首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patrick L. Lilley  Mark Vellend 《Oikos》2009,118(9):1373-1382
Recent research has proposed a scale-dependence to relationships between native diversity and exotic invasions. At fine spatial scales, native–exotic richness relationships should be negative as higher native richness confers resistance to invasion. At broad scales, relationships should be positive if natives and exotics respond similarly to extrinsic factors. Yet few studies have examined both native and exotic richness patterns across gradients of human influence, where impacts could affect native and exotic species differently. We examined native–exotic richness relationships and extrinsic drivers of plant species richness and distributions across an urban development gradient in remnant oak savanna patches. In sharp contrast to most reported results, we found a negative relationship at the regional scale, and no relationship at the local scale. The negative regional-scale relationship was best explained by extrinsic factors, surrounding road density and climate, affecting natives and exotics in opposite ways, rather than a direct effect of native on exotic richness, or vice versa. Models of individual species distributions also support the result that road density and climate have largely opposite effects on native and exotic species, although simple life history traits (life form, dispersal mode) do not predict which habitat characteristics are important for particular species. Roads likely influence distributions and species richness by increasing both exotic propagule pressure and disturbance to native species. Climate may partially explain the negative relationship due to differing climatic preferences within the native and exotic species pools. As gradients of human influence are increasingly common, negative broad-scale native–exotic richness relationships may be frequent in such landscapes.  相似文献   

2.
Aim Taxonomic comparisons of alien floras across climatically similar regions have been proposed as a powerful approach for increasing our understanding of plant invasions across scales. However, detailed comparisons between the alien biotas of climatically similar regions are scarce. This study aims to compare the taxonomic patterns of alien species richness in mediterranean‐type climate areas of central Chile and California, in order to better understand how climatically similar regions converge or diverge in terms of their alien flora. Location Central Chile and California, United States. Methods We compared the alien floras of the state of California in the United States and central Chile, considering within‐region variation and taxonomic composition up to the species level. To test for within‐region variation, administrative units and counties were grouped within seven latitudinal bands for each region. We tested for differences in the relative contributions of the various origins of the naturalized species to each region. We used a family naturalization index to establish which families had relatively higher numbers of naturalized species in each region. We evaluated the similarity, using cluster analyses with Jaccard’s similarity index, of alien taxa between regions and latitudinal bands using presence–absence matrices at the species, genus and family levels. We used principal components analysis to determine the presence of a compositional gradient including all latitudinal bands. Results We recorded 1212 alien plant species in California and 593 in central Chile, of which 491 are shared between the two regions. These figures include 25 species that are native to California and 37 that are native to Chile. A comparison between the alien floras of central Chile and California reveals three major trends: (1) higher naturalized species diversity for California than for Chile, at all taxonomic levels; (2) differences in the proportion of species according to origin, with America, Africa, Asia and Australia providing a larger number of species in California than in Chile; (3) segregation between regions in terms of taxonomic composition of their alien flora, and a rather weak differentiation within regions; and (4) a trend towards higher similarity between the alien floras of latitudinal bands associated with higher levels of human disturbances. Main conclusions The alien floras of central Chile and California are significantly different, but this difference diminishes in highly disturbed areas. Thus, the current high levels of species movement caused by globalization, together with increasing levels of anthropogenic disturbances, should reduce the differentiation of the alien floras in these regions, increasing overall biotic homogenization.  相似文献   

3.
Plant invasions are an increasingly serious global concern, especially as the climate changes. Here, we explored how plant invasions differed between native‐ and novel exotic‐dominated grasslands with experimental addition of summer precipitation in Texas in 2009. Exotic species greened up earlier than natives by an average of 18 days. This was associated with a lower invasion rate early in the growing season compared to native communities. However, invasion rate did not differ significantly between native and exotic communities across all sampling times. The predictors of invasion rate differed between native and exotic communities, with invasion being negatively influenced by species richness in natives and by dominant species in exotics. Interestingly, plant invasions matched the bimodal pattern of precipitation in Temple, Texas, and did not respond to the pulse of precipitation during the summer. Our results suggest that we will need to take different approaches in understanding of invasion between native and exotic grasslands. Moreover, with anticipated increasing variability in precipitation under global climate change, plant invasions may be constrained in their response if the precipitation pulses fall outside the normal growing period of invaders.  相似文献   

4.
We assess the importance of anthropogenic land‐use, altered productivity, and species invasions for observed productivity–richness relationships in California. To this end, we model net primary productivity (NPP) c. 1750 AD and at present (1982–1999) and map native and exotic vascular plant richness for 230 subecoregions. NPP has increased up to 105% in semi‐arid areas and decreased up to 48% in coastal urbanized areas. Exotic invasions have increased local species diversity up to 15%. Human activities have reinforced historical gradients in species richness but reduced the spatial heterogeneity of NPP. Structural equation modelling suggests that, prior to European settlement, NPP and richness were primarily controlled by precipitation and other abiotic variables, with NPP mediating richness. Abiotic variables remain the strongest predictors of present NPP and richness, but intermodel comparisons indicate a significant anthropogenic impact upon statewide distributions of NPP and richness. Exotic and native species each positively correlate to NPP after controlling for other variables, which may help explain recent reports of positively associated native and exotic richness.  相似文献   

5.
6.
The relationship between native and exotic richness has mostly been studied with respect to space (i.e., positive at larger scales, but negative or more variable at smaller scales) and its temporal patterns have rarely been investigated. Although some studies have monitored the temporal trends of both native and exotic richness, how these two groups of species might be related to each other and how their relative proportions vary through time in a local community remains unclear. Re-analysis of early post-fire successional data for a California chaparral community shows that, in the same communities and at small spatial scales, the native-exotic correlations varied through time. Both exotic richness and exotic fraction (i.e., the proportion of exotic species in the flora) quickly increased and then gradually declined, during the initial stages of succession following fire disturbance. This result sheds new light on habitat invasibility and has implications for timing the implementation of effective management actions to prevent and/or mitigate species invasions.  相似文献   

7.
Recent multi-habitat studies across a range of spatial scales have shown that species-rich habitats are often highly invasible by exotic species. The primary measures of invasion in these and other studies are invader richness and the absolute cover or biomass of invaders. We argue that the relative biomass or cover of invaders (dominance) is an important but overlooked measure of plant invasion. We re-analyzed data presented in five previous studies to evaluate whether exotic relative abundance is positively correlated with native richness. There were either no relationships or negative relationships between native richness and relative exotic cover calculated from three spatial scales (1, 1000 and 4000 m2). Thus while the original studies reported high exotic richness or absolute cover in habitats rich in native species, native richness did not predict the degree to which exotics had become dominant or abundant relative to natives. Absolute measures of exotic cover reported in the original studies underestimated relative exotic cover in habitats with low native species richness. High exotic dominance in areas of low native richness may indicate that exotic richness and dominance are controlled by different factors. We conclude that it is useful for researchers to measure both invader richness and invader dominance when trying to understand the environmental factors that are associated with plant invasions.  相似文献   

8.
Aim Ongoing biological invasions will enhance the impacts of humans on biodiversity. Nonetheless, the effects of exotic species on diversity are idiosyncratic. Increases in diversity might be a consequence of similar responses by species to available energy, or because of positive relationships between human density, energy and propagule pressure. Here we use data from the Southern Ocean island plants and insects to investigate these issues. Location The Southern Ocean Islands ranging from Tristan da Cunha to Heard Island and South Georgia. Methods Generalized linear models are used to explore the relationships between indigenous and exotic species richness for plants and insects on two different islands. Similar models are used to examine interactions between indigenous and exotic species richness, energy availability and propagule pressure at the regional scale. Results Positive relationships were found between indigenous and exotic species richness at local scales, although for plants, the relationship was partially triangular. Across the Southern Ocean Islands, there was strong positive covariation between indigenous and exotic plant species richness and insect species richness, even taking spatial autocorrelation into account. Both exotic and indigenous plant and insect species richness covaried with energy availability, as did human visitor frequency. When two islands with almost identical numbers of human visits were contrasted, it was clear that energy availability, or perhaps differences in climate‐matching, were responsible for differences in the extent of invasion. Conclusion In plants and insects, there are positive relationships between indigenous and exotic diversity at local and regional scales across the Southern Ocean islands. These relationships are apparently a consequence of similar responses by both groups and by human occupants to available energy. When visitor frequency is held constant, energy availability is the major correlate of exotic species richness, though the exact mechanistic cause of this relationship requires clarification.  相似文献   

9.

Environmental gradients are known to drive changes in mean trait values, but changes in the trait integration strength across local communities are less well understood, particularly with regard to possible links with species richness variation. Here, we tested if climate, soil, and topography gradients drive species richness indirectly via constraints on trait integration in the Atlantic Forest of South America. We evaluated seven traits (from leaf, wood, seed, and plant size) of 1456 species occurring across 84 local communities. Generalized least square models and a path model were applied to test direct and indirect relationships. Correlations were higher between leaf traits (average r?=?0.28) and lower when other traits were included (average r?=?0.16). In line with this result, species richness was related to a multivariate index of interspecific trait integration (ITI) computed for leaf traits, but not to the ITI for all the seven traits. Abiotic gradients influenced species richness both directly and indirectly through the leaf trait integration. A total of 33% and 26% of the variation in species richness and ITI, respectively, were explained by the models, with climatic conditions showing higher contribution than topographic and edaphic factors. These results support a significant but reduced environmental selection role behind the trait-based community assembly and may suggest that other processes are involved in the constrain of trait integration at larger spatial scales. In addition, different directional trends in trait–trait relationships across local communities suggest that global trait relationships may not necessarily hold at local contexts.

  相似文献   

10.
Aim In terrestrial plant communities, the relationship between native species diversity and exotic success is typically scale‐dependent. It is often proposed that within local neighbourhoods, high native diversity limits resources, thereby inhibiting exotic success. However, environmental variation that manifests over space or time can create positive correlations between native diversity and exotic success at larger scales. In marine habitats, there have been few multi‐scale surveys of this pattern, so it is unclear how diversity, resource limitation and the environment influence the success of exotic species in these systems. Location Washington, USA. Methods I analysed nested spatial and temporal surveys of fouling communities, which are assemblages of sessile marine invertebrates, to test whether the relationships between native richness, resource availability and exotic cover supported the diversity‐stability and diversity‐resistance theories, to test whether these relationships changed with spatio‐temporal scale, and to explore the temperature preferences of native and exotic fouling species. Results Survey data failed to support diversity‐stability theory: space availability actually increased with native richness at the local neighbourhood scale, and neither space availability nor variability decreased with native richness across larger spatio‐temporal scales. I did find support for diversity‐resistance theory, as richness negatively correlated with exotic cover in local neighbourhoods. Unexpectedly, this negative correlation disappeared at intermediate scales, but emerged again at the regional scale. This scale‐dependent pattern could be partially explained by contrasting water temperature preferences of native and exotic species. Main conclusions Within local neighbourhoods, native diversity may inhibit exotic abundance, but the mechanism is unlikely related to resource limitation. At the largest scale, correlations suggest that native richness is higher in cooler environments, whereas exotic richness is higher in warmer environments. This large‐scale pattern contrasts with the typical plant community pattern, and has important implications for coastal management in the face of global climate change.  相似文献   

11.
In highly invaded ecosystems, restoration of native plant communities is dependent upon reducing exotic species relative to native species. Even so, in monitoring, the native–exotic species richness ratio has been shown to be scale‐dependent. Measurement at small spatial scales (<1 m2) can reveal a negative native–exotic richness relationship, where niche occupation may prevent invasion. Conversely, at larger scales, a positive correlation may exist, where environmental heterogeneity and equally favorable conditions may drive native–exotic relationships. Here, we compare slopes of native–exotic relationships across spatial scales in a prairie undergoing active restoration. The observed native–exotic richness ratios varied considerably over scales ranging from 1 to 1,000 m2, emphasizing the importance of choosing a measurement scale that is most pertinent to the treatment and ecological mechanism used to evaluate restoration success. Our native–exotic richness slopes were positive over all scales, but lower than would be expected in a random community assembly, suggesting the influence of niche‐based competition. Correspondingly, our native–exotic cover slope was more negative than a null model; however, areas of frequent fire treatments showed a significant deviation from null only for richness, indicating that burning may enhance native–exotic competitive dynamics for number of species but not cover. The negative native–exotic cover relationships appear to be driven in this system mainly by exotic graminoids, across burn treatments and native functional groups, supporting the concept that frequent burning can alter the dominant competitive mechanism from coverage of these exotic grasses to an improved environment for germination and dispersal of more native species.  相似文献   

12.
Aim At macroecological scales, exotic species richness is frequently positively correlated with human population density. Such patterns are typically thought to arise because high human densities are associated with increased introduction effort and/or habitat modification and disturbance. Exotic and native species richness are also frequently positively correlated, although the causal mechanisms remain unclear. Energy availability frequently explains much of the variation in species richness and we test whether such species–energy relationships may influence the relationships of exotic species richness with human population density and native species richness. Location Great Britain. Methods We first investigate how spatial variation in the distributions of the 10 exotic bird species is related to energy availability. We then model exotic species richness using native avian species richness, human population density and energy availability as predictors. Species richness is modelled using two sets of models: one assumes independent errors and the other takes spatial correlation into account. Results The probability of each exotic species occurring, in a 10‐km quadrat, increases with energy availability. Exotic species richness is positively correlated with energy availability, human population density and native species richness in univariate tests. When taking energy availability into account, exotic species richness is negligibly influenced by human population density, but remains positively associated with native species richness. Main conclusions We provide one of the few demonstrations that energy availability exerts a strong positive influence on exotic species richness. Within our data, the positive relationship between exotic species richness and human population density probably arises because both variables increase with energy availability, and may be independent of the influence of human density on the probability of establishment. Positive correlations between exotic and native species richness remain when controlling for the influence of energy on species richness. The relevance of such a finding to the debate on the relationship between diversity and invasibility is discussed.  相似文献   

13.
The species richness of ecosystems can remain stable over time, despite changes in species composition and changes in the dominant plant species. While this pattern of stability is known to occur temporally, it has been examined poorly in a spatial context. To examine this spatially, the species richness, diversity and composition of native woodlands (of oak and bay trees) and exotic woodlands (of eucalypt trees) were compared in California. Species richness was nearly identical for understorey plants, leaf‐litter invertebrates, amphibians and birds; only rodents had significantly fewer species in eucalypt sites. Species diversity patterns (using the Shannon–Wiener Index) were qualitatively identical to those for species richness, except for leaf‐litter invertebrates, which were significantly more diverse in eucalypt sites during the spring. Species composition was different between sites, as evidenced by a principal components analysis, coefficients of similarity, and the relatively few species shared between native and eucalypt sites. Thus, the consistency in richness and diversity observed for most groups, in most seasons, occurred despite significant differences in species composition. These results are consistent with previous demonstrations of temporal stability, suggesting that species richness may often be stable, both temporally and spatially, despite changes in composition and regardless of the dominant vegetation.  相似文献   

14.
While exotic plant invasions are thought to lead to declines in native species, the long-term impacts of such invasions on community structure are poorly known. Furthermore, it is unknown how exotic plant invasions compare to invasions by native species. We present data from 40 yr of continuous vegetation sampling of 10 fields released from agriculture to examine the effects of invasions on species richness. The effects of both exotic and native species invasions on species richness were largely driven by variations among fields with most species not significantly affecting species richness. However, invasion and dominance by the exotics Agropyron repens, Lonicera japonica. Rosa multiflora. Trifolium pratense and the native Solidago canadensis were associated with declines in richness. Invasions by exotic and native species during old field succession have similar effects on species richness with dominance by species of either group being associated with loss of species richness. Exotic species invasions tended to have stronger effects on richness than native invasions. No evidence was found of residual effects of invasions because the impact of the invasion disappeared with the decline of the invading population. When pooled across species, heavy invasion by exotic species resulted in greater loss o species richness than invasion by native species. Studies of invasion that utilize multiple sites must account for variability among sites. In our study, had we no included field as a factor we would have incorrectly concluded that invasion consistently resulted in changes in species richness.  相似文献   

15.
The global distribution of exotic species is the result of abiotic, biotic and dispersal filtering processes that shape the movement and success of species outside their native range. In this study we aim to understand how these filtering processes drive the fluxes of grass species among regions, the factors that influence which species establish outside of their native range, and where they do so. We used national and subnational checklists of native and introduced grass species to determine the extent to which each region was a source or recipient of exotic grass species. We asked how species traits may distinguish those grass species that have naturalized outside their native range from those that have not, and how environmental conditions are related to the distribution of exotic grass species. We found that exotic grass establishment is shaped by an array of factors including characteristics of regions, traits of species and their interactions. Regions with a longer history of human occupation and larger numbers of native grass species were generally the most important sources of exotic species. Global flows of species were mostly driven by a climate match between the native and exotic ranges, but were also highly asymmetric, with regions with recent human arrival being the major hosts of exotic grass species. Tall, annual and C4 grass species exhibited particularly high probabilities of establishment outside their native range. Despite the idiosyncrasy and stochasticity characteristic of exotic species establishment, this biogeographical analysis revealed important generalities across this large plant group. Our results suggest that grass species that have co-occurred with humans for a longer time may be better adapted to living in anthropogenic landscapes, explaining the global asymmetry in species introductions.  相似文献   

16.
Three fundamental, interrelated questions in invasion ecology are: (1) to what extent do exotic species outcompete natives; (2) are native and exotic communities functionally similar or different; and (3) are differences in biogeographic patterns in native and exotic communities due to incomplete invasions among exotics? These questions are analogous to general questions in community ecology regarding the relative roles of competition, environmental response and dispersal limitation in community assembly. We addressed each of these questions for plant communities in discrete meadow patches, using analyses at three scales ranging from the landscape to microsites. A weak positive relationship between native and exotic species richness in microsites, and a predominance of positive correlations in abundance among native and exotic species pairs suggest that competition has been less important than other factors in determining native versus exotic abundance and community composition. In contrast, models of species richness and community compositional change across scales suggest native versus exotic community patterns are largely determined by a mix of scale-dependent concordant (shared positive or negative) and discordant relationships with environmental variables. In addition, detailed analyses of species-area and species-abundance relationships suggest ongoing expansion of exotic species populations, indicating that the assembly of the exotic community is in its early stages. Thus, while competition does not appear to strongly affect native versus exotic abundances and compositions at present, it may intensify in the future. Our results indicate that synoptic patterns in native versus exotic richness that have been previously attributed to a single cause may in fact be due to a complex mix of concordant and discordant responses to environmental factors across scales. They also suggest that conservation efforts aimed at promoting natives and reducing exotics should focus on the factors and scales for which such a response (i.e., promotion of high native and low exotic richness) can be expected.  相似文献   

17.
Biological invasions can impact the abundance and diversity of native species, but the specific mechanisms remain poorly discerned. In California grasslands, invasion by European annual grasses has severely reduced the quality of habitat for native forb species. To understand how introduced grasses suppress native and exotic forbs, we examined the response of a Southern California grassland community to factorial removals of live grass and the litter produced in previous seasons. To examine the role that belowground competition for water plays in mediating the impact of grasses, we crossed grass and litter removal treatments with water addition. Our results show that forbs were almost equally suppressed by both competition from live grass and direct interference by litter. Water addition did not ameliorate the effect of grass competition, suggesting that water was not the resource for which plants compete. This evidence is consistent with the susceptibility of forbs to light limitation, especially considering that litter does not consume water or nutrients. Interestingly, despite different histories of co-occurrence with annual grass dominants, native and exotic forbs were comparably suppressed by exotic grasses. Our results indicate that suppression by both live and dead stems underlie the influence of exotic grasses on forb competitors.  相似文献   

18.
Aim To examine native‐exotic species richness relationships across spatial scales and corresponding biotic homogenization in wetland plant communities. Location Illinois, USA. Methods We analysed the native‐exotic species richness relationship for vascular plants at three spatial scales (small, 0.25 m2 of sample area; medium, 1 m2 of sample area; large, 5 m2 of sample area) in 103 wetlands across Illinois. At each scale, Spearman’s correlation coefficient between native and exotic richness was calculated. We also investigated the potential for biotic homogenization by comparing all species surveyed in a wetland community (from the large sample area) with the species composition in all other wetlands using paired comparisons of their Jaccard’s and Simpson’s similarity indices. Results At large and medium scales, native richness was positively correlated with exotic richness, with the strength of the correlation decreasing from the large to the medium scale; at the smallest scale, the native‐exotic richness correlation was negative. The average value for homogenization indices was 0.096 and 0.168, using Jaccard’s and Simpson’s indices, respectively, indicating that these wetland plant communities have been homogenized because of invasion by exotic species. Main Conclusions Our study demonstrated a clear shift from a positive to a negative native‐exotic species richness relationship from larger to smaller spatial scales. The negative native‐exotic richness relationship that we found is suggested to result from direct biotic interactions (competitive exclusion) between native and exotic species, whereas positive correlations likely reflect the more prominent influence of habitat heterogeneity on richness at larger scales. Our finding of homogenization at the community level extends conclusions from previous studies having found this pattern at much larger spatial scales. Furthermore, these results suggest that even while exhibiting a positive native‐exotic richness relationship, community level biotas can/are still being homogenized because of exotic species invasion.  相似文献   

19.
Aim Increasingly, ecologists are using evolutionary relationships to infer the mechanisms of community assembly. However, modern communities are being invaded by non‐indigenous species. Since natives have been associated with one another through evolutionary time, the forces promoting character and niche divergence should be high. On the other hand, exotics have evolved elsewhere, meaning that conserved traits may be more important in their new ranges. Thus, co‐occurrence over sufficient time‐scales for reciprocal evolution may alter how phylogenetic relationships influence assembly. Here, we examined the phylogenetic structure of native and exotic plant communities across a large‐scale gradient in species richness and asked whether local assemblages are composed of more or less closely related natives and exotics and whether phylogenetic turnover among plots and among sites across this gradient is driven by turnover in close or distant relatives differentially for natives and exotics. Location Central and northern California, USA. Methods We used data from 30 to 50 replicate plots at four sites and constructed a maximum likelihood molecular phylogeny using the genes: matK, rbcl, ITS1 and 5.8s. We compared community‐level measures of native and exotic phylogenetic diversity and among‐plot phylobetadiversity. Results There were few exotic clades, but they tended to be widespread. Exotic species were phylogenetically clustered within communities and showed low phylogenetic turnover among communities. In contrast, the more species‐rich native communities showed higher phylogenetic dispersion and turnover among sites. Main conclusions The assembly of native and exotic subcommunities appears to reflect the evolutionary histories of these species and suggests that shared traits drive exotic patterns while evolutionary differentiation drives native assembly. Current invasions appear to be causing phylogenetic homogenization at regional scales.  相似文献   

20.
Temperate humid grasslands are known to be particularly vulnerable to invasion by alien plant species when grazed by domestic livestock. The Flooding Pampa grasslands in eastern Argentina represent a well-documented case of a regional flora that has been extensively modified by anthropogenic disturbances and massive invasions over recent centuries. Here, we synthesise evidence from region-wide vegetation surveys and long-term exclosure experiments in the Flooding Pampa to examine the response of exotic and native plant richness to environmental heterogeneity, and to evaluate grazing effects on species composition and diversity at landscape and local community scales. Total plant richness showed a unimodal distribution along a composite stress/fertility gradient ranging several plant community types. On average, more exotic species occurred in intermediate fertility habitats that also contained the highest richness of resident native plants. Exotic plant richness was thus positively correlated with native species richness across a broad range of flood-prone grasslands. The notion that native plant diversity decreases invasibility was supported only for a limited range of species-rich communities in habitats where soil salinity stress and flooding were unimportant. We found that grazing promoted exotic plant invasions and generally enhanced community richness, whereas it reduced the compositional and functional heterogeneity of vegetation at the landscape scale. Hence, grazing effects on plant heterogeneity were scale-dependent. In addition, our results show that environmental fluctuations and physical disturbances such as large floods in the pampas may constrain, rather than encourage, exotic species in grazed grasslands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号