文献   

13.
In this study, we quantify the impacts of climate and land use on soil N2O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land‐use gradients at Mt. Kilimanjaro, combining long‐term in situ chamber and laboratory soil core incubation techniques. Both methods showed similar patterns of GHG exchange. Although there were distinct differences from ecosystem to ecosystem, soils generally functioned as net sources and sinks for N2O and CH4 respectively. N2O emissions correlated positively with soil moisture and total soil nitrogen content. CH4 uptake rates correlated negatively with soil moisture and clay content and positively with SOC. Due to moderate soil moisture contents and the dominance of nitrification in soil N turnover, N2O emissions of tropical montane forests were generally low (<1.2 kg N ha?1 year?1), and it is likely that ecosystem N losses are driven instead by nitrate leaching (~10 kg N ha?1 year?1). Forest soils with well‐aerated litter layers were a significant sink for atmospheric CH4 (up to 4 kg C ha?1 year?1) regardless of low mean annual temperatures at higher elevations. Land‐use intensification significantly increased the soil N2O source strength and significantly decreased the soil CH4 sink. Compared to decreases in aboveground and belowground carbon stocks enhanced soil non‐CO2 GHG emissions following land‐use conversion from tropical forests to homegardens and coffee plantations were only a small factor in the total GHG budget. However, due to lower ecosystem carbon stock changes, enhanced N2O emissions significantly contributed to total GHG emissions following conversion of savanna into grassland and particularly maize. Overall, we found that the protection and sustainable management of aboveground and belowground carbon and nitrogen stocks of agroforestry and arable systems is most crucial for mitigating GHG emissions from land‐use change.  相似文献   

14.
Combined measurements of nitrification activity and N2O emissions were performed in a lowland and a montane tropical rainforest ecosystem in NE-Australia over a 18 months period from October 2001 until May 2003. At both sites gross nitrification rates, measured by the BaPS technique, showed a strong seasonal pattern with significantly higher rates of gross nitrification during wet season conditions. Nitrification rates at the montane site (1.48?±?0.24–18.75?±?2.38 mg N kg?1 day?1) were found to be significantly higher than at the lowland site (1.65?±?0.21–4.54?±?0.27 mg N kg?1 day?1). The relationship between soil moisture and gross nitrification rates could be described best by O’Neill functions having a soil moisture optimum of nitrification at app. 65% WFPS. At the lowland site, for which continuous measurements of N2O emissions were available, nitrification was positively correlated with N2O emission. Nitrification contributed significantly to N2O formation during dry season (app.85%) but less (app. 30%) during wet season conditions. In average 0.19‰ of the N metabolized by nitrification was released as N2O. The N2O fraction loss for nitrification was positively correlated with changes in soil moisture and varied slightly between 0.15 and 0.22‰. Our results demonstrate that combined N2O emission and microbial N turnover studies covering prolonged observation periods are needed to clarify and quantify the role of the microbial processes nitrification and denitrification for annual N2O emissions from soils of terrestrial ecosystems.  相似文献   

15.
Livestock manure is applied to rangelands as an organic fertilizer to stimulate forage production, but the long‐term impacts of this practice on soil carbon (C) and greenhouse gas (GHG) dynamics are poorly known. We collected soil samples from manured and nonmanured fields on commercial dairies and found that manure amendments increased soil C stocks by 19.0 ± 7.3 Mg C ha?1 and N stocks by 1.94 ± 0.63 Mg N ha?1 compared to nonmanured fields (0–20 cm depth). Long‐term historical (1700–present) and future (present–2100) impacts of management on soil C and N dynamics, net primary productivity (NPP), and GHG emissions were modeled with DayCent. Modeled total soil C and N stocks increased with the onset of dairying. Nitrous oxide (N2O) emissions also increased by ~2 kg N2O‐N ha?1 yr?1. These emissions were proportional to total N additions and offset 75–100% of soil C sequestration. All fields were small net methane (CH4) sinks, averaging ?4.7 ± 1.2 kg CH4‐C ha?1 yr?1. Overall, manured fields were net GHG sinks between 1954 and 2011 (?0.74 ± 0.73 Mg CO2 e ha?1 yr?1, CO2e are carbon dioxide equivalents), whereas nonmanured fields varied around zero. Future soil C pools stabilized 40–60 years faster in manured fields than nonmanured fields, at which point manured fields were significantly larger sources than nonmanured fields (1.45 ± 0.52 Mg CO2e ha?1 yr?1 and 0.51 ± 0.60 Mg CO2e ha?1 yr?1, respectively). Modeling also revealed a large background loss of soil C from the passive soil pool associated with the shift from perennial to annual grasses, equivalent to 29.4 ± 1.47 Tg CO2e in California between 1820 and 2011. Manure applications increased NPP and soil C storage, but plant community changes and GHG emissions decreased, and eventually eliminated, the net climate benefit of this practice.  相似文献   

16.
The aim of this study was to determine the effects of Tribulus terrestris extract (TT) on growth performance, disease resistance and histopathological changes in intestine and liver tissues of Oreochromis mossambicus (Peters, 1852) first‐feeding fry before and after exposure to Streptococcus iniae. Five isonitrogenous and isocaloric diets were formulated to contain 0 (control), 200, 400, 600, and 800 mg kg?1 TT. After feeding for 45 days, fish were infected with S. iniae and mortalities recorded. Final weight, weight gain and SGR of tilapia fry fed the 400 mg kg?1 TT diet were significantly greater than that of control diet. In the challenge experiment, the best survival rate was obtained with 400 mg kg?1 TT supplementation. Infection by S. iniae appeared to have a negative effect on histopathological findings and outcome than did TT‐800 used alone. However, administration of TT (200 or 400 mg extract kg?1) resulted in overall improvement in the intestine and liver histopathology, emphasizing the protective potential of TT. The present study suggests the protective potential of TT in alleviating intestinal and hepatic damage that can occur after a S. iniae infection. It was concluded that 400 mg kg?1 TT can enhance growth and disease resistance during first–feeding of O. mossambicus fry. This suggests that TT may be an alternative to antibiotics in controlling streptococcal disease in tilapia culture.  相似文献   

17.
Residue removal for biofuel production may have unintended consequences for N2O emissions from soils, and it is not clear how N2O emissions are influenced by crop residue removal from different tillage systems. Thus, we measured field‐scale N2O flux over 5 years (2005–2007, 2010–2011) from an annual crop rotation to evaluate how N2O emissions are influenced by no‐till (NT) compared to conventional tillage (CV), and how crop residue removal (R?) rather than crop residue return to soil (R+) affects emissions from these two tillage systems. Data from all 5 years indicated no differences in N2O flux between tillage practices at the onset of the growing season, but CT had 1.4–6.3 times higher N2O flux than NT overwinter. Nitrous oxide emissions were higher due to R? compared to R+, but the effect was more marked under CT than NT and overwinter than during spring. Our results thus challenge the assumption based on IPCC methodology that crop residue removal will result in reduced N2O emissions. The potential for higher N2O emission with residue removal implies that the benefit of utilizing biomass as biofuels to mitigate greenhouse gas emission may be overestimated. Interestingly, prior to an overwinter thaw event, dissolved organic C (DOC) was negatively correlated to peak N2O flux (r = ?0.93). This suggests that lower N2O emissions with R+ vs. R? may reflect more complete stepwise denitrification to N2 during winter and possibly relate to the heterotrophic microbial capacity for processing crop residue into more soluble C compounds and a shift in the preferential C source utilized by the microbial community overwinter.  相似文献   

18.
Soils are both a major source and sink of nitrous oxide (N2O), but the proportion of soil N2O production released to the atmosphere (termed the N2O yield) is poorly constrained due to the difficulty in measuring gross N2O production. The quantification of gross N2O fluxes would greatly improve our ability to predict N2O dynamics across the soil‐atmosphere interface. We report a new approach, the 15N2O pool dilution technique, to measure rates of gross N2O production and consumption under laboratory and field conditions. In the laboratory, gross N2O production and consumption compared well between the 15N2O pool dilution and acetylene inhibition methods whereas the 15NO3? tracer method measured significantly higher rates. In the field, N2O emissions were not significantly affected by increasing chamber headspace concentrations up to 100 ppb 15N2O. The pool dilution model estimates of 14N2O and 15N2O concentrations as well as net N2O fluxes fit observed data very well, suggesting that the technique yielded robust estimates of gross N2O production. Estimated gross N2O consumption rates were underestimated relative to rates calculated as the difference between gross and net N2O production rates, possibly due to heterogeneous and/or inadequate tracer diffusion to deeper layers in the soil profile. Gross N2O production rates were high, averaging 8.4 ± 3.2 mg N m?2 day?1, and were most strongly correlated to mineral nitrogen concentrations and denitrifying enzyme activity (R2 = 0.73). Gross N2O production rates varied spatially, with the highest rates in soils with the best drainage and the highest mineral N availability. Estimated and calculated N2O consumption rates constrained the average N2O yield from 0.70 to 0.84. Our results demonstrate that the 15N2O pool dilution technique can provide well‐constrained estimates of N2O yields and field rates of gross N2O production correlated to soil characteristics, improving our understanding of terrestrial N2O dynamics.  相似文献   

19.
The loss of nitrogen (N) from field-applied animal manure through ammonia (NH3) volatilisation and nitrous oxide (N2O) emission is of major environmental concern. Both lime and dicyandiamide (DCD) have been suggested as amendments that can mitigate N2O emissions, but simultaneously increase the risk of NH3 volatilisation. This study evaluated the impact of lime and DCD on NH3 and N2O emissions following application of liquid hog manure. Hydrated lime (Ca(OH)2) was added to an acidic soil to achieve three pH levels (4.7, 6.3 and 7.4). Soil samples (100 g) were then placed in 500 ml screw-top Mason-jars and de-ionised water was added to bring the samples to 50, 70 and 90% water-filled pore space (WFPS). Slurry was applied at a rate equivalent to 116,000 l ha−1, while DCD was applied at 30% of the NH4-N rate applied. Jars were sealed and incubated at 21°C for 21 d. Ammonia volatilisation was quantified using boric acid traps, while N2O gas concentration was analysed using gas chromatography. Dicyandiamide had no effect (P>0.05) on either NH3 or N2O emissions. Both NH3 and N2O emissions increased (P<0.05) as WFPS increased, with emissions ranging from 0.9 to 1.4 kg NH3-N ha−1 and 123 to 353 g N2O-N ha−1, respectively. Liming decreased (P<0.01) N2O emissions from 547 to 46 g N2O-N ha−1, but increased (p<0.01) NH3 volatilisation from 0.36 to 1.92 kg NH3-N ha−1. Results suggest that liming to a pH ≥6.3 can reduce N2O emissions, however, this reduction will be accompanied by a substantial loss of NH3. Section Editor: H. Lambers  相似文献   

20.
Differences in soil nitrous oxide (N2O) fluxes among ecosystems are often difficult to evaluate and predict due to high spatial and temporal variabilities and few direct experimental comparisons. For 20 years, we measured N2O fluxes in 11 ecosystems in southwest Michigan USA: four annual grain crops (corn–soybean–wheat rotations) managed with conventional, no‐till, reduced input, or biologically based/organic inputs; three perennial crops (alfalfa, poplar, and conifers); and four unmanaged ecosystems of different successional age including mature forest. Average N2O emissions were higher from annual grain and N‐fixing cropping systems than from nonleguminous perennial cropping systems and were low across unmanaged ecosystems. Among annual cropping systems full‐rotation fluxes were indistinguishable from one another but rotation phase mattered. For example, those systems with cover crops and reduced fertilizer N emitted more N2O during the corn and soybean phases, but during the wheat phase fluxes were ~40% lower. Likewise, no‐till did not differ from conventional tillage over the entire rotation but reduced emissions ~20% in the wheat phase and increased emissions 30–80% in the corn and soybean phases. Greenhouse gas intensity for the annual crops (flux per unit yield) was lowest for soybeans produced under conventional management, while for the 11 other crop × management combinations intensities were similar to one another. Among the fertilized systems, emissions ranged from 0.30 to 1.33 kg N2O‐N ha?1 yr?1 and were best predicted by IPCC Tier 1 and ΔEF emission factor approaches. Annual cumulative fluxes from perennial systems were best explained by soil pools (r2 = 0.72) but not so for annual crops, where management differences overrode simple correlations. Daily soil N2O emissions were poorly predicted by any measured variables. Overall, long‐term measurements reveal lower fluxes in nonlegume perennial vegetation and, for conservatively fertilized annual crops, the overriding influence of rotation phase on annual fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号