首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil salinity represents a major constraint on plant growth. Here, we report that the over-expression of the Chrysanthemum crassum plasma membrane Na+/H+ antiporter gene CcSOS1, driven by the CaMV 35S promoter, improved the salinity tolerance of chrysanthemum ‘Jinba’. In salinity-stressed transgenic plants, both the proportion of the leaf area suffering damage and the electrical conductivity of the leaf were lower in the transgenic lines than in salinity-stressed wild type plants. After a 6 day exposure to 200 mM NaCl, the leaf content of both chlorophyll (a+b) and proline was higher in the transgenic than in the wild type plants. The activity of both superoxide dismutase and peroxidase was higher in the transgenic than in the wild type plants throughout the period of NaCl stress. The transgenic plants had a stronger control over the ingress of Na+ into the plant, particularly with respect to the youngest leaves, and so maintained a more favorable K+/Na+ ratio. The result suggests that a possible strategy for improving the salinity tolerance of chrysanthemum could target the restriction of Na+ accumulation. This study is the first to report the transgenic expression of a Na+ efflux carrier in chrysanthemum.  相似文献   

2.
To explore the mechanisms of 5‐aminolevulinic acid (ALA)‐improved plant salt tolerance, strawberries (Fragaria × ananassa Duch. cv. ‘Benihoppe’) were treated with 10 mg l?1 ALA under 100 mmol l?1 NaCl stress. We found that the amount of Na+ increased in the roots but decreased in the leaves. Laser scanning confocal microscopy (LSCM) observations showed that ALA‐induced roots had more Na+ accumulation than NaCl alone. Measurement of the xylem sap revealed that ALA repressed Na+ concentrations to a large extent. The electron microprobe X‐ray assay also confirmed ALA‐induced Na+ retention in roots. qRT‐PCR showed that ALA upregulated the gene expressions of SOS1 (encoding a plasma membrane Na+/H+ antiporter), NHX1 (encoding a vacuolar Na+/H+ antiporter) and HKT1 (encoding a protein of high‐affinity K+ uptake), which are associated with Na+ exclusion in the roots, Na+ sequestration in vacuoles and Na+ unloading from the xylem vessels to the parenchyma cells, respectively. Furthermore, we found that ALA treatment reduced the H2O2 content in the leaves but increased it in the roots. The exogenous H2O2 promoted plant growth, increased root Na+ retention and stimulated the gene expressions of NHX1, SOS1 and HKT1. Diphenyleneiodonium (DPI), an inhibitor of H2O2 generation, suppressed the effects of ALA or H2O2 on Na+ retention, gene expressions and salt tolerance. Therefore, we propose that ALA induces H2O2 accumulation in roots, which mediates Na+ transporter gene expression and more Na+ retention in roots, thereby improving plant salt tolerance.  相似文献   

3.
Grafting onto salt‐tolerant pumpkin rootstock can increase cucumber salt tolerance. Previous studies have suggested that this can be attributed to pumpkin roots with higher capacity to limit the transport of Na+ to the shoot than cucumber roots. However, the mechanism remains unclear. This study investigated the transport of Na+ in salt‐tolerant pumpkin and salt‐sensitive cucumber plants under high (200 mM) or moderate (90 mM) NaCl stress. Scanning ion‐selective electrode technique showed that pumpkin roots exhibited a higher capacity to extrude Na+, and a correspondingly increased H+ influx under 200 or 90 mM NaCl stress. The 200 mM NaCl induced Na+/H+ exchange in the root was inhibited by amiloride (a Na+/H+ antiporter inhibitor) or vanadate [a plasma membrane (PM) H+‐ATPase inhibitor], indicating that Na+ exclusion in salt stressed pumpkin and cucumber roots was the result of an active Na+/H+ antiporter across the PM, and the Na+/H+ antiporter system in salt stressed pumpkin roots was sufficient to exclude Na+. X‐ray microanalysis showed higher Na+ in the cortex, but lower Na+ in the stele of pumpkin roots than that in cucumber roots under 90 mM NaCl stress, suggesting that the highly vacuolated root cortical cells of pumpkin roots could sequester more Na+, limit the radial transport of Na+ to the stele and thus restrict the transport of Na+ to the shoot. These results provide direct evidence for pumpkin roots with higher capacity to limit the transport of Na+ to the shoot than cucumber roots.  相似文献   

4.
Jerusalem artichokes (Helianthus tuberosus L.) can tolerate relatively higher salinity, drought and heat stress. In this paper, we report the cloning of a Salt Overly Sensitive 1 (SOS1) gene encoding a plasma membrane Na+/H+ antiporter from a highly salt-tolerant genotype of H. tuberosus, NY1, named HtSOS1 and characterization of its function in yeast and rice. The amino acid sequence of HtSOS1 showed 83.4 % identity with the previously isolated SOS1 gene from the Chrysanthemum crassum. The mRNA level in the leaves of H. tuberosus was significantly up-regulated by presence of high concentrations of NaCl. Localization analysis using rice protoplast expression showed that the protein encoded by HtSOS1 was located in the plasma membrane. HtSOS1 partially suppressed the salt sensitive phenotypes of a salt sensitive yeast strain. In comparison with wild type (Oryza sativa L., ssp. Japonica. cv. Nipponbare), the transgenic rice expressed with HtSOS1 could exclude more Na+ and accumulate more K+. Expression of HtSOS1 decreased Na+ content much larger in the shoot than in the roots, resulting in more water content in the transgenic rice than WT. These data suggested that HtSOS1 may be useful in transgenic approaches to improving the salinity tolerance of glycophyte.  相似文献   

5.
According to sequences of several vacuolar Na+/H+ antiporter genes from Xinjiang halophytic plants, a new vacuolar Na+/H+ antiporter gene (HcNHX1) from the halophyte Halostachys caspica was obtained by RACE and RT-PCR using primers corresponding to conserved regions of the coding sequences. The obtained HcNHX1 cDNA was 1,983 bp and contained a 1,656 bp open reading frame encoding a deduced protein of 551 amino acid residues. The deduced amino acid sequence showed high identity with other NHX1 we have cloned previously from halophyte in Xinjiang desert area. The phylogenetic analysis showed that HcNHX1 formed a clade with NHX homologs of Chenopodiaceae. Expression profiles under salt treatment and ABA induction were investigated, and the results revealed that expression of HcNHX1 was induced by NaCl and ABA. To compare the degree of salt tolerance, we over-expressed HcNHX1 in Arabidopsis. Two transgenic lines grew more vigorously than the wild type (WT) under salt stress. The analysis of ion contents indicated that under salt stress, the transgenic plants compartmentalized more Na+ in the leaves compared with wild-type plants. Together, these results suggest that the products of the novel gene HcNHX1 from halophyte Halostachys caspica is a functional tonoplast Na+/H+ antiporter.  相似文献   

6.
7.
Natural variation in salinity response, effects of population structure on growth and physiological traits and gene–trait association were examined in 56 global collections of diverse perennial ryegrass (Lolium perenne L.) accessions. Three population structure groups were identified with 66 simple sequence repeat markers, which on average accounted for 9 and 11% of phenotypic variation for the control and salinity treatment at 300 mm NaCl. Group 1 (10 accessions) had greater plant height, leaf dry weight and water content, chlorophyll index, K+ concentration and K+/Na+ than group 2 (39 accessions) and group 3 (7 accessions) under salinity stress, while group 3 had higher Na+ than groups 1 and 2. Eighty‐seven single nucleotide polymorphisms were detected from four partial candidate genes encoding aquaporin and Na+/H+ antiporter in both plasma and tonoplast membranes. Overall, rapid decay of linkage disequilibrium was observed within 500 bp. Significant associations were found between the putative LpTIP1 and Na+ for the control and between the putative LpNHX1 and K+/Na+ under the control and salinity treatments after controlling population structure. These results indicate that population structure influenced phenotypic traits, and allelic variation in LpNHX1 may affect salinity tolerance of perennial ryegrass.  相似文献   

8.
Soil salinity is a major factor limiting apple production in some areas. Tonoplast Na+/H+ antiporters play a critical role in salt tolerance. Here, we isolated MdNHX1, a vacuolar Na+/H+ antiporter from Luo-2, a salt-tolerant rootstock of apple (Malus × domestica Borkh.), and introduced it into apple rootstock M.26 by Agrobacterium-mediated transformation. PCR and DNA gel blot analyses confirmed successful integration of MdNHX1. RT-PCR analysis indicated that the gene was highly expressed in transgenic plants, but the degree of this expression varied among lines. Its overexpression conferred high tolerance to salt stress. Analysis of ion contents showed that, when exposed to salinity stress, the transgenics compartmentalized more Na+ in the roots and also maintained a relatively high K+/Na+ ratio in the leaves compared with non-transformed plants. Under normal conditions, however, amounts of potassium and sodium did not differ significantly between transgenic and control plants.  相似文献   

9.
Populus euphratica is a salt-tolerant tree species growing in semi-arid saline areas. A Na+/H+ antiporter gene was successfully isolated from this species through RACE cloning, and named PeSOS1. The isolated cDNA was 3665 bp long and contained a 3438 bp open reading frame that was predicted to encode a 127-kDa protein with 12 hypothetical transmembrane domains in the N-terminal part and a long hydrophilic cytoplasmic tail in the C-terminal part. The amino acid sequence of this PeSOS1 gene showed 64% identity with the previously isolated SOS1 gene from the glycophyte Arabidopsis thaliana. The level of protein expressed by PeSOS1 in the leaves of P. euphratica was significantly up-regulated in the presence of high (200 mM) concentrations of NaCl, while the mRNA level in the leaves remained relatively constant. Immunoanalysis suggested that the protein encoded by PeSOS1 is localized in the plasma membrane. Expression of PeSOS1 partially suppressed the salt sensitive phenotypes of the EP432 bacterial strain, which lacks the activity of the two Na+/H+ antiporters EcNhaA and EcNhaB. These results suggest that PeSOS1 may play an essential role in the salt tolerance of P. euphratica and may be useful for improving salt tolerance in other tree species. Yuxia Wu and Nan Ding contributed equally to this work.  相似文献   

10.
采用同源克隆技术分离了西伯利亚白刺(Nitraria sibirica)质膜Na~+/H~+逆向转运蛋白基因NsSOS1,并对其在不同胁迫条件下的表达特性进行了分析。NsSOS1包含3 516bp开放阅读框(ORF),编码1 171个氨基酸,蛋白分子量为128.34kD。生物信息学分析显示,NsSOS1包含12个跨膜结构域,具有植物SOS1蛋白的保守结构域。系统发育分析表明,NsSOS1与其他植物质膜Na~+/H~+逆向转运蛋白处于同一个次级分化群,与锦葵科海滨锦葵KvSOS1亲缘关系较近。实时荧光定量RT-PCR分析显示,NsSOS1基因在西伯利亚白刺的根和叶中表达量较高;其表达受到非生物胁迫(NaCl、低温、干旱)和外源激素(MeJA和GA)的诱导,表明NsSOS1基因在西伯利亚白刺抵御逆境胁迫过程中发挥重要作用。  相似文献   

11.
The AaNhaD gene from soda lake Alkalimonas amylolytica encodes a Na+/H+ antiporter that plays a crucial role in the bacterium's resistance to salt/alkali stresses. Zhong et al. (pp. 412–421) reported that AaNhaD functions as a pH‐dependent tonoplast Na+/H+ antiporter in plant cells and is able to enhance the salinity/alkalinity tolerance in transgenic tobacco BY‐2 cells and plants. The cover picture illustrates that AaNhaD proteins are located primarily in the vacuole membranes in a BY‐2 cell.  相似文献   

12.
A Na+/H+ antiporter catalyzes the transport of Na+ and H+ across the tonoplast membrane. We isolated a vacuolar Na+/H+ antiporter cDNA (SsNHX1) clone from a euhalophyte, Suaeda salsa. The nuclear sequence contains 2262 bp with an open reading frame of 1665 bp. The deduced amino acid sequence is similar to that of AtNHX1 and OsNHX1 in rice, with the highest similarities within the predicted transmembrane segments and an amiloride-binding domain. Northern blot analysis shows that the expression of the S. salsa gene was increased by salt stress. The results suggest that the SsNHX1 product is likely a Na+/H+ antiporter and may play important roles in the salt tolerance of S. salsa. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
14.
Cation transport is thought to be an important process for ion homeostasis in plant cells. Here, we report that a soybean putative cation/proton antiporter GmCAX1 may be a mediator of this process. GmCAX1 is expressed in all tissues of the soybean plants but at a lower level in roots. Its expression was induced by PEG, ABA, Ca2+, Na+ and Li+ treatments. The GmCAX1-GFP fusion protein was mainly localized in plasma membrane of the transgenic Arabidopsis plant cells and onion epidermal cells. Transgenic Arabidopsis plants overexpressing GmCAX1 accumulated less Na+, K+, and Li+, and were more tolerant to elevated Li+ and Na+ levels during germination when compared with the controls. These results suggest that GmCAX1 may function as an antiporter for Na+, K+ and Li+. Modulation of this antiporter may be beneficial for regulation of ion homeostasis and thus plant salt tolerance.  相似文献   

15.
16.
An orthologue of the vacuolar Na+/H+ antiporter gene, AmNHX2, was isolated from a desert plant, Ammopiptanthus mongolicus, by RACE-PCR. It has a total length of 1,986 bp, with an open reading frame of 1,632 bp, encoding a predicted polypeptide of 543 amino acids. Sequence similarity and exon constituent analysis clearly suggested that AmNHX2 encoded an AtNHX2 (an antiporter from Arabidopsis) like vacuolar Na+/H+ antiporter. AmNHX2 could be strongly induced by both drought and salt stress. Heterologous expression in the yeast mutant nhx1 indicated that AmNHX2 was the orthologue of ScNHX1, and the complementation effect was almost the same as AtNHX1. Over-expressing AmNHX2 resulted in enhanced tolerances to both drought and salt stresses in transgenic Arabidopsis plants. The transgenic plants accumulated lower Na+ content in their leaves, showing healthier root system after salt stress, and retained more water during the drought stress. Our work suggested that AmNHX2 was a salt tolerance determinant in A. mongolicus, but might not be a contributor to the difference in salt sensitivity between A. thaliana and A. mongolicus.  相似文献   

17.
In plant cells, the plasma membrane Na+/H+ antiporter SOS1 (salt overly sensitive 1) mediates Na+ extrusion using the proton gradient generated by plasma membrane H+-ATPases, and these two proteins are key plant halotolerance factors. In the present study, two genes from Sesuvium portulacastrum, encoding plasma membrane Na+/H+ antiporter (SpSOS1) and H+-ATPase (SpAHA1), were cloned. Localization of each protein was studied in tobacco cells, and their functions were analyzed in yeast cells. Both SpSOS1 and SpAHA1 are plasma membrane-bound proteins. Real-time polymerase chain reaction (PCR) analyses showed that SpSOS1 and SpAHA1 were induced by salinity, and their expression patterns in roots under salinity were similar. Compared with untransformed yeast cells, SpSOS1 increased the salt tolerance of transgenic yeast by decreasing the Na+ content. The Na+/H+ exchange activity at plasma membrane vesicles was higher in SpSOS1-transgenic yeast than in the untransformed strain. No change was observed in the salt tolerance of yeast cells expressing SpAHA1 alone; however, in yeast transformed with both SpSOS1 and SpAHA1, SpAHA1 generated an increased proton gradient that stimulated the Na+/H+ exchange activity of SpSOS1. In this scenario, more Na+ ions were transported out of cells, and the yeast cells co-expressing SpSOS1 and SpAHA1 grew better than the cells transformed with only SpSOS1 or SpAHA1. These findings demonstrate that the plasma membrane Na+/H+ antiporter SpSOS1 and H+-ATPase SpAHA1 can function in coordination. These results provide a reference for developing more salt-tolerant crops via co-transformation with the plasma membrane Na+/H+ antiporter and H+-ATPase.  相似文献   

18.
A putative vacuolar Na+/H+ antiporter gene (SsNHX1) was isolated from the halophyte Salsola soda using the rapid amplification of cDNA ends method. Highly conserved regions of plant vacuolar Na+/H+ antiporter, including amiloride-binding domain, NHE (Na+/H+ exchange) domain, and 12 transmembrane segments, were found in the deduced amino acid sequence of SsNHX1. Multiple alignments of vacuolar Na+/H+ antiporters showed that SsNHX1 shared high identity with other plant vacuolar Na+/H+ antiporters. Phylogenetic relationship analysis indicated that SsNHX1 was clustered into the vacuolar Na+/H+ antiporter group. Taken together, these results suggest that SsNHX1 is a new member of the vacuolar Na+/H+ antiporter family. The effective expression of SsNHX1 in alfalfa (Medicago sativa L.) enhanced the salt tolerance of transgenic alfalfa which could grow in high concentrations of NaCl (up to 400 mM) over 50 days. This was the highest level of salt tolerance reported in transgenic plants. A further analysis of the physiological characteristics of transgenic and wild-type plants, including the Na+ and K+ contents, superoxide dismutase activity, the rate of electrolyte leakage, and the proline content, showed that large amounts of Na+ in the cytoplasm of leaves were transported into vacuoles by the exogenous Na+/H+ antiporter, which averted the toxic effects of Na+ to the cell of transgenic alfalfa.  相似文献   

19.
It is well known that nitric oxide (NO) enhances salt tolerance of glycophytes. However, the effect of NO on modulating ionic balance in halophytes is not very clear. This study focuses on the role of NO in mediating K+/Na+ balance in a mangrove species, Kandelia obovata Sheue, Liu and Yong. We first analyzed the effects of sodium nitroprusside (SNP), an NO donor, on ion content and ion flux in the roots of K. obovata under high salinity. The results showed that 100 μM SNP significantly increased K+ content and Na+ efflux, but decreased Na+ content and K+ efflux. These effects of NO were reversed by specific NO synthesis inhibitor and scavenger, which confirmed the role of NO in retaining K+ and reducing Na+ in K. obovata roots. Using western-blot analysis, we found that NO increased the protein expression of plasma membrane (PM) H+-ATPase and vacuolar Na+/H+ antiporter, which were crucial proteins for ionic balance. To further clarify the molecular mechanism of NO-modulated K+/Na+ balance, partial cDNA fragments of inward-rectifying K+ channel, PM Na+/H+ antiporter, PM H+-ATPase, vacuolar Na+/H+ antiporter and vacuolar H+-ATPase subunit c were isolated. Results of quantitative real-time PCR showed that NO increased the relative expression levels of these genes, while this increase was blocked by NO synthesis inhibitors and scavenger. Above results indicate that NO greatly contribute to K+/Na+ balance in high salinity-treated K. obovata roots, by activating AKT1-type K+ channel and Na+/H+ antiporter, which are the critical components in K+/Na+ transport system.  相似文献   

20.
Plant vacuolar Na+/H+ antiporter genes play significant roles in salt tolerance. However, the roles of the chrysanthemum vacuolar Na+/H+ antiporter genes in salt stress response remain obscure. In this study, we isolated and characterized a novel vacuolar Na+/H+ antiporter gene DgNHX1 from chrysanthemum. The DgNHX1 sequence contained 1920 bp with a complete open reading frame of 1533 bp encoding a putative protein of 510 amino acids with a predicted protein molecular weight of 56.3 kDa. DgNHX1 was predicted containing nine transmembrane domains. Its expression in the chrysanthemum was up-regulated by salt stress, but not by abscisic acid (ABA). To assess roles of DgNHX1 in plant salt stress responses, we performed gain-of-function experiment. The DgNHX1-overexpression tobacco plants showed significant salt tolerance than the wild type (WT). The transgenic lines exhibited more accumulation of Na+ and K+ under salt stress. These findings suggest that DgNHX1 plays a positive regulatory role in salt stress response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号