首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Queens of many social insect species are known to maintain reproductive monopoly by pheromonal signalling of fecundity. Queens of the primitively eusocial wasp Ropalidia marginata appear to do so using secretions from their Dufour’s glands, whose hydrocarbon composition is correlated with fertility. Solitary nest foundresses of R. marginata are without nestmates; hence expressing a queen signal can be redundant, since there is no one to receive the signal. But if queen pheromone is an honest signal inextricably linked with fertility, it should correlate with fertility and be expressed irrespective of the presence or absence of receivers of the signal, by virtue of being a byproduct of the state of fertility. Hence we compared the Dufour’s gland hydrocarbons and ovaries of solitary foundresses with queens and workers of post-emergence nests. Our results suggest that queen pheromone composition in R. marginata is a byproduct of fertility and hence can honestly signal fertility. This provides important new evidence for the honest signalling hypothesis.  相似文献   

2.
Queens of primitively eusocial wasps generally have active and behaviourally dominant queens who use physical aggression to suppress worker reproduction. Although a Ropalidia marginata queen is strikingly docile and behaviourally non-dominant, she is completely successful in maintaining reproductive monopoly. R. marginata queens must achieve such reproductive monopoly by some means other than overt physical aggression. Upon loss or removal of the queen, one of the workers (referred to as the potential queen) becomes extremely aggressive and will eventually go on to become the next queen of the colony, if the original queen is not returned. The fact that potential queens are not discernible in the presence of the queen but become obvious within minutes after removal of the queen raises the question of how workers in general and the potential queens in particular, perceive the presence or absence of their queens. Here, we have conducted experiments in which we separate half of the workers from their queen by a wire mesh screen and study their behavioural response to such separation. We demonstrate that the presence of the queen is not perceived across the wire mesh screen, which suggests that if the queen uses a pheromone to signal her presence, then that pheromone is not very volatile.  相似文献   

3.
Queens of the primitively eusocial wasp Ropalidia marginata appear to maintain reproductive monopoly through pheromone rather than through physical aggression. Upon queen removal, one of the workers (potential queen, PQ) becomes extremely aggressive but drops her aggression immediately upon returning the queen. If the queen is not returned, the PQ gradually drops her aggression and becomes the next queen of the colony. In a previous study, the Dufour's gland was found to be at least one source of the queen pheromone. Queen-worker classification could be done with 100% accuracy in a discriminant analysis, using the compositions of their respective Dufour's glands. In a bioassay, the PQ dropped her aggression in response to the queen's Dufour's gland macerate, suggesting that the queen's Dufour's gland contents mimicked the queen herself. In the present study, we found that the PQ also dropped her aggression in response to the macerate of a foreign queen's Dufour's gland. This suggests that the queen signal is perceived across colonies. This also suggests that the Dufour's gland in R. marginata does not contain information about nestmateship, because queens are attacked when introduced into foreign colonies, and hence PQ is not expected to reduce her aggression in response to a foreign queen's signal. The latter conclusion is especially significant because the Dufour's gland chemicals are adequate to classify individuals correctly not only on the basis of fertility status (queen versus worker) but also according to their colony membership, using discriminant analysis. This leads to the additional conclusion (and precaution) that the ability to statistically discriminate organisms using their chemical profiles does not necessarily imply that the organisms themselves can make such discrimination.  相似文献   

4.
Queens of the primitively eusocial wasp Ropalidia marginata are behaviourally docile and maintain their reproductive monopoly by rubbing their abdomen and applying a pheromone to the nest surface. We argued that the queen should be overthrown if she is prevented from applying her pheromone. To test this prediction we introduced the queen and her workers into a cage without the nest, thereby removing the substrate for pheromone application. Contrary to our expectation, queens maintained their status (in six out of seven experiments), by continuing to rub their abdomens (and presumably applying pheromone) to cage walls even in absence of the nest. Such attempts to apply pheromone to the cage are expected to be relatively inefficient as the surface area would be very large. Thus we found that the queens were aggressively challenged by the workers and they in turn reciprocated with aggression toward their workers. Such aggressive queen-worker interactions are almost nonexistent in natural colonies and were also not recorded in the control experiments (with nests present). Our results reinforce the idea that pheromone helps R. marginata queens maintain their status and more importantly, they also show that, if necessary, queens can also supplement the pheromone with physical aggression.  相似文献   

5.
Queens in primitively eusocial insect societies are morphologically indistinguishable from their workers, and occupy the highest position in the dominance hierarchy. Such queens are believed to use aggression to maintain worker activity and reproductive monopoly in the colony. However, in the primitively eusocial wasp Ropalidia marginata, the queen is a strikingly docile individual, who interacts rarely with her workers. If the queen is experimentally removed, one of the workers becomes extremely aggressive within minutes, and eventually becomes the new queen of the colony. We designate her as the potential queen. Experimental evidence suggests that the queen probably uses a non-volatile pheromone to signal her presence to her workers. Here we attempt to identify the mechanism by which the queen transmits information about her presence to the workers. We designate the time taken for the potential queen to realize the absence of the queen as the realization time and model the realization time as a function of the decay time of the queen's signal and the average signal age. We find that the realization time obtained from the model, considering only direct interactions (193.5 min) is too large compared to the experimentally observed value of 30 min. Hence we consider the possibility of signal transfer through relay. Using the Dijkstra's algorithm, we first establish the effectiveness of relay in such a system and then use experimental data to fit the model. We find that the realization time obtained from the model, considering relay (237.1 min) is also too large compared to the experimentally observed value of 30 min. We thus conclude that physical interactions, both direct and indirect (relay), are not sufficient to transfer the queen's signal in R. marginata. Finally, we discuss the possibility that the queen applies her pheromone on the nest material from where the workers can perceive it without having to physically interact with the queen.  相似文献   

6.
Unlike the queens of other primitively eusocial species, Ropalidia marginata queens are strikingly docile and non-aggressive individuals, never at the top of the behavioural dominance hierarchy of their colonies. Nevertheless, these queens are completely successful at suppressing worker reproduction, suggesting that they do not use aggression but employ some other mechanism (e.g. pheromones) to do so. Upon removal of the queen from a colony, a single worker, the 'potential queen', immediately begins to display highly elevated levels of aggression towards her nest mates. This individual becomes the next docile queen if the original queen is not returned. We attempt to understand the function of the temporary and amplified dominance behaviour displayed by the potential queen. We find that the dominance behaviour shown by the potential queen is unrelated to the number of her nest mates, their dominance ranks or ovarian condition. This suggests that aggression may not be used to actively suppress other workers and counter threat. Instead we find evidence that dominance behaviour is required for the potential queen's rapid ovarian development, facilitating her speedy establishment as the sole reproductive individual in the colony.  相似文献   

7.
Insect societies are hallmarks of cooperation because one or a few queens monopolize reproduction and several non-reproductive workers cooperatively raise brood. However, the loss of the queen exposes a colony to potential reproductive conflict, which is resolved only after a new queen takes over. We studied queen succession in natural and experimental colonies of the primitively eusocial wasp Ropalidia marginata to understand the proximate behavioral strategies involved in the resolution of this conflict. Previous work has shown that in this species, experimental queen removal always results in only one worker becoming hyper-aggressive and taking over the colony as its next queen, without ever being challenged. Here we show that even during natural queen turnover, one and only one worker becomes hyper-aggressive and takes over as the next queen, without being challenged. During natural queen turn-over, aggression of the successor may sometimes begin before the loss of the old queen and may sometimes decline more rapidly, unlike in the case of experimental queen removal. The successor begins to lay eggs sooner after a natural queen turn-over as compared to experimental queen removal. This is expected because workers might detect the gradual decline of the queen preceding her disappearance. Because queen succession is expected to be more prevalent in tropical perennial species, we expect natural selection to have favored such an orderly queen succession so that a route to direct fitness is available without significant reduction in cooperation.  相似文献   

8.
Hamilton's theory of inclusive fitness suggests that helpers in animal societies gain fitness indirectly by increasing the reproductive performance of a related beneficiary. Helpers in cooperatively breeding birds, mammals and primitively eusocial wasps may additionally obtain direct fitness through inheriting the nest or mating partner of the former reproductive. Here, we show that also workers of a highly eusocial ant may achieve considerable direct fitness by producing males in both queenless and queenright colonies. We investigated the reproductive success of workers of the ant Temnothorax crassispinus in nature and the laboratory by dissecting workers and determining the origin of males by microsatellite analysis. We show that workers are capable of activating their ovaries and successfully producing their sons independently of the presence of a queen. Genotypes revealed that at least one fifth of the males in natural queenright colonies were not offspring of the queen. Most worker‐produced males could be assigned to workers that were unrelated to the queen, suggesting egg‐laying by drifting workers.  相似文献   

9.
Pheromones mediate social interactions among individuals in a wide variety of species, from yeast to mammals. In social insects such as honey bees, pheromone communication systems can be extraordinarily complex and serve to coordinate behaviors among many individuals. One of the primary mediators of social behavior and organization in honey bee colonies is queen pheromone, which is produced by multiple glands. The types and quantities of chemicals produced differ significantly between virgin and mated queens, and recent studies have suggested that, in newly mated queens, insemination volume or quantity can affect pheromone production. Here, we examine the long-term impact of different factors involved during queen insemination on the chemical composition of the mandibular and Dufour''s glands, two of the major sources of queen pheromone. Our results demonstrate that carbon dioxide (an anesthetic used in instrumental insemination), physical manipulation of genital tract (presumably mimicking the act of copulation), insemination substance (saline vs. semen), and insemination volume (1 vs. 8 µl) all have long-term effects on mandibular gland chemical profiles. In contrast, Dufour''s gland chemical profiles were changed only upon insemination and were not influenced by exposure to carbon dioxide, manipulation, insemination substance or volume. These results suggest that the chemical contents of these two glands are regulated by different neuro-physiological mechanisms. Furthermore, workers responded differently to the different mandibular gland extracts in a choice assay. Although these studies must be validated in naturally mated queens of varying mating quality, our results suggest that while the chemical composition of Dufour''s gland is associated with mating status, that of the mandibular glands is associated with both mating status and insemination success. Thus, the queen appears to be signaling both status and reproductive quality to the workers, which may impact worker behavior and physiology as well as social organization and productivity of the colony.  相似文献   

10.
Ropalidia marginala, a tropical, primitively eusocial, polistinewasp, is unusual in that the queen (the sole egg-layer) is neitherthe most behaviorally dominant nor the most active individualin the colony. The queen by herself rarely ever initiates interactionstoward her nest mates or unloads returning foragers. There arealways a few workers in the colony who are more dominant andactive than the queen. Absence of the queen from her colonydoes not affect colony maintenance activities such as foragingor brood care, but it always results in one individual becomingvery aggressive and dominant. The dominant worker becomes thenext queen if the original queen does not return. The queendoes not appear to play any significant role in colony activityregulation. Instead, colony activities appear to be regulatedby several mechanisms including dominance behavior toward foragers,feeding of larvae, and the unloading of returning foragers,all mediated by workers themselves. Regulation of colony maintenanceappears to be based on direct evaluation of the needs of thecolony by the workers themselves. The queen however has perfectreproductive control over all workers; workers never lay eggsin the presence of the queen. It appears therefore that themechanisms involved in regulation of worker activity and workerreproduction are separate in R marginata. These findings contrastwith other primitively eusocial species where the queen actsas a "central pacemaker" and controls both worker activity andworker reproduction.  相似文献   

11.
A key feature of eusocial insects is their reproductive division of labour. The queen signals her fecundity to her potentially reproductive daughters via a pheromone, which renders them sterile. In contrast, solitary insects lack division in reproductive labour and there is no such social signalling or need for ovary‐regulating pheromones. Nonetheless, females from both non‐social and eusocial lineages are expected to regulate their ovaries to maximize inclusive lifetime reproductive success. It is not known, however, whether the underlying networks that regulate ovary activation are homologous between non‐social and eusocial taxa, especially when these taxa are phylogenetically distant. In this study, we provide evidence that solitary fruit flies may share a conserved ovary‐regulating pathway with a eusocial honey bee, Apis mellifera L. (Hymenoptera: Apidae). Specifically, we demonstrate that honey bee queen mandibular pheromone (QMP) inhibits fly ovaries in much the same way as it suppresses worker ovaries. Drosophila melanogaster Meigen (Diptera: Drosophilidae) exposed to sufficient doses of QMP showed a reduction in ovary size, produced fewer eggs, and generated fewer viable offspring, relative to unexposed controls. Drosophila melanogaster therefore responds to an interspecific social cue to which it would not normally be exposed. Although we cannot strictly rule out an incidental effect, this conspicuous response suggests that these two species may share an underlying mechanism for ovary regulation. Why a non‐social species of fly responds to a highly social bee's pheromone is not clear, but one possibility is that solitary and social insects share pathways associated with female reproduction, as predicted by the ‘groundplan’ hypothesis of social evolution.  相似文献   

12.
Ropalidia marginata is a primitively eusocial wasp widely distributed in peninsular India. Although solitary females found a small proportion of nests, the vast majority of new nests are founded by small groups of females. In such multiple foundress nests, a single dominant female functions as the queen and lays eggs, while the rest function as sterile workers and care for the queen''s brood. Previous attempts to understand the evolution of social behaviour and altruism in this species have employed inclusive fitness theory (kin selection) as a guiding framework. Although inclusive fitness theory is quite successful in explaining the high propensity of the wasps to found nests in groups, several features of their social organization suggest that forces other than kin selection may also have played a significant role in the evolution of this species. These features include lowering of genetic relatedness owing to polyandry and serial polygyny, nest foundation by unrelated individuals, acceptance of young non-nest-mates, a combination of well-developed nest-mate recognition and lack of intra-colony kin recognition, a combination of meek and docile queens and a decentralized self-organized work force, long reproductive queues with cryptic heir designates and conflict-free queen succession, all resulting in extreme intra-colony cooperation and inter-colony conflict.  相似文献   

13.
Unlike other primitively eusocial wasps, Ropalidia marginata colonies are usually headed by remarkably docile and behaviourally non-dominant queens who are nevertheless completely successful in maintaining reproductive monopoly. As in other species, loss of the queen results in one of the workers taking over as the next queen. But unlike in other species, here, the queen's successor cannot be predicted on the basis of dominance rank, other behaviours, age, body size or even ovarian development, in the presence of the former queen. But the swiftness with which one and only one individual becomes evident as the potential queen led us to suspect that there might be a designated successor to the queen known to the wasps, even though we cannot identify her in the queen's presence. Here, we present the results of experiments that support such a 'cryptic successor' hypothesis, and thereby lend credence to the idea that queen (and potential queen) pheromones act as honest signals of their fertility, in R. marginata.  相似文献   

14.
We examined how queens of the primitively eusocial wasp, Polistes fuscatus, stimulate foraging by workers in 10 small, post-worker-emergence field colonies. We experimentally increased colony needs, including needs of the brood, by removing a colony's most active foragers (thereby decreasing the colony's foraging rate), and found that the queen significantly increased both her level of activity and rate of aggressive interactions. Most aggressive interactions were directed at dominant workers. Removal of a colony's least active foragers, however, produced no such effect. Our results, together with those of Reeve & Gamboa (1983, 1987), indicate that queens are sensitive to brood needs, and that they behaviorally regulate worker foraging to match brood needs by increasing their level of activity and rate of aggressive interactions.  相似文献   

15.
The honeybee queen pheromones promote both worker sterility and worker-like pheromone composition; in their absence workers become fertile and express the queen pheromones. Which of the queen pheromones regulate worker pheromone expression and how, is still elusive. Here we investigated how two queen pheromones, the mandibular and Dufour’s, singly or combined, affect worker ovarian activation and occurrence of queen-like Dufour’s esters. Although queen mandibular pheromone (QMP) alone, or combined with Dufour’s secretion, inhibited to some extent worker reproduction, neither was as effective as the queen. The effect of the queen pheromones on worker pheromone expression was limited to workers with developed ovaries. Here too, QMP and Dufour’s combined had the greatest inhibitory effect. In contrast, treatment with Dufour’s alone resulted in augmentation of esters in the workers. This is another demonstration that a pheromone emitted by one individual affects the rates of its production in another individual. Ester production was tightly coupled to ovarian development. However fertile workers from queenright or QMP-treated colonies had significantly higher amounts of esters in their Dufour’s gland than untreated queenless colonies. The fact that the queen or QMP exert greater suppression on signal production than on ovary activation, suggests disparate regulatory pathways, and presents a challenging ultimate as well as proximate questions.  相似文献   

16.
The mandibular glands of queen honeybees produce a pheromone that modulates many aspects of worker honeybee physiology and behavior and is critical for colony social organization. The exact chemical blend produced by the queen differs between virgin and mated, laying queens. Here, we investigate the role of mating and reproductive state on queen pheromone production and worker responses. Virgin queens, naturally mated queens, and queens instrumentally inseminated with either semen or saline were collected 2 days after mating or insemination. Naturally mated queens had the most activated ovaries and the most distinct chemical profile in their mandibular glands. Instrumentally inseminated queens were intermediate between virgins and naturally mated queens for both ovary activation and chemical profiles. There were no significant differences between semen- and saline-inseminated queens. Workers were preferentially attracted to the mandibular gland extracts from queens with significantly more activated ovaries. These studies suggest that the queen pheromone blend is modulated by the reproductive status of the queens, and workers can detect these subtle differences and are more responsive to queens with higher reproductive potential. Furthermore, it appears as if insemination substance does not strongly affect physiological characteristics of honeybee queens 2 days after insemination, suggesting that the insemination process or volume is responsible for stimulating these early postmating changes in honeybee queens.  相似文献   

17.
Worker policing (mutual repression of reproduction) in the eusocial Hymenoptera represents a leading example of how coercion can facilitate cooperation. The occurrence of worker policing in “primitively” eusocial species with low mating frequencies, which lack relatedness differences conducive to policing, suggests that separate factors may underlie the origin and maintenance of worker policing. We tested this hypothesis by investigating conflict over male parentage in the primitively eusocial, monandrous bumblebee, Bombus terrestris. Using observations, experiments, and microsatellite genotyping, we found that: (a) worker‐ but not queen‐laid male eggs are nearly all eaten (by queens, reproductive, and nonreproductive workers) soon after being laid, so accounting for low observed frequencies of larval and adult worker‐produced males; (b) queen‐ and worker‐laid male eggs have equal viabilities; (c) workers discriminate between queen‐ and worker‐laid eggs using cues on eggs and egg cells that almost certainly originate from queens. The cooccurrence in B. terrestris of these three key elements of “classical” worker policing as found in the highly eusocial, polyandrous honeybees provides novel support for the hypothesis that worker policing can originate in the absence of relatedness differences maintaining it. Worker policing in B. terrestris almost certainly arose via reproductive competition among workers, that is, as “selfish” policing.  相似文献   

18.
19.
Juvenile hormone (JH) has an important role in the behavior of eusocial Hymenoptera. Previous work has shown that JH influences aggression and dominance behavior in primitive eusocial insects that lack discrete queen and worker castes (e.g. Bombus bees and Polistes wasps). In contrast, JH is one of the factors that mediates temporal polyethism among workers in advanced eusocial insects that have reproductive castes (e.g. Apis bees and Polybiawasps). Therefore, initial observations suggest that JH may have different roles in primitive and advanced eusocial taxa. Here, we use detailed behavioral observations of marked individuals to test whether JH influences temporal polyethism in the primitive eusocial wasp Polistes dominulus. First, we show that workers in P. dominulus have an age-related division of labor, as workers switch from nest work to foraging as they mature. Then, we show that application of JH accelerates the onset of foraging behavior.Workers treated with JH start foraging at a younger age than control workers. Therefore, JH mediates temporal polyethism in the primitively eusocial insect Polistes dominulus. Received 23 April 2008; revised 6 August 2008; accepted 11 August 2008  相似文献   

20.
Although nests are central to colonial life in social insects, nests are sometimes damaged by predators or natural disasters. After nest destruction, individuals usually construct new nests. In this case, a sophisticated mechanism like the scent trail pheromone used in large insect colonies that recruit individuals to new nest sites would be important for the maintenance of eusociality. In independent-founding Polistes wasps, it is well known that queens enforce workers physiologically on the natal nests even if evidence of trail pheromone use has not been exhibited. We investigated the effect of the queen on an alternative strategy for the maintenance of eusociality by first females after nest destruction in the primitively eusocial wasp Polistes chinensis. We predicted that the first females in queen-absent colonies have various behavioral options after nest destruction. Even if the females construct new nests cooperatively with other individuals, the new nest construction should be conducted more smoothly in queen-present colonies because the queens regulate the behavior of wasps. We made wasps construct new nests by removing the entire brood from existing nests. The presence of the queen did not cause variation in the alternative strategy of the first females, as the first females (workers) usually constructed new nests cooperatively irrespective of the queen-presence. Thus, the workers in the queenpresent colonies affiliated to the new nest construction more smoothly and constructed new nests more efficiently than workers in the queen-absent colonies. Our results suggest that the presence of the queen is important for maintaining eusociality in primitively eusocial wasps after nest destruction. Received 8 February 2005; revised 5 October 2005; accepted 17 October 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号