共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim We analysed the distributional patterns of six terrestrial vertebrate taxa from the Oaxacan Highlands (Sierra Mazateca, Nudo de Zempoaltépetl and Sierra de Juárez) through a cladistic biogeographical approach, in order to test their naturalness as a biotic unit.
Location The Oaxacan Highlands, Mexico.
Methods The cladistic biogeographical analysis was based on the area cladograms of the Pseudoeurycea bellii species group (Amphibia: Plethodontidae), the genus Chlorospingus (Aves: Thraupidae), the genera Microtus , Reithrodontomys and Habromys , and the Peromyscus aztecus species group (Mammalia: Rodentia). We obtained paralogy-free subtrees, from which the components were coded in a data matrix for parsimony analysis. The data matrix was analysed with N ona through W in C lada .
Results The parsimony analysis resulted in a single general area cladogram in which areas were fragmented following the sequence Sierra Madre Occidental, Trans-Mexican Volcanic Belt, Chiapas, Sierra Madre Oriental + Sierra Mazateca, Sierra Madre del Sur, Nudo de Zempoaltépetl and Sierra de Juárez.
Main conclusions The general area cladogram shows that the Oaxacan Highlands do not constitute a natural unit. The Sierra Mazateca is the sister area to the Sierra Madre Oriental, whereas the Nudo de Zempoaltépetl and the Sierra de Juárez are closely related to the Sierra Madre del Sur. The events that might have caused these patterns include cycles of expansion and contraction of mountain pinyon, juniper and oak woodlands during the Pleistocene. 相似文献
Location The Oaxacan Highlands, Mexico.
Methods The cladistic biogeographical analysis was based on the area cladograms of the Pseudoeurycea bellii species group (Amphibia: Plethodontidae), the genus Chlorospingus (Aves: Thraupidae), the genera Microtus , Reithrodontomys and Habromys , and the Peromyscus aztecus species group (Mammalia: Rodentia). We obtained paralogy-free subtrees, from which the components were coded in a data matrix for parsimony analysis. The data matrix was analysed with N ona through W in C lada .
Results The parsimony analysis resulted in a single general area cladogram in which areas were fragmented following the sequence Sierra Madre Occidental, Trans-Mexican Volcanic Belt, Chiapas, Sierra Madre Oriental + Sierra Mazateca, Sierra Madre del Sur, Nudo de Zempoaltépetl and Sierra de Juárez.
Main conclusions The general area cladogram shows that the Oaxacan Highlands do not constitute a natural unit. The Sierra Mazateca is the sister area to the Sierra Madre Oriental, whereas the Nudo de Zempoaltépetl and the Sierra de Juárez are closely related to the Sierra Madre del Sur. The events that might have caused these patterns include cycles of expansion and contraction of mountain pinyon, juniper and oak woodlands during the Pleistocene. 相似文献
2.
Jacob A. Esselstyn Carl H. Oliveros Robert G. Moyle A. Townsend Peterson Jimmy A. McGuire Rafe M. Brown 《Journal of Biogeography》2010,37(11):2054-2066
Aim Nearly 150 years ago, T. H. Huxley modified Wallace’s Line, including the island of Palawan as a component of the Asian biogeographic realm and separating it from the oceanic Philippines. Although Huxley recognized some characteristics of a transition between the regions, Palawan has since been regarded primarily as a peripheral component of the Sunda Shelf. However, several recent phylogenetic studies of Southeast Asian lineages document populations on Palawan to be closely related to taxa from the oceanic Philippines, apparently contradicting the biogeographic association of Palawan with the Sunda Shelf. In the light of recent evidence, we evaluate taxonomic and phylogenetic data in an attempt to identify the origin(s) of Palawan’s terrestrial vertebrate fauna. Location The Sunda Shelf and the Philippines. Methods We review distributional and phylogenetic data for populations of terrestrial vertebrates from Palawan. Using taxonomic data, we compare the number of Palawan taxa (species and genera) shared with the Sunda Shelf and oceanic Philippines. Among widespread lineages, we use phylogenetic data to identify the number of Palawan taxa with sister relationships to populations or species from the Sunda Shelf or oceanic Philippines. Results Although many terrestrial vertebrate taxa are shared between Palawan and the Sunda Shelf, an increasing number of species and populations are now recognized as close relatives of lineages from the oceanic Philippines. Among the 39 putative lineages included in molecular phylogenetic studies with sampling from the Sunda Shelf, Palawan and the oceanic Philippines, 17 of them reveal sister relationships between lineages from Palawan and the oceanic Philippines. Main conclusions Rather than a simple nested subset of Sunda Shelf populations, Palawan is best viewed as having played multiple biogeographic roles, including a young and old extension of the Sunda Shelf, a springboard to diversification in the oceanic Philippines, and a biogeographic component of the Philippine archipelago. Palawan has a long, complex geological history, which may explain this variation in pattern. Huxley originally noted transitional elements in Palawan’s fauna; we therefore suggest that his modification of Wallace’s Line should be recognized as a filter zone, reflecting both his original intent and available taxonomic and molecular evidence. 相似文献
3.
Bernard Hugueny 《Ecology letters》2017,20(5):591-598
A new model of delayed species loss (extinction debt) within isolated communities is applied to a large data set of terrestrial vertebrate assemblages (n = 188) occupying habitat fragments or islands varying greatly in size and age. The model encapsulates previous approaches based on diversity‐dependent (DD) extinction rates while allowing for a more flexible treatment of temporal dynamics. Three important results emerge. First, species loss rate slows down with the age of the isolate, a strong and general pattern largely unnoticed so far. Secondly, while being good candidates in the light of previous works, DD models fail to account for this pattern, a result that necessitates a search for other mechanisms. Thirdly, a simple diversity‐independent model based on area (converted into population size) and age explains 97% of the variability in species loss rate and appears to be a promising predictive tool to handle extinction debt following habitat loss. 相似文献
4.
Aim Biogeographical regionalizations, such as zoogeographical regions, floristic kingdoms or ecoregions, represent categorizations central to many basic and applied questions in biogeography, ecology, evolution and conservation. Traditionally established by experts based on qualitative evidence, the lack of transparency and quantitative support has set constraints on their utility. The recent availability of global species range maps, novel multivariate techniques and enhanced computational power now enable a quantitative scrutiny and extension of biogeographical regionalizations that will facilitate new and more rigorous uses. In this paper we develop and illustrate a methodological roadmap for species‐level biogeographical regionalizations at the global scale and apply it to mammals. Location Global. Methods We explore the relative usefulness of ordination and clustering methods and validation techniques. The performance of nine different clustering algorithms is tested at different taxonomic levels. The grain of regionalization (i.e. the number of clusters) will usually be driven by the purpose of the study, but we present several approaches that provide guidance. Results Non‐metric multidimensional scaling offers a valuable first step in identifying and illustrating biogeographical transition zones. For the clustering of regions, the nine different hierarchical clustering methods varied greatly in utility, with UPGMA (unweighted pair‐group method using arithmetic averages) agglomerative hierarchical clustering having consistently the best performance. The UPGMA approach allows a tree‐like phenetic representation of the relative distances of regions and can be applied at different levels of taxonomic resolution. We find that the new quantitative biogeographical regions exhibit both striking similarities to and differences from the classic primary geographical divisions of the world’s biota. Specifically, our results provide evidence that the Sahara, northern Africa, the Arabian Peninsula and parts of the Middle East should be regarded as part of the Afrotropics. Further, the position of the New Guinean continental shelf, Lydekker’s Line, is supported as an appropriate border to separate the Oriental and Australian regions. Main conclusions We propose that this sort of new, quantitative delineation and relationship assessment across taxonomic and geographical grains is likely to offer opportunities for more rigorous inference in historical and ecological biogeography and conservation. 相似文献
5.
Samraat S. Pawar Ayegül C. Birand † M. Firoz Ahmed Saibal Sengupta T. R. Shankar Raman 《Diversity & distributions》2007,13(1):53-65
Distributional similarity (congruence) between phylogenetically independent taxonomic groups has important biogeographical as well as conservation implications. When multiple groups show congruence, one or two of them can be used as surrogates of diversity in others; thus, simplifying some of the challenges of area prioritization for conservation action. Here we test for congruence in complementarity between amphibians, reptiles and birds across seven tropical rainforest sites in the Eastern Himalaya and Indo-Burma global biodiversity hotspots. The results show that while frogs and lizards are strongly congruent with each other, birds as a whole do not show congruence with either of them. However, certain bird subgroups delineated on the basis of broad ecological niche and life history attributes are significantly congruent with both frogs and lizards. Multiple Mantel regression between environmental variable and species distribution dissimilarity matrices indicate that along with differential response to between-site ecological differences, inherent life-history characteristics shared by certain groups contributes to observed patterns of congruence. Our analyses indicate that examining biologically distinct subsets of larger groups can improve the resolution of congruence analyses. This approach can refine area-prioritization initiatives by revealing fine-scale discordances between otherwise concordant groups, and vice versa. Given that monetary resources do not always allow inclusion of multiple groups in biodiversity inventorying efforts, performing such analyses also makes economic sense because it can provide better resolution even with single-group data. In the context of conservation in North-east India, the results highlight the biogeographical complexity of the region, and also point at future priorities for biodiversity inventorying and conservation prioritization, both in terms of areas as well as taxonomic groups. 相似文献
6.
Dov F. Sax 《Global Ecology and Biogeography》2002,11(1):49-57
The species richness of ecosystems can remain stable over time, despite changes in species composition and changes in the dominant plant species. While this pattern of stability is known to occur temporally, it has been examined poorly in a spatial context. To examine this spatially, the species richness, diversity and composition of native woodlands (of oak and bay trees) and exotic woodlands (of eucalypt trees) were compared in California. Species richness was nearly identical for understorey plants, leaf‐litter invertebrates, amphibians and birds; only rodents had significantly fewer species in eucalypt sites. Species diversity patterns (using the Shannon–Wiener Index) were qualitatively identical to those for species richness, except for leaf‐litter invertebrates, which were significantly more diverse in eucalypt sites during the spring. Species composition was different between sites, as evidenced by a principal components analysis, coefficients of similarity, and the relatively few species shared between native and eucalypt sites. Thus, the consistency in richness and diversity observed for most groups, in most seasons, occurred despite significant differences in species composition. These results are consistent with previous demonstrations of temporal stability, suggesting that species richness may often be stable, both temporally and spatially, despite changes in composition and regardless of the dominant vegetation. 相似文献
7.
8.
Historically, many species moved great distances as climates changed. However, modern movements will be limited by the patterns of human‐dominated landscapes. Here, we use a combination of projected climate‐driven shifts in the distributions of 2903 vertebrate species, estimated current human impacts on the landscape, and movement models, to determine through which areas in the western hemisphere species will likely need to move to track suitable climates. Our results reveal areas with projected high densities of climate‐driven movements – including, the Amazon Basin, the southeastern United States and southeastern Brazil. Some of these regions, such as southern Bolivia and northern Paraguay, contain relatively intact landscapes, whereas others such as the southeastern United States and Brazil are heavily impacted by human activities. Thus, these results highlight both critical areas for protecting lands that will foster movement, and barriers where human land‐use activities will likely impede climate‐driven shifts in species distributions. 相似文献
9.
Robert J. Whittaker David Nogus‐Bravo Miguel B. Araújo 《Global Ecology and Biogeography》2007,16(1):76-89
Aims We present an analysis of grid‐based species‐richness data for European plants, mammals, birds, amphibians and reptiles, designed to test the proposition of Hawkins et al. (2003a ) that the single best factor describing richness variation switches from the water regime to the energy regime in the mid‐latitudes and that the ‘breakpoint’ is related to the physiological character of the taxa. We go on to develop subregional models showing the extent to which regional model fits vary as a function of the extent of the study system, and compare the relative performance of ‘water’, ‘energy’ and ‘water–energy’ models of richness for southern, northern and pan‐European models. Location Western Europe. Methods We use atlas data comprising species range data for 187 species of mammals, 445 species of breeding birds, 58 amphibians, 91 reptiles and 2362 plant species, inserted into a c. 50 × 50 km grid cell system. We used 11 modelled climate variables, averaged for the period 1961–90. Statistical analyses were carried out using generalized additive models (GAMs), with splines simplified to a maximum of four degrees of freedom, and we tested for spatial autocorrelation using Moran's I values obtained at 10 different distance intervals. We selected favoured models on the grounds of deviance explained combined with a simple parsimony criterion, such that we selected either: (1) the best two‐variable energy, water or water–energy model, or (2) a four‐variable water–energy model, where the latter improved on the best two‐variable model by a minimum of 5% deviance explained. Results Threshold energy values, at which richness shows a transition from an increasing to a decreasing function of annual solar radiation, were identified for all taxa apart from reptiles. We found conditional support for the switch from dominance of water variables (southern models) to energy variables (northern models). Our favoured models switched between ‘water’ and ‘energy’ for mammals, and between ‘energy’ and ‘water–energy’ for birds, depending on whether we used data of pan‐European extent, southern or northern subsets. Deviance explained in our favoured models varied from 15% (birds, southern Europe) to 72% (amphibians, northern Europe), i.e. ranging from very poor to good fits with the data. Comparison with previous work indicates that our models are generally consistent with (if sometimes weaker than) previous findings. Main conclusions Our models are incomplete representations of factors influencing macro‐scale richness patterns across Europe, taking no explicit account of, for example, topographic variation, human influences or long‐term climatic variation. However, with the exception of birds, for which only the northern model attains over one‐third deviance explained, the models show that climate can account for meaningful proportions of the deviance. We find general support for considering water and energy regimes together in modelling species richness, and for the proposition that water is more limiting in southern Europe and energy in the north. Our analyses demonstrate the sensitivity of model outcomes to the geographical location and extent of the study system, illustrating that simple curve‐fitting exercises like these, particularly if based on regions with the complex history and geography characteristic of Europe, are unlikely to provide the basis for global, predictive models. However, such exercises may be of value in detecting which aspects of water and energy regimes may be of most importance in refining independently generated global models for regional application. 相似文献
10.
11.
12.
Jacob C. Cooper Nicholas M. A. Crouch Adam W. Ferguson John M. Bates 《Ecology and evolution》2022,12(3)
Macroevolutionary patterns, often inferred from metrics of community relatedness, are often used to ascertain major evolutionary processes shaping communities. These patterns have been shown to be informative of biogeographic barriers, of habitat suitability and invasibility (especially with regard to environmental filtering), and of regions that function as evolutionary cradles (i.e., sources of diversification) or museums (i.e., regions of reduced extinction). Here, we analyzed continental datasets of mammal and bird distributions to identify primary drivers of community evolution on the African continent for mostly endothermic vertebrates. We find that underdispersion (i.e., relatively low phylogenetic diversity compared to species richness) closely correlates with specific ecoregions that have been identified as climatic refugia in the literature, regardless of whether these specific regions have been touted as cradles or museums. Using theoretical models of identical communities that differ only with respect to extinction rates, we find that even small suppressions of extinction rates can result in underdispersed communities, supporting the hypothesis that climatic stability can lead to underdispersion. We posit that large‐scale patterns of under‐ and overdispersion between regions of similar species richness are more reflective of a particular region’s extinction potential, and that the very nature of refugia can lead to underdispersion via the steady accumulation of species richness through diversification within the same ecoregion during climatic cycles. Thus, patterns of environmental filtering can be obfuscated by environments that coincide with biogeographic refugia, and considerations of regional biogeographic history are paramount for inferring macroevolutionary processes. 相似文献
13.
14.
Nicolas Vidal Julie Marin Marina Morini Steve Donnellan William R. Branch Richard Thomas Miguel Vences Addison Wynn Corinne Cruaud S. Blair Hedges 《Biology letters》2010,6(4):558-561
Worm-like snakes (scolecophidians) are small, burrowing species with reduced vision. Although largely neglected in vertebrate research, knowledge of their biogeographical history is crucial for evaluating hypotheses of snake origins. We constructed a molecular dataset for scolecophidians with detailed sampling within the largest family, Typhlopidae (blindsnakes). Our results demonstrate that scolecophidians have had a long Gondwanan history, and that their initial diversification followed a vicariant event: the separation of East and West Gondwana approximately 150 Ma. We find that the earliest blindsnake lineages, representing two new families described here, were distributed on the palaeolandmass of India+Madagascar named here as Indigascar. Their later evolution out of Indigascar involved vicariance and several oceanic dispersal events, including a westward transatlantic one, unexpected for burrowing animals. The exceptional diversification of scolecophidians in the Cenozoic was probably linked to a parallel radiation of prey (ants and termites) as well as increased isolation of populations facilitated by their fossorial habits. 相似文献
15.
16.
John J. Wiens Jeet Sukumaran R. Alexander Pyron Rafe M. Brown 《Evolution; international journal of organic evolution》2009,63(5):1217-1231
Differences in species richness between regions are ultimately explained by patterns of speciation, extinction, and biogeographic dispersal. Yet, few studies have considered the role of all three processes in generating the high biodiversity of tropical regions. A recent study of a speciose group of predominately New World frogs (Hylidae) showed that their low diversity in temperate regions was associated with relatively recent colonization of these regions, rather than latitudinal differences in diversification rates (rates of speciation–extinction). Here, we perform parallel analyses on the most species-rich group of Old World frogs (Ranidae; ∼1300 species) to determine if similar processes drive the latitudinal diversity gradient. We estimate a time-calibrated phylogeny for 390 ranid species and use this phylogeny to analyze patterns of biogeography and diversification rates. As in hylids, we find a strong relationship between the timing of colonization of each region and its current diversity, with recent colonization of temperate regions from tropical regions. Diversification rates are similar in tropical and temperate clades, suggesting that neither accelerated tropical speciation rates nor greater temperate extinction rates explain high tropical diversity in this group. Instead, these results show the importance of historical biogeography in explaining high species richness in both the New World and Old World tropics. 相似文献
17.
Aim To determine if it is possible to generate analytically derived regionalizations for multiple groups of European plants and animals and to explore potential influences on the regions for each taxonomic group. Location Europe. Methods We subjected range maps of trees, butterflies, reptiles, amphibians, birds and mammals to k‐means clustering followed by v‐fold cross‐validation to determine the pattern and number of regions (clusters). We then used the mean range sizes of species in each group as a correlate of the number of regions obtained for each taxon, and climate and species richness gradients as correlates of the spatial arrangement of the group‐specific regions. We also included the pattern of tree clusters as a predictor of animal clusters in order to test the ‘habitat templet’ concept as an explanation of animal distribution patterns. Results Spatially coherent clusters were found for all groups. The number of regions ranged from three to eight and was strongly associated with the mean range sizes of the species in each taxon. The cluster patterns of all groups were associated with various combinations of climate, underlying species richness gradients and, in the case of animals, the arrangement of tree clusters, although the rankings of the correlates differed among groups. In four of five groups the tree pattern was the strongest single predictor of the animal cluster patterns. Main conclusions Despite a long history of human disturbance and habitat modification, the European biota retains a discernable biogeographic structure. The primary driver appears to be aspects of climate related to water–energy balance, which also influence richness gradients. For many animals, the underlying habitat structure, as measured by tree distributions, appears to have a strong influence on their biogeographic structure, highlighting the need to preserve natural forest formations if we want to preserve the historical signal found in geographic distributions. 相似文献
18.
Mountains are centres of global biodiversity, endemism and threatened species. Elevational gradients present opportunities for species currently living near their upper thermal limits to track cooler temperatures upslope in warming climates, but only if changes in precipitation are sufficiently in step with temperature. We model local population extirpation risk for a range of temperature and precipitation scenarios over the next 100 years for 16 848 vertebrate species populations distributed along 156 elevational gradients. Average population extirpation risks due to warming alone were < 5%, but increased 10-fold, on average, when changes in precipitation were also considered. Under the driest scenarios (minimum predicted precipitation), local extirpation risks increased sharply (50-60%) and were especially worrisome for hydrophilic amphibians and montane Latin America (c. 80%). Realistic assessment of risks urgently requires improved monitoring of precipitation, better regional precipitation models and more research on the effects of changes in precipitation on montane distributions. 相似文献
19.
Aim To distinguish the effects of geographic distance and environmental dissimilarity on global patterns of species turnover in four classes of terrestrial vertebrates (mammals, birds, reptiles and amphibians). Location Six hundred and sixty terrestrial ecoregions across the globe. Methods We calculated species turnover between each pair of ecoregions, using the Jaccard index (J). We selected seven variables to quantify environment in each ecoregion, and subjected the environmental values to a principal components analysis. For each realm, we applied multiple regression analysis relating the natural logarithm of the Jaccard index (lnJ) to geographic distance alone and in combination with differences in the environment variables measured as principal components (PC). We used partial correlations to partition variance in lnJ between unique contributions of distance and environmental PC scores, the covariation between distance and environment, and unexplained variance. To examine the latitude and species turnover relationship, we regressed lnJ on latitude with distance between ecoregions being included as a covariate. Results The natural logarithm of the Jaccard index (lnJ) decreased significantly with increasing geographic distance for all vertebrate classes in each zoogeographic realm, and the slopes of the relationships per 1000 km ranged from ?0.251 to ?1.043. With environmental differences included in the analysis, both geographic distance and environmental differences were substantial predictors of lnJ for every combination of taxon and realm. On average, the unique contribution of geographic distance to variation in species turnover between ecoregions was about 1.4 times that of the environmental differences between ecoregions. Species turnover generally decreased with increasing latitude when controlling for geographic distance. The value of lnJ for each vertebrate class was highly and positively correlated with those of the other vertebrate classes. Main conclusions Our analyses suggest that both dispersal‐based and niche‐based processes have played important roles in determining faunal similarities among vertebrate assemblages at the spatial scale examined. Furthermore, reptiles and amphibians exhibited greater distance‐independent faunal heterogeneity among ecoregions and greater turnover among ecoregions with respect to geographic and environmental distance than birds and mammals. 相似文献