首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human homolog of the yeast DNA repair protein RAD23, hHR23A, has been found previously to interact with the human immunodeficiency virus, type 1 accessory protein Vpr. hHR23A is a modular protein containing an N-terminal ubiquitin-like (UBL) domain and two ubiquitin-associated domains (UBA1 and UBA2) separated by a xeroderma pigmentosum complementation group C binding (XPCB) domain. All domains are connected by flexible linkers. hHR23A binds ubiquitinated proteins and acts as a shuttling factor to the proteasome. Here, we show that hHR23A utilizes both the UBA2 and XPCB domains to form a stable complex with Vpr, linking Vpr directly to cellular DNA repair pathways and their probable exploitation by the virus. Detailed structural mapping of the Vpr contacts on hHR23A, by NMR, revealed substantial contact surfaces on the UBA2 and XPCB domains. In addition, Vpr binding disrupts an intramolecular UBL-UBA2 interaction. We also show that Lys-48-linked di-ubiquitin, when binding to UBA1, does not release the bound Vpr from the hHR23A-Vpr complex. Instead, a ternary hHR23A·Vpr·di-UbK48 complex is formed, indicating that Vpr does not necessarily abolish hHR23A-mediated shuttling to the proteasome.  相似文献   

2.
Ubiquitin-associated (UBA) domains are small protein domains that occur in the context of larger proteins and are likely to function as inter- and intramolecular communication elements in ubiquitin/polyubiquitin signaling. Although monoubiquitin/UBA complexes are well characterized, much less is known about UBA/polyubiquitin complexes, even though polyubiquitin chains are believed to be biologically relevant ligands of many UBA domain proteins. Here, we report the results of a quantitative study of the interaction of K48-linked polyubiquitin chains with UBA domains of the DNA repair/proteolysis protein HHR23A, using surface plasmon resonance and other approaches. We present evidence that the UBL domain of HHR23A negatively regulates polyubiquitin/UBA interactions and identify leucine 8 of ubiquitin as an important determinant of chain recognition. A striking relationship between binding affinity and chain length suggests that maximum affinity is associated with a conformational feature that is fully formed in chains of n = 4-6 and can be recognized by a single UBA domain of HHR23A. Our findings provide new insights into polyubiquitin chain recognition and set the stage for future structural investigations of UBA/polyubiquitin complexes.  相似文献   

3.
Riera M  Redko Y  Leung J 《FEBS letters》2006,580(17):4160-4165
The Arabidopsis thaliana RNA binding protein UBA2a is the closest homologue of the Vicia faba AKIP1 (56% identity). Like AKIP1, UBA2a is a constitutively-expressed nuclear protein and in response to ABA it is also reorganized within the nucleus in "speckles" suggesting a possible role of this protein in the regulation of mRNA metabolism during ABA signaling. AKIP1 interacts with, and is phosphorylated by, the upstream ABA-activated protein kinase AAPK. We have investigated if a pathway similar to that described in Vicia faba also exists in Arabidopsis. Our results showed that despite the resemblance between the corresponding Vicia and Arabidopsis proteins, it appears that the function of UBA2a is independent of OST1 phosphorylation.  相似文献   

4.
Monoubiquitination is a general mechanism for downregulating the activity of cell surface receptors by consigning these proteins for lysosome-mediated degradation through the endocytic pathway. The yeast Ede1 protein functions at the internalization step of endocytosis and binds monoubiquitinated proteins through a ubiquitin associated (UBA) domain. UBA domains are found in a broad range of cellular proteins but previous studies have suggested that the mode of ubiquitin recognition might not be universally conserved. Here we present the solution structure of the Ede1 UBA domain in complex with monoubiquitin. The Ede1 UBA domain forms a three-helix bundle structure and binds ubiquitin through a largely hydrophobic surface in a manner reminiscent of the Dsk2 UBA and the remotely homologous Cue2 CUE domains, for which high-resolution structures have been described. However, the interaction is dissimilar to the molecular models proposed for the hHR23A UBA domains bound to either monoubiquitin or Lys48-linked diubiquitin. Our mutational analyses of the Ede1 UBA domain-ubiquitin interaction reveal several key affinity determinants and, unexpectedly, a negative affinity determinant in the wild-type Ede1 protein, implying that high-affinity interactions may not be the sole criterion for optimal function of monoubiquitin-binding endocytic proteins.  相似文献   

5.
The ubiquitin (Ub)/26S proteasome system (UPS) directs the turnover of numerous regulatory proteins, thereby exerting control over many aspects of plant growth, development, and survival. The UPS is directed in part by a group of Ub-like/Ub-associated (UBL/UBA) proteins that help shuttle ubiquitylated proteins to the 26S proteasome for breakdown. Here, we describe the collection of UBL/UBA proteins in Arabidopsis thaliana, including four isoforms that comprise the RADIATION SENSITIVE23 (RAD23) family. The nuclear-enriched RAD23 proteins bind Ub conjugates, especially those linked internally through Lys-48, via their UBA domains, and associate with the 26S proteasome Ub receptor RPN10 via their N-terminal UBL domains. Whereas homozygous mutants individually affecting the four RAD23 genes are without phenotypic consequences (rad23a, rad23c, and rad23d) or induce mild phyllotaxy and sterility defects (rad23b), higher-order mutant combinations generate severely dwarfed plants, with the quadruple mutant displaying reproductive lethality. Both the synergistic effects of a rad23b-1 rpn10-1 combination and the response of rad23b plants to mitomycin C suggest that RAD23b regulates cell division. Taken together, RAD23 proteins appear to play an essential role in the cell cycle, morphology, and fertility of plants through their delivery of UPS substrates to the 26S proteasome.  相似文献   

6.
Rad23 is a highly conserved protein involved in nucleotide excision repair (NER) that associates with the proteasome via its N-terminus. Its C-terminal ubiquitin-associated (UBA) domain is evolutionarily conserved from yeast to humans. However, the cellular function of UBA domains is not completely understood. Recently, RAD23 and DDI1, both DNA damage-inducible genes encoding proteins with UBA domains, were implicated genetically in Pds1-dependent mitotic control in yeast. The UBA domains of RAD23 and DDI1 are required for these interactions. Timely degradation of Pds1 via the ubiquitin/proteasome pathway allows anaphase onset and is crucial for chromosome maintenance. Here, we show that Rad23 and Ddi1 interact directly with ubiquitin and that this interaction is dependent on their UBA domains, providing a possible mechanism for UBA-dependent cell cycle control. Moreover, we show that a hydrophobic surface on the UBA domain, which from structural work had been predicted to be a protein-protein interaction interface, is indeed required for ubiquitin binding. By demonstrating that UBA domains interact with ubiquitin, we have provided the first indication of a cellular function for the UBA domain.  相似文献   

7.
8.
Fas-associated factor 1 (FAF1) is a ubiquitin receptor containing multiple ubiquitin-related domains including ubiquitin-associated (UBA), ubiquitin-like (UBL) 1, UBL2, and ubiquitin regulatory X (UBX). We previously showed that N-terminal UBA domain recognizes Lys48-ubiquitin linkage to recruit polyubiquitinated proteins and that a C-terminal UBX domain interacts with valosin-containing protein (VCP). This study shows that FAF1 interacts only with VCP complexed with Npl4-Ufd1 heterodimer, a requirement for the recruitment of polyubiquitinated proteins to UBA domain. Intriguingly, VCP association to C-terminal UBX domain regulates ubiquitin binding to N-terminal UBA domain without direct interaction between UBA and UBX domains. These interactions are well characterized by structural and biochemical analysis. VCP-Npl4-Ufd1 complex is known as the machinery required for endoplasmic reticulum-associated degradation. We demonstrate here that FAF1 binds to VCP-Npl4-Ufd1 complex via UBX domain and polyubiquitinated proteins via UBA domain to promote endoplasmic reticulum-associated degradation.  相似文献   

9.
hHR23B is the human homologue of the yeast protein RAD23 and is known to participate in DNA repair by stabilizing xeroderma pigmentosum group C protein. However, hHR23B and RAD23 also have many important functions related to general proteolysis. hHR23B consists of N-terminal ubiquitin-like (UbL), ubiquitin association 1 (UBA1), xeroderma pigmentosum group C binding, and UBA2 domains. The UBA domains interact with ubiquitin (Ub) and inhibit the assembly of polyubiquitin. On the other hand, the UbL domain interacts with the poly-Ub binding site 2 (PUbS2) domain of the S5a protein, which can carry polyubiquitinated substrates into the proteasome. We calculated the NMR structure of the UbL domain of hHR23B and determined binding surfaces of UbL and Ub to UBA1, UBA2, of hHR23B and PUbS2 of S5a by using chemical shift perturbation. Interestingly, the surfaces of UbL and Ub that bind to UBA1, UBA2, and PUbS2 are similar, consisting of five beta-strands and their connecting loops. This is the first report that an intramolecular interaction between UbL and UBA domains is possible, and this interaction could be important for the control of proteolysis by hHR23B. The binding specificities of UbL and Ub for PUbS1, PUbS2, and general ubiquitin-interacting motifs, which share the LALA motif, were evaluated. The UBA domains bind to the surface of Ub including Lys-48, which is required for multiubiquitin assembly, possibly explaining the observed inhibition of multiubiquitination by hHR23B. The UBA domains bind to UbL through electrostatic interactions supported by hydrophobic interactions and to Ub mainly through hydrophobic interactions supported by electrostatic interactions.  相似文献   

10.
11.
Ubiquitin-like (UBL)–ubiquitin-associated (UBA) proteins, including Dsk2 and Rad23, act as delivery factors that target polyubiquitinated substrates to the proteasome. We report here that the Dsk2 UBL domain is ubiquitinated in yeast cells and that Dsk2 ubiquitination of the UBL domain is involved in Dsk2 stability, depending on the Dsk2 UBA domain. Also, Dsk2 lacking ubiquitin chains impaired ubiquitin-dependent protein degradation and decreased the interaction of Dsk2 with polyubiquitinated proteins in cells. Moreover, Dsk2 ubiquitination affected ability to restore the temperature-sensitive growth defect of dsk2Δ. These results indicate that ubiquitination in the UBL domain of Dsk2 has in vivo functions in the ubiquitin–proteasome pathway in yeast.  相似文献   

12.
Budding yeast Dsk2 is a family of UbL-UBA proteins that can interact with both polyubiquitin and the proteasome, and is thereby thought to function as a shuttle protein in the ubiquitin-proteasome pathway. Here we show that Dsk2 can homodimerize via its C-terminal UBA domain in the absence of ubiquitin. Dsk2 mutants defective in the UBA domain do not dimerize and do not bind polyubiquitin. The expression of Dsk2 UBA mutants fails to restore the growth defect caused by DSK2 disruption although that of wild-type Dsk2 can restore the defect. These results suggest that Dsk2 homodimerization via the UBA domain plays a role in regulating polyubiquitin binding in the ubiquitin-proteasome pathway.  相似文献   

13.
(Macro)autophagy encompasses both an unselective, bulk degradation of cytoplasmic contents as well as selective autophagy of damaged organelles, intracellular microbes, protein aggregates, cellular structures and specific soluble proteins. Selective autophagy is mediated by autophagic adapters, like p62/SQSTM1 and NBR1. p62 and NBR1 are themselves selective autophagy substrates, but they also act as cargo receptors for degradation of other substrates. Surprisingly, we found that homologs of NBR1 are distributed throughout the eukaryotic kingdom, while p62 is confined to the metazoans. As a representative of all organisms having only an NBR1 homolog we studied Arabidopsis thaliana NBR1 (AtNBR1) in more detail. AtNBR1 is more similar to mammalian NBR1 than to p62 in domain architecture and amino acid sequence. However, similar to p62, AtNBR1 homo-polymerizes via the PB1 domain. Hence, AtNBR1 has hybrid properties of mammalian NBR1 and p62. AtNBR1 has 2 UBA domains, but only the C-terminal UBA domain bound ubiquitin. AtNBR1 bound AtATG8 through a conserved LIR (LC3-interacting region) motif and required co-expression of AtATG8 or human GABARAPL2 to be recognized as an autophagic substrate in HeLa cells. To monitor the autophagic sequestration of AtNBR1 in Arabidopsis we made transgenic plants expressing AtNBR1 fused to a pH-sensitive fluorescent tag, a tandem fusion of the red, acid-insensitive mCherry and the acid-sensitive yellow fluorescent proteins. This strategy allowed us to show that AtNBR1 is an autophagy substrate degraded in the vacuole dependent on the polymerization property of the PB1 domain and of expression of AtATG7. A functional LIR was required for vacuolar import.  相似文献   

14.
Ubiquitin receptor proteins play an important role in delivering ubiquitylated protein substrates to the proteasome for degradation. HHR23a and hPLIC2 are two such ubiquitin receptors that contain ubiquitin-like (UBL) domains, which interact with the proteasome, and ubiquitin-associated (UBA) domains, which interact with ubiquitin. Depending on their abundance UBL/UBA family members can either promote or inhibit the degradation of other proteins, which suggests their participation in the delivery of substrates to the proteasome is highly regulated. In previous work, we determined UBL/UBA domain interactions to promote intramolecular interactions in hHR23a that are abrogated with the addition of either ubiquitin or the proteasome component S5a. In yeast, we determined the hHR23a ortholog (Rad23) to interact with another UBL/UBA family member (Ddi1) and to bind a common tetraubiquitin chain. Here, we use NMR spectroscopy to reveal that hHR23a interacts with hPLIC2 via UBL/UBA domain interactions and to map their binding surfaces. In addition, we demonstrate that these two proteins associate in mammalian cells. Intriguingly, inhibition of the proteasome mitigates hHR23a/hPLIC2 interaction.  相似文献   

15.
The ubiquitin pathway is required for innate immunity in Arabidopsis   总被引:1,自引:0,他引:1  
Plant defences require a multitude of tightly regulated resistance responses. In Arabidopsis, the unique gain-of-function mutant suppressor of npr1-1 constitutive 1 ( snc1 ) carries a point mutation in a Resistance ( R )-gene, resulting in constitutive activation of defence responses without interaction with pathogens. This has allowed us to identify various downstream signalling components essential in multiple defence pathways. One mutant that suppresses snc1 -mediated constitutive resistance is modifier of snc1 5 ( mos5 ), which carries a 15-bp deletion in UBA1 , one of two ubiquitin-activating enzyme genes in Arabidopsis. A mutation in UBA2 does not suppress snc1 , suggesting that these two genes are not equally required in Arabidopsis disease resistance. On the other hand, a mos5 uba2 double mutant is lethal, implying partial redundancy of the two homologues. Apart from affecting snc1 -mediated resistance, mos5 also exhibits enhanced disease susceptibility to a virulent pathogen and is impaired in response to infection with avirulent bacteria carrying the protease elicitor AvrRpt2. The mos5 mutation in the C-terminus of UBA1 might affect binding affinity of the downstream ubiquitin-conjugating enzymes, thus perturbing ubiquitination of target proteins. Furthermore, SGT1b and RAR1, which are necessary for resistance conferred by the SNC1 -related R -genes RPP4 and RPP5 , are dispensable in snc1 -mediated resistance. Our data reveal the definite requirement for the ubiquitination pathway in the activation and downstream signalling of several R-proteins.  相似文献   

16.
17.
The ubiquitin-proteasome pathway is essential throughout the life cycle of a cell. This system employs an astounding number of proteins to ubiquitylate and to deliver protein substrates to the proteasome for their degradation. At the heart of this process is the large and growing family of ubiquitin receptor proteins. Within this family is an intensely studied group that contains both ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains: Rad23, Ddi1 and Dsk2. Although UBL/UBA family members are reported to regulate the degradation of other proteins, their individual roles in ubiquitin-mediated protein degradation has proven difficult to resolve due to their overlapping functional roles and interaction with each other and other ubiquitin family members. Here, we use a combination of NMR spectroscopy and molecular biology to reveal that Rad23 and Ddi1 interact with each other by using UBL/UBA domain interactions in a manner that does not preclude their interaction with ubiquitin. We demonstrate that UBL/UBA proteins can bind a common tetraubiquitin molecule and thereby provide strong evidence for a model in which chains adopt an opened structure to bind multiple receptor proteins. Altogether our results suggest a mechanism through which UBL/UBA proteins could protect chains from premature de-ubiquitylation and unnecessary elongation during their transit to the proteasome.  相似文献   

18.
p62/SQSTM1/A170 is a multimodular protein that is found in ubiquitin-positive inclusions associated with neurodegenerative diseases. Recent findings indicate that p62 mediates the interaction between ubiquitinated proteins and autophagosomes, leading these proteins to be degraded via the autophagy-lysosomal pathway. This ubiquitin-mediated selective autophagy is thought to begin with recognition of the ubiquitinated proteins by the C-terminal ubiquitin-associated (UBA) domain of p62. We present here the crystal structure of the UBA domain of mouse p62 and the solution structure of its ubiquitin-bound form. The p62 UBA domain adopts a novel dimeric structure in crystals, which is distinctive from those of other UBA domains. NMR analyses reveal that in solution the domain exists in equilibrium between the dimer and monomer forms, and binding ubiquitin shifts the equilibrium toward the monomer to form a 1:1 complex between the UBA domain and ubiquitin. The dimer-to-monomer transition is associated with a structural change of the very C-terminal end of the p62 UBA domain, although the UBA fold itself is essentially maintained. Our data illustrate that dimerization and ubiquitin binding of the p62 UBA domain are incompatible with each other. These observations reveal an autoinhibitory mechanism in the p62 UBA domain and suggest that autoinhibition plays a role in the function of p62.  相似文献   

19.
20.
Post‐translational modification with ubiquitin is one of the most important mechanisms in the regulation of protein stability and function. However, the high reversibility of this modification is the main obstacle for the isolation and characterization of ubiquitylated proteins. To overcome this problem, we have developed tandem‐repeated ubiquitin‐binding entities (TUBEs) based on ubiquitin‐associated (UBA) domains. TUBEs recognize tetra‐ubiquitin with a markedly higher affinity than single UBA domains, allowing poly‐ubiquitylated proteins to be efficiently purified from cell extracts in native conditions. More significant is the fact that TUBEs protect poly‐ubiquitin‐conjugated proteins, such as p53 and IκBα, both from proteasomal degradation and de‐ubiquitylating activity present in cell extracts, as well as from existing proteasome and cysteine protease inhibitors. Therefore, these new ‘molecular traps’ should become valuable tools for purifying endogenous poly‐ubiquitylated proteins, thus contributing to a better characterization of many essential functions regulated by these post‐translational modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号