首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterns of summertime movement and habitat use of yellow‐stage American eels Anguilla rostrata within York River and estuary and Gaspé Bay (Gaspesia, Québec, Canada) were examined using acoustic telemetry. Fifty fish were tagged with acoustic transmitters and released, either in the river or in the upper estuary, and their patterns of movement and habitat use were monitored at short spatial and temporal scales during the summer months using a dense hydrophone array. Approximately half of the fish released in the river swam to the estuary; two‐thirds of the fish released within the estuary did not move out of the estuary. Anguilla rostrata were detected more frequently and had a greater areal range of detections during night, suggesting greater nocturnal activity. Longitudinal movements within the estuary tended to occur nocturnally, with upstream movements from early to late evening, and downstream movements from late evening to early morning. Approximately one‐third of fish showed a regular pattern of movement, tending to reside in the deeper, downstream part of the estuary during day and in the shallower, more upstream part of the estuary during night. Approximately a quarter of fish, located in the upper estuary, remained upstream during both night and day. The remaining fish showed patterns intermediate between these two.  相似文献   

2.
Understanding the links between external variables such as habitat and interactions with conspecifics and animal space‐use is fundamental to developing effective management measures. In the marine realm, automated acoustic tracking has become a widely used method for monitoring the movement of free‐ranging animals, yet researchers generally lack robust methods for analysing the resulting spatial‐usage data. In this study, acoustic tracking data from male and female broadnose sevengill sharks Notorynchus cepedianus, collected in a system of coastal embayments in southeast Tasmania were analyzed to examine sex‐specific differences in the sharks’ coastal space‐use and test novel methods for the analysis of acoustic telemetry data. Sex‐specific space‐use of the broadnose sevengill shark from acoustic telemetry data was analysed in two ways: The recently proposed spatial network analysis of between‐receiver movements was employed to identify sex‐specific space‐use patterns. To include the full breadth of temporal information held in the data, movements between receivers were furthermore considered as transitions between states of a Markov chain, with the resulting transition probability matrix allowing the ranking of the relative importance of different parts of the study area. Both spatial network and Markov chain analysis revealed sex‐specific preferences of different sites within the study area. The identification of priority areas differed for the methods, due to the fact that in contrast to network analysis, our Markov chain approach preserves the chronological sequence of detections and accounts for both residency periods and movements. In addition to adding to our knowledge of the ecology of a globally distributed apex predator, this study presents a promising new step towards condensing the vast amounts of information collected with acoustic tracking technology into straightforward results which are directly applicable to the management and conservation of any species that meet the assumptions of our model.  相似文献   

3.
Submerged passive acoustic technology allows researchers to investigate spatial and temporal movement patterns of many marine and freshwater species. The technology uses receivers to detect and record acoustic transmissions emitted from tags attached to an individual. Acoustic signal strength naturally attenuates over distance, but numerous environmental variables also affect the probability a tag is detected. Knowledge of receiver range is crucial for designing acoustic arrays and analyzing telemetry data. Here, we present a method for testing a relatively large‐scale receiver array in a dynamic Caribbean coastal environment intended for long‐term monitoring of multiple species. The U.S. Geological Survey and several academic institutions in collaboration with resource management at Buck Island Reef National Monument (BIRNM), off the coast of St. Croix, recently deployed a 52 passive acoustic receiver array. We targeted 19 array‐representative receivers for range‐testing by submersing fixed delay interval range‐testing tags at various distance intervals in each cardinal direction from a receiver for a minimum of an hour. Using a generalized linear mixed model (GLMM), we estimated the probability of detection across the array and assessed the effect of water depth, habitat, wind, temperature, and time of day on the probability of detection. The predicted probability of detection across the entire array at 100 m distance from a receiver was 58.2% (95% CI: 44.0–73.0%) and dropped to 26.0% (95% CI: 11.4–39.3%) 200 m from a receiver indicating a somewhat constrained effective detection range. Detection probability varied across habitat classes with the greatest effective detection range occurring in homogenous sand substrate and the smallest in high rugosity reef. Predicted probability of detection across BIRNM highlights potential gaps in coverage using the current array as well as limitations of passive acoustic technology within a complex coral reef environment.  相似文献   

4.
Temporal partitioning of daily activities between species may promote coexistence within animal communities by reducing behavioural interference, particularly when species highly overlap in the use of space and resources. Such a strategy may be used by Alpine chamois (Rupicapra rupicapra rupicapra) when in the presence of mouflon (Ovis gmelini musimon × Ovis sp.), an introduced highly gregarious species with a broader ecological niche, overlapping with that of chamois. Using simultaneous monitoring of 29 Global Positioning System‐collared chamois and 12 mouflon, we assessed the temporal variation in activity patterns of chamois amongst two subpopulations: one without mouflon and one with mouflon, during January and August, which are the two most extreme periods of spatial overlap of mouflon with chamois distribution. Substantial differences in activity patterns between chamois and mouflon were observed (mean 13.8 ± 10.5% in January and 10.6 ± 11.6% in August). More subtle differences appeared between both subpopulations of chamois and persisted, regardless of the spatial overlap with mouflon (3.2 ± 1.8% in January and 2.6 ± 1.5% in August), thus highlighting that there is no behavioural interference from mouflon on chamois. Our findings suggest that the temporal partitioning of daily activities between chamois and mouflon, although probably a result of species‐specific adaptations to environmental conditions, may contribute to their coexistence. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 621–626.  相似文献   

5.
Passive acoustic monitoring (PAM) of the brown meagre Sciaena umbra was conducted in a northern Adriatic Sea mussel farm. The level of acoustic activity was found to be constantly high from June to August before declining sharply in September and there was significantly higher acoustic activity in the structured habitats within the mussel farm than in the bare sandy bottom outside the farm. Results are discussed in the context of the use of this species as an indicator species of artificial rocky habitats along the Mediterranean coastal environments.  相似文献   

6.
Julia I. Chapman  Ryan W. McEwan 《Oikos》2013,122(12):1679-1686
Understanding the factors that regulate biodiversity over spatial and temporal gradients is an important scientific objective with ramifications for theory and conservation. Species composition is known to vary across spatial gradients, but how this spatial variation is linked to temporal dynamics is less well studied. Our objective was to understand how Shannon (α) diversity, spatial species turnover (Bray–Curtis dissimilarity), and temporal species turnover (Bray–Curtis dissimilarity) varied with regard to three topographic gradients (aspect, slope and elevation) over one growing season. In April, June and August of 2011, the herbaceous layer was sampled in 320 1‐m2 plots within Big Everidge Hollow, an old‐growth forest in southeastern Kentucky. Multiple regression models revealed that Shannon diversity was linearly related to aspect (negative) and slope (positive), but unimodally related to elevation, indicating steep, mid‐elevation, and south‐facing plots were most diverse. Distance decay analysis showed that significant spatial species turnover occurred across all three topographic gradients, but aspect and elevation had a greater influence on compositional dissimilarity than slope. Mean temporal species turnover was significantly greater (p < 0.001) between April and June (0.39 ± 0.02 SE) than between June and August (0.20 ± 0.01). April‐to‐June turnover was related to aspect (linear) and elevation (quadratic; r2= 0.23, p < 0.0001), suggesting greater temporal species turnover occurred on north‐facing and mid‐elevation plots during this period; however, June‐to‐August turnover was weakly related to slope only (positive linear; r2= 0.08, p = 0.006). Environmental heterogeneity generated by topography is one of many factors that may constrain or promote biodiversity through space and across time, and a solid understanding of these spatiotemporal patterns of diversity can benefit both conservation and ecological theory.  相似文献   

7.
This study used a network of acoustic receivers deployed around a no‐take zone in Mangrove Bay, within the Ningaloo Reef Marine Park in Western Australia, to study residency and habitat preference of a small coastal shark, the nervous shark Carcharhinus cautus. Twelve C. cautus were tagged with acoustic tags and monitored for up to 579 days. Based on individuals detected within the receiver array for at least 2 months, C. cautus had small core (50% kernel utilization distribution, KUD) and home ranges (95% KUD) of 0·66 and 3·64 km2, respectively, and showed a strong habitat preference for mangroves, which are only found in the no‐take zone. This resulted in C. cautus spending most of their detected time within the no‐take zone boundaries (mean = 81·5%), showing that such a protected area could be beneficial to protect this species from extensive fishing pressure and local depletion, where required. Not all C. cautus remained within the acoustic array, however, suggesting that individual variations occur and that not all individuals would benefit from such protection. This study provides important information about the habitat, residency and movements of C. cautus that can be used for management and conservation. The strong affinity and residency of C. cautus within a mangrove‐fringing coastline, emphasizes the importance of mangrove habitat to the species and suggests that such preferences can be used to design appropriate no‐take zones for this species or others with similar habitat preferences.  相似文献   

8.
Calls emitted by the brown meagre Sciaena umbra (L., fam. Sciaenidae) were recorded at the Natural Marine Reserve of Miramare (Trieste, Italy) in seven nocturnal surveys (12-h continuous sampling) during the summer of 2009. Calls consist of pulses, with the main energy content below 2 kHz and mean peak frequency of c. 270 Hz. Pulses were short, with an average duration of 20 ms and a pulse period of 100 ms. Sounds lasted approximately 500 ms. Three types of sound patterns were recognized: irregular (I), regular (R) and the chorus (C). Their acoustic parameters are described showing that I, R and C differ in pulse duration, pulse peak frequency and pulse period. Occurrence of the three call types changes throughout the night: the R pattern occurred mainly at dawn and dusk, C predominated after nightfall, while I calls were produced sporadically during the whole nocturnal period. Our results indicate that S. umbra has a pronounced nocturnal rhythm in vocalizing behaviour and highlight how the diagnostic time–frequency pattern of S. umbra calls can be used to identify the species in the field. Considering that the abundance of S. umbra is currently declining, the information presented here will be relevant in developing non-invasive and low-cost monitoring acoustic systems for managing S. umbra conservation and fishery along the Mediterranean Sea.  相似文献   

9.
Acoustic communication among birds plays an important role in attracting mates and defending territories. For the successful transmission of songs, individuals of different species often avoid singing at the same time to reduce acoustic interference from background noise and overlapping signals from heterospecifics. Such behavioural acoustic niche partitioning may occur especially among closely related species due to their ecological similarities. In this study, we recorded bird sounds in a subtropical forest in China in May–June 2019 and detected seven cuckoo species. Extracting characteristics of the cuckoo calls, we found that only four of the 21 pairs of species overlapped in frequency range, and 19 pairs were classified accurately using a linear discriminant analysis classifier based on their features. The remaining two species pairs could be separated based on temporal or spatial distribution patterns. We also analysed the temporal distribution patterns and overlap time of the calls, finding that the seven species exhibit partitioning in at least one of three acoustic dimensions (site, frequency, activity time). We conclude that the seven sympatric cuckoo species were strongly partitioned in acoustic signal space and minimally masked each other's signals.  相似文献   

10.
Natural ecosystems are shaped along two fundamental axes, space and time, but how biodiversity is partitioned along both axes is not well understood. Here, we show that the relationship between temporal and spatial biodiversity patterns can vary predictably according to habitat characteristics. By quantifying seasonal and annual changes in larval dragonfly communities across a natural predation gradient we demonstrate that variation in the identity of top predator species is associated with systematic differences in spatio‐temporal β‐diversity patterns, leading to consistent differences in relative partitioning of biodiversity between time and space across habitats. As the size of top predators increased (from invertebrates to fish) habitats showed lower species turnover across sites and years, but relatively larger seasonal turnover within a site, which ultimately shifted the relative partitioning of biodiversity across time and space. These results extend community assembly theory by identifying common mechanisms that link spatial and temporal patterns of βdiversity.  相似文献   

11.
S. de Juan  J. Hewitt 《Ecography》2014,37(2):183-190
Understanding changes in estuarine benthic communities has important implications for conservation and yet it is a challenge due to the high natural variability of these systems. We addressed this challenge through the study of temporal and spatial patterns of species richness in an intertidal benthic community in New Zealand North Island. Five different locations within the estuary were monitored seasonally over 12 yr. This data set allowed the study of species–time–area relationships (STAR) and the delineation of patterns in species richness, heterogeneity and turnover in space and time. The site with the highest species richness also had the highest within‐site heterogeneity in species richness, a high number of species occurring infrequently in time, the lowest mud content and the most variable wave climate. Similarities and differences between sites were generally maintained over time, although seasonal and multi‐year patterns in species richness occurred at all sites. The STAR showed a significant negative interaction between space and time, with species accumulation rates in space and time being equivalent at 4 spatial replicates (250 m2) and 2 temporal replicates (6 months). The lowest source of variability in species turnover was within site, and the highest source was over years. This was reflected in the lack of an asymptotic relationship in the species accumulation curve despite the 12 yr of monitoring. These results contribute to the knowledge of the variability in diversity patterns in estuaries and have important implications for long‐term monitoring of natural communities and the estimation of diversity for conservation.  相似文献   

12.
The movements of a commercially important species, Diplodus vulgaris, were assessed in a marine-protected area to test whether their spatial and temporal activity patterns differ during and outside of their spawning season. Twelve adults were caught along the north-eastern coast of a small Mediterranean island, tagged with acoustic transmitters and released within or just outside the integral reserve. Fish detected, during both the seasons showed strong fidelity for the study area before and during the spawning season and their home range did not differ between seasons. Home ranges reached an asymptote between 12 and 174 days after release. Home range estimated by kernel utilization distributions ranged from 9,876 to 89,914 m2, with core areas of 946 to 7,274 m2. Temporal patterns frequently showed a dominant diel rhythm with most of detections occurring at daytime, independently of season. The variability in the movement patterns of D. vulgaris was lower between seasons (i.e., during and outside the spawning season) than at smaller temporal scale (i.e., between day and night) and was largely affected by inter-individual differences. Some conclusions arising from this and previous findings are useful to orient future studies on coastal fish movement and have direct implications for MPAs design.  相似文献   

13.
Understanding niche partitioning of closely related sympatric species is a fundamental goal in ecology. Acoustic communication space can be considered a resource, and the acoustic niche hypothesis posits that competition between species may lead to partitioning of communication space. Here, we compare the calling behavior of two sympatric Bornean hornbill species—the rhinoceros hornbill (Buceros rhinoceros) and the helmeted hornbill (Rhinoplax vigil)—to test for evidence of acoustic niche partitioning. Both hornbill species emit calls heard over many kilometers and have similar habitat preferences which is predicted to result in interspecific competition. We collected acoustic data on sympatric populations of both hornbill species using 10 autonomous recording units in Danum Valley Conservation Area, Sabah, Malaysia. We found that there was substantial spectral overlap between the calls of the two species, indicating the potential for competition for acoustic space. To test for evidence of acoustic niche partitioning, we investigated spatial and temporal patterns of calling in each species. Both hornbills were strictly diurnal and called throughout the day, and we were equally likely to detect both species at each of our recorders. We did not find evidence of temporal acoustic avoidance at a relatively coarse timescale when we divided our dataset into 1 h bins, but we did find evidence of temporal acoustic avoidance at a finer timescale when we used null models to compare the observed duration of overlapping calls to the expected amount of overlap due to chance.  相似文献   

14.
Behavioural aspects of many species may change through their ontogenetic trajectory. Mature males of the lizard Lacerta monticola present two types of colour phase, with bright green males being older, larger and more dominant than dull brown males. We hypothesized those ontogenetic differences in males’ competitive ability may lead to differences in spatio‐temporal tactics. In a field study, we did not find differences in the size of the home ranges or core areas of green and brown males. However, after controlling for size, green males had more exclusive areas than brown males. Green males also had higher levels of conspicuous activities than brown males. Green and brown males had different spatio‐temporal tactics within the day; green males used their home ranges more, were more active and had a higher degree of overlap with other males in the morning than in the afternoon. Brown males did not show these variations through the day. Green males participated in, and won more intrasexual agonistic interactions. Also, green males overlapped more extensively with areas of potential mates, and guarded females more often than brown males. These behavioural differences between males showed plasticity through ontogeny in the use of space, time and types of activity.  相似文献   

15.
Many species of bird recognize acoustic and visual cues given by their predators and have complex defence adaptations to reduce predation risk. Recognition of threats posed by specific predators and specialized anti‐predation behaviours are common. In this study we investigated predator recognition and anti‐predation behaviours in a pelagic seabird, Leach's Storm‐petrel Oceanodroma leucorhoa, at a site where predation risk from Great Skuas Stercorarius skua is exceptionally high. Leach's Storm‐petrels breed in burrows and come on land only at night. Counter‐predator adaptations were investigated correlatively in relation to changing natural light levels at night, and experimentally in relation to nocturnal visual and acoustic signals from Great Skuas. Colony attendance by Leach's Storm‐petrels was attuned to changes in light conditions at night and was highest when nights were darkest. This behaviour is likely to reduce predation risk on land; however, specific recognition of Great Skuas and specialized defence behaviours were not found. Leach's Storm‐petrels, in particular apparently non‐breeding individuals, were entirely naïve to the threat posed by Great Skuas and were captured easily in a variety of different ways, on the ground and in the air. Lack of specialized behavioural adaptations in Leach's Storm‐petrels against Great Skuas may be because spatial overlap of breeding distributions of these species appears to be a rare and recent phenomenon.  相似文献   

16.
Conservation of species should be based on knowledge of effective population sizes and understanding of how breeding tactics and selection of recruitment habitats lead to genetic structuring. In the stream‐spawning and genetically diverse brown trout, spawning and rearing areas may be restricted source habitats. Spatio–temporal genetic variability patterns were studied in brown trout occupying three lakes characterized by restricted stream habitat but high recruitment levels. This suggested non‐typical lake‐spawning, potentially representing additional spatio–temporal genetic variation in continuous habitats. Three years of sampling documented presence of young‐of‐the‐year cohorts in littoral lake areas with groundwater inflow, confirming lake‐spawning trout in all three lakes. Nine microsatellite markers assayed across 901 young‐of‐the‐year individuals indicated overall substantial genetic differentiation in space and time. Nested gene diversity analyses revealed highly significant (≤P = 0.002) differentiation on all hierarchical levels, represented by regional lakes (FLT = 0.281), stream vs. lake habitat within regional lakes (FHL = 0.045), sample site within habitats (FSH = 0.010), and cohorts within sample sites (FCS = 0.016). Genetic structuring was, however, different among lakes. It was more pronounced in a natural lake, which exhibited temporally stable structuring both between two lake‐spawning populations and between lake‐ and stream spawners. Hence, it is demonstrated that lake‐spawning brown trout form genetically distinct populations and may significantly contribute to genetic diversity. In another lake, differentiation was substantial between stream‐ and lake‐spawning populations but not within habitat. In the third lake, there was less apparent spatial or temporal genetic structuring. Calculation of effective population sizes suggested small spawning populations in general, both within streams and lakes, and indicates that the presence of lake‐spawning populations tended to reduce genetic drift in the total (meta‐) population of the lake.  相似文献   

17.
Urbanization results in widespread habitat loss and fragmentation and generally has a negative impact upon native wildlife, in particular ground‐dwelling mammals. The northern brown bandicoot (Isoodon macrourus; Marsupialia: Peramelidae) is one of relatively few native Australian ground‐dwelling mammals that is able to survive within urbanized landscapes. As a consequence of extensive clearing and urban development within the city of Brisbane, bandicoots are now restricted to the mostly small (<10 ha) bushland fragments scattered across the city landscape. Our study examined the behavioural ecology of northern brown bandicoots within habitat fragments located on a major creek‐line, using mark‐recapture population monitoring and radio telemetry. Bandicoots at monitored sites were found to occur at high densities (typically one individual ha?1), although one‐third of the populations were transient. Radio tracking revealed that bandicoots had relatively small home ranges (mean 1.5 ± 0.2 ha) comprised largely of bushland/grassland with dense, often weed‐infested ground cover. Bandicoots sheltered by day in these densely covered areas and also spent most time foraging there at night, although they occasionally ventured small distances to forage in adjacent maintained parklands and residential lawns. We suggest that introduced tall grasses and other weeds contribute to high habitat quality within riparian habitat fragments and facilitate the persistence of high density populations, comprised of individuals with small home ranges. The generalized dietary and habitat requirements of northern brown bandicoots, as well as a high reproductive output, undoubtedly facilitate the survival of the species in urban habitat fragments. Further research is required on other native mammal species in urbanized landscapes to gain a greater understanding of how best to conserve wildlife in these heavily modified environments.  相似文献   

18.
The structure of intertidal benthic diatoms assemblages in the Tagus estuary was investigated during a 2‐year survey, carried out in six stations with different sediment texture. Nonparametric multivariate analyses were used to characterize spatial and temporal patterns of the assemblages and to link them to the measured environmental variables. In addition, diversity and other features related to community physiognomy, such as size‐class or life‐form distributions, were used to describe the diatom assemblages. A total of 183 diatom taxa were identified during cell counts and their biovolume was determined. Differences between stations (analysis of similarity (ANOSIM), = 0.932) were more evident than temporal patterns (= 0.308) and mud content alone was the environmental variable most correlated to the biotic data (BEST, ρ = 0.863). Mudflat stations were typically colonized by low diversity diatom assemblages (H′ ~ 1.9), mainly composed of medium‐sized motile epipelic species (250–1,000 μm3), that showed species‐specific seasonal blooms (e.g., Navicula gregaria Donkin). Sandy stations had more complex and diverse diatom assemblages (H′ ~ 3.2). They were mostly composed by a large set of minute epipsammic species (<250 μm3) that, generally, did not show temporal patterns. The structure of intertidal diatom assemblages was largely defined by the interplay between epipelon and epipsammon, and its diversity was explained within the framework of the Intermediate Disturbance Hypothesis. However, the spatial distribution of epipelic and epipsammic life‐forms showed that the definition of both functional groups should not be over‐simplified.  相似文献   

19.
Hampton SE 《Oecologia》2004,138(3):475-484
Environmental heterogeneity can promote coexistence of conflicting species by providing spatial or temporal refuges from strong interactions (e.g., intraguild predation, competition). However, in many systems, refuge availability and effectiveness may change through time and space because of variability in habitat use by either species. Here I consider how the intensity of intraguild predation risk varies from day to night for aquatic insects that use both vegetated and open water habitats. Large (1,265 l) and small (42 l) mesocosms were used to test the hypothesis that Buenoa would choose an open-water habitat that minimized predation by the ambush predator Notonecta during the day, but that at night Buenoa would safely use both vegetated and open water. Regardless of container size, Notonecta remained in vegetated water during the day and exploited both habitats at night, despite exhibiting greatest instantaneous predation rates in open water during the day. In contrast, Buenoa maintained an even distribution throughout the mesocosms during day and night, even though habitat-specific predation risks were fivefold lower in open waters than in vegetation during the day and habitat-specific predation risk would have been reduced threefold by fully exploiting open waters. Thus, temporal heterogeneity was both beneficial and detrimental to Buenoa; darkness of night reduced predation, but spatial refuges also disappeared. Together, these patterns suggest that while environmental heterogeneity can dampen intense biotic interactions, enemies do not select habitats solely on the basis of conflict avoidance. Instead, it appears that habitat-specific variation in other biotic (e.g., visual predators) or physical factors (e.g., UV radiation) may also mediate species interactions by influencing habitat selection.  相似文献   

20.
Carabid beetles form rich and abundant communities in arable landscapes. Their generalist feeding behaviour and similar environmental requirements raise questions about the mechanisms allowing the coexistence of such species‐rich assemblages. We hypothesized that subtle niche partitioning comes into play on spatial, temporal, or trophic basis. To test this, we performed experiments and made observations on the behaviour of two sympatric carabid species of similar size and life cycle, Bembidion quadrimaculatum L. and Phyla obtusa Audinet‐Serville (both Coleoptera: Carabidae: Bembidiini). We compared plant climbing behaviour, daily activity patterns, and trophic preferences between the two carabid species under laboratory conditions. Whereas no clear difference in trophic preference was observed, our results suggest temporal niche differentiation at the nychthemeron scale (a period of 24 consecutive hours), with one of the species being more diurnal and the other more nocturnal, and spatial differentiation in their habitat use at the plant stratum scale. Intra‐specific variation suggests that micro‐scale spatio‐temporal niche differentiation could be mediated by behavioural plasticity in these two carabid species. We speculate that such behavioural plasticity may provide carabid beetles with a high adaptive potential in intensively managed agricultural areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号