首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
胶孢炭疽菌(Colletotrichum gloeosporioides)是引发芒果(Mangifera indica)炭疽病的主要病原体。室内平板培养胶孢炭疽菌不产生或产生很少分生孢子的情况时有发生, 但菌丝在机械损伤后24-48小时会产生大量分生孢子。胶孢炭疽菌应答机械损伤诱导产孢的核心基因及关键代谢通路尚未见报道。基于转录组测序(RNA-seq)技术检测了芒果胶孢炭疽菌菌丝在机械损伤处理后2小时内5个时间点的基因表达变化, 对差异表达基因进行GO富集和KEGG代谢通路富集分析, 并对菌丝响应胁迫的基因动态表达数据进行分析。基于常微分方程ODE模型结合变量选择技术, 构建了动态基因调控网络。结果表明, 有417个差异表达基因参与应答胶孢炭疽菌菌丝机械损伤, 分属12个聚类模块, 有4条通路存在显著富集, 分别是丙酮酸代谢、硫代谢、黄曲霉素合成途径和二萜合成途径。结合功能注释筛选出12个应答菌丝损伤胁迫的核心基因。研究结果为后续深入开展芒果胶孢炭疽菌产孢和致病机理研究奠定了重要基础。  相似文献   

2.
【目的】进一步研究橡胶树胶孢炭疽菌致病分子机理。【方法】通过含ILV1基因(具氯嘧磺隆抗性)的pSULF.gfp双元载体农杆菌AGL-1介导进行橡胶树胶孢炭疽菌遗传转化,利用氯嘧磺隆抗性标记筛选转化子,对转化子PCR验证及荧光显微观察;采用离体古铜期橡胶树叶无伤接种法进行致病性缺陷转化子筛选,并对转化子进行遗传稳定性检测。【结果】获得含3 721个转化子的T-DNA插入突变体库,转化效率为150 400个转化子/106孢子,从3 721个转化子中筛选得到致病性缺陷转化子25个;随机选取20个转化子进行遗传稳定性测定,在不含氯嘧磺隆PDA平板上继代培养10次后仍保持氯嘧磺隆抗性,且表型稳定,表明插入外源基因能够稳定遗传。【结论】可以利用根癌农杆菌介导橡胶孢炭疽菌转化,构建橡胶树胶孢炭疽菌T-DNA插入突变体库,筛选致病缺陷突变菌,为进一步研究该菌致病相关基因提供材料。  相似文献   

3.
Mango fruits (Mangifera indica L.) were treated by vacuum infiltration of 1.0 mm benzo‐(1,2,3)‐thiadiazole‐7‐carbothioic acid s ‐methyl ester (BTH) after harvest. Seventy‐two hours after the treatment with BTH, the fruit were inoculated with 15 μl of conidial suspension of Colletotrichum gloeosporioides (1 × 105 conidia/ml) and incubated at 13°C, 85–90% RH for disease development. Disease incidence and lesion diameter in mango fruit after the inoculation were significantly (P < 0.05) reduced by the BTH treatment during the incubation. Peroxidase, polyphenoloxidase, phenylalanine ammonia‐lyase, chitinase and β‐1,3‐glucanase activities and total phenolic compounds content in the fruits were all enhanced by the BTH treatment during the incubation. The catalase activity in the fruit was inhibited, whereas the level of hydrogen peroxide was increased by the BTH treatment during the infection. These responses may be involved in the induced resistance against the pathogen infection in mango fruit by BTH treatment. Application of BTH in fruit possesses promising results in the control of postharvest diseases as an alternative to traditional methods.  相似文献   

4.
Aim: To find a suitable biocontrol agent for yam anthracnose caused by Colletotrichum gloeosporioides. Methods and Results: An actinobacterial strain, MJM5763, showing strong antifungal activity, multiple biocontrol and plant growth‐promoting traits was isolated from a yam cultivation field in Yeoju, South Korea. Based on morphological and physiological characteristics and analysis of the 16S rDNA sequence, strain MJM5763 was identified as a novel strain of Streptomyces and was designated as Streptomyces sp. MJM5763. Treatment with MJM5763 and the crude culture filtrate extract (CCFE) was effective in suppressing anthracnose in detached yam leaves in vitro and reduced incidence and severity of anthracnose in yam plants under greenhouse conditions. The CCFE treatment was the most effective of all the treatments and reduced the anthracnose severity by 85–88% and the incidence by 79–81%, 90 days after inoculation with the pathogen. CCFE treatment was also effective under field conditions and showed a reduction of 86 and 75% of anthracnose severity and incidence, respectively. Conclusion: Streptomyces sp. strain MJM5763 was effective in biocontrolling anthracnose in yam caused by C. gloeosporioides. Significance and Impact of the Study: Streptomyces sp. MJM5763 is a potential alternative to chemical fungicides for reducing yield losses to anthracnose in yam.  相似文献   

5.
Mango (Mangifera indica L.) is considered as one of the most popular fruits among millions of people in the tropical area and increasingly in the developed countries. Anthracnose, caused by the fungus Colletotrichum gloeosporioides, is the most important pre- and post-harvest disease of mango. The objective of this research was to evaluate the prevalence of different promising antagonistic Trichoderma and Bacillus spp. on phyloplane of mango in Ethiopia and to evaluate their antagonistic potential against the pathogen. A total of 19 mango fields were surveyed and anthracnose affected all fields. Culture studies on potato dextrose agar for evaluation of antibiosis activity of Trichoderma spp. and Bacillus spp. revealed that they have inhibitory and lytic effect on C. gloeosporioides, which is an indication of their potential biocontrol agent for management of mango anthracnose as an alternative to chemical control. Significant differences (p?<?0.05) were observed among Bacillus isolates in causing lysis of pathogen mycelium, when inoculated on actively growing colony of C. gloeosporioides. Maximum reduction in growth rate of pathogen was observed with Bacillus spp. (B50), which restricted the growth to 2.7?mm compared to 8.3?mm in the control with 67.5% efficacies. There were similar effects (p?<?0.05) among Trichoderma spp. in formation of inhibition zones and lysis by varying degrees up to 59.7% efficacies in reducing linear growth of the pathogen in dual culture.  相似文献   

6.
Colletotrichum gloeosporioides is a destructive pathogen of many crop species causing diseases in many annual, biennial and perennial plants. A study was undertaken to find out the effect of biological and chemical agents together on the growth of C. gloeosporioides causing inflorescence die back in arecanut at the Department of Plant Pathology, CPCRI, Kasaragod. To reduce the release of chemical pesticides to the environment, integrated control strategies have been adopted extensively by combining both bioagents and chemical agents. So in the present study in vitro experiments were conducted with two compatible Trichoderma sp. viz., Trichoderma virens and Trichoderma viride and fungicides viz. Blitox 50 W and Mixol 72. The results indicated that all the treatments had a significant inhibitory effect on the growth of C. gloeosporioides and reduced its colony diameter. High percent inhibition was found when 0.05% of Mixol 72 was used with T. virens (87.61%). The least inhibition was shown by T. virens+0.05% Blitox 50 W (80.95%). It is concluded that the combination of bioagents with fungicides provided higher disease suppression than achieved with fungicides and bioagents when used alone.  相似文献   

7.
In greenhouse and field experiments, an invert emulsion (MSG 8.25) was tested with dried, formulated spores of the bioherbicidal fungus Colletotrichum gloeosporioides f. sp. aeschynomene, a highly virulent pathogen of the leguminous weed Aeschynomene virginica (northern jointvetch), but considered ‘immune’ against another more serious leguminous weed, Sesbania exaltata (hemp sesbania). A 1:1 (v/v) fungus/invert emulsion mixture resulted in 100% infection and mortality of inoculated hemp sesbania seedlings over a 21-day period under greenhouse conditions. In replicated field tests of the fungus/invert formulation conducted in Stuttgart, AR, and Stoneville, MS, hemp sesbania was controlled 85 and 90%, respectively. These results suggest that this invert emulsion expands the host range of C. gloeosporioides f. sp. aeschynomene, with a concomitant improvement of the bioherbicidal potential of this pathogen.  相似文献   

8.
Pathogenicity test of the fungal pathogen Colletotrichum gloeosporioides (Penz.) Sacc., causal agent for anthracnose in eggplant (Solanum melongena L.), was performed in 28 commercially cultivated eggplant varieties by analysing the antigenic patterns of host and pathogen. Through initial screening following detached leaf inoculation technique and whole plant inoculation technique, Pusa purple long (Ppl) variety was found to be the most susceptible while Shamala variety (Shav) was the most resistant. Cross-reactive antigens (CRA) shared by susceptible varieties and C. gloeosporioides was detected by immunodiffusion and immunoelectrophoresis and indirect enzyme-linked immunosorbent assay (ELISA). Such antigens could not be detected between the resistant varieties and the pathogen and also between a nonpathogen (Alternaria porri) and all the test varieties. However, ELISA showed that low levels of common antigens were present between all combinations. The level of CRA was found to decrease with increasing resistance. Indirect immunogold labeling followed by silver enhancement revealed that CRA were concentrated mainly in the cell wall regions throughout the tissue. The level of CRA was found to correlate to the pathogenicity of C. gloeosporioides in different eggplant varieties. ELISA may therefore be used to screen the commercially cultivated eggplant varieties for resistance to C. gloeosporioides.  相似文献   

9.
In greenhouse experiments, unrefined corn oil, Silwet L-77, and an invert emulsion were tested as adjuvants with the mycoherbicidal fungus Colletotrichum gloeosporioides, a weakly virulent pathogen of sicklepod (Senna obtusifolia). A 1:1 (v/v) fungus/corn oil tank mixture containing 0.2% (v/v) Silwet L-77 surfactant reduced the dew period requirements for maximum weed infection and mortality from 16 to 8 h, and delayed the need for free moisture for greater than 48 h. This formulation also resulted in the ability of the pathogen to infect and kill weeds in larger (>5 leaf) growth stages. The invert emulsion resulted in similar effects upon these parameters. These results suggest that invert emulsions, unrefined corn oil and Silwet L-77 surfactant greatly improve the bioherbicidal potential of this pathogen for control of sicklepod, a serious weed pest in the southeastern US.  相似文献   

10.
In the modern chicken industry, fast-growing broilers have undergone strong artificial selection for muscle growth, which has led to remarkable phenotypic variations compared with slow-growing chickens. However, the molecular mechanism underlying these phenotypes differences remains unknown. In this study, a systematic identification of candidate genes and new pathways related to myofiber development and composition in chicken Soleus muscle (SOL) has been made using gene expression profiles of two distinct breeds: Qingyuan partridge (QY), a slow-growing Chinese breed possessing high meat quality and Cobb 500 (CB), a commercial fast-growing broiler line. Agilent cDNA microarray analyses were conducted to determine gene expression profiles of soleus muscle sampled at sexual maturity age of QY (112 d) and CB (42 d). The 1318 genes with at least 2-fold differences were identified (P?相似文献   

11.
12.
Seven essential oils namely clove, cedar wood, lemongrass, peppermint, eucalyptus, citronella and neem oils were tested for their inhibitory effect on spore germination, growth of germ tube and mycelial growth of Colletotrichum gloeosporioides isolated from diseased Murraya koenigii. All essential oils inhibited the germination and growth of germ tube at different concentrations. However, significant reduction in colony growth was observed with citrus, lemongrass and peppermint oils at 1000, 1500 and 2000 ppm concentrations, respectively. Citrus oil at 1360 ppm inhibited the maximum growth of the fungus followed by lemongrass oil at 1720 ppm and peppermint at 2260 ppm, respectively. The effect of essential oils on mycelial dry weight also showed antifungal activity on the growth of Colletotrichum gloeosporioides. The study revealed the possible utilisation of these essential oils for foliar spray for the management of leaf spot disease of Murraya koenigii.  相似文献   

13.
Anthracnose, caused by Colletotrichum gloeosporioides, is the most severe foliar disease of water yam (Dioscorea alata) worldwide. The tetraploid breeding line, TDa 95/00328, is a source of dominant genetic resistance to the moderately virulent fast growing salmon (FGS) strain of C. gloeosporioides. Bulked segregant analysis was used to search for random amplified polymorphic DNA (RAPD) markers linked to anthracnose resistance in F1 progeny derived from a cross between TDa 95/00328 and the susceptible male parent, TDa 95–310. Two hundred and eighty decamer primers were screened using bulks obtained from pooled DNA of individuals comprising each extreme of the disease phenotype distribution. A single locus that contributes to anthracnose resistance in TDa 95/00328 was identified and tentatively named Dcg‐1. We found two RAPD markers closely linked in coupling phase with Dcg‐1, named OPI71700 and OPE6950, both of which were mapped on the same linkage group. OPI71700 appeared tightly linked to the Dcg‐1 locus; it was present in all the 58 resistant F1 individuals and absent in all but one of the 13 susceptible genotypes (genetic distance of 2.3 cM). OPE6950 was present in 56 of the 58 resistant progeny and only one susceptible F1 plant showed this marker (6.8 cM). Both markers successfully identified Dcg‐1 in resistant D. alata genotypes among 34 breeding lines, indicating their potential for use in marker‐assisted selection. OPI71700 and OPE6950 are the first DNA markers for yam anthracnose resistance. The use of molecular markers presents a valuable strategy for selection and pyramiding of anthracnose resistance genes in yam improvement.  相似文献   

14.
病毒基因组有限的编码能力和以病毒蛋白为靶的抗病毒药物易出现耐药性,使从病毒感染宿主筛选病毒感染相关生物大分子作为抗病毒药靶和诊断标志物成为新的研究方向。为了筛选流行性感冒(流感)病毒感染相关基因,采用抑制消减杂交(suppression subtractive hybridization,SSH)技术,以流感病毒A/鲁防/93-9(H3N2)感染的MDCK细胞及正常MDCK细胞为材料,构建病毒感染特异性差减cDNA文库。从文库中随机挑取约800个克隆,PCR扩增其中插入片段,经纯化、紫外定量后,用基因芯片自动点样仪点在氨基片上,制备cDNA芯片。将流感病毒感染的MDCK细胞和正常MDCK细胞的总RNA分别用Cy3、Cy5反转录荧光标记后,与cDNA芯片杂交,用芯片扫描仪扫描获得芯片杂交信号,经阳性对照校正和归一化处理后,以如下条件作为判定基因差异表达的标准;(a)Cy3与Cy5的信号比值大于1.5(正常细胞用Cy5标记)或小于0.67(正常细胞用Cy3标记);(b)Cy3和Cy5信号值之一必须大于1000。经cDNA芯片筛选获得了18个流感病毒感染特异性克隆,经测序和生物信息学分析发现均为流感病毒感染相关新基因EST。流感病毒感染相关基因cDNA片段的获得,为新型病毒药靶诊断标志物发现和功能研究提供了基础。  相似文献   

15.
Oligonucleotide microarrays were used to study the differences of gene expressions in high (H) and low (L) metastatic ovarian cancer cell lines and in normal ovarian tissues (C). Bioinformatics was used to identify novel genes and their functions as well as chromosomal localizations. A total of 409 genes were differentially expressed between the high and low metastatic ovarian cancer cell lines. Of them, 271 genes were up regulated (Signal Log Ratio[SLR] ≥1), and 138 genes were down regulated (SLR≤-1). Except one gene whose location was unknown, all these genes were localized randomly on all the chromosomes, with a majority of them localized to Chromosomes 1, 6, 2, 17, 3, 5 and 11. Chromosome 1 contained, 43 of them (10.7%), the most for a single chromosome. A total of 264 genes (64.7%) were localized on the short arm of the chromosome (q). Functional classification showed that the 104 (25.4%) genes coding for enzymes and enzyme regulators made up the largest functional group, followed by signal transduction activity genes (43, 10.5%), nucleic acid binding activity genes (42, 10.3%), and proteins binding activity genes (34, 8.3%). These four groups accounted for 54.5% of all the differentially expressed genes. In addition, the functions of 76 genes (18.6%) were unknown. Tumor metastasis is the result of a number of genes acting in concert. The four functional groups of genes classified among these genes and their abnormalities would be the focus of further studies on ovarian cancer metastasis.  相似文献   

16.
17.
用基因芯片技术研究高(H)、低(L)转移卵巢癌细胞株(HO-8910PM和HO-8910)和正常卵巢上皮(C)基因表达谱差异,筛选与卵巢癌转移相关的基因,并利用生物信息学方法对检测结果进行差异基因在染色体定位和功能分析。结果:高、低转移卵巢癌细胞株比较表达差异2倍以上共有409个基因,其中表达上调(信号比的对数值[SLR]≥1)有271个,表达下调(SLR≤-1)有138个。从表达差异的基因在染色体定位分析,发现除1个基因未知其定位外,其余所有差异表达基因散在分布于各条染色体上,但以1号染色体最多有43个(占10.7%)。其次是6号染色体有39个(占9.6%),第三是2号染色体有29个(占7.1%)。第四是17号染色体有28个(占6.9%)。第五是3号染色体有25个(占6.2%)。第6是5号和11号染色体各有24个(各占5.9%)。而差异表达的基因发生在染色体短臂(q)的有264个(占64.7%),在13,14,15,21和22号仅发现在q都有异常表达。从表达差异基因的分子功能分类看,属于酶和酶调控子基因为最多(104个,占25.4%),其次是信号传导基因(43个,占10.5%)。第3类是核酸结合基因(42个,占10.3%)。第4类是蛋白结合基因(34个,占8.3%)。以上4大类共占基因总数54.5%。还有功能未知的基因有76个,占18.6%。高、低转移卵巢癌细胞株差异表达基因散在分布在各条染色体上,但以1、6、2、17、3、5和11号染色体差异表达基因居多。肿瘤的转移是多基因共同作用的结果。4大类(酶和酶调控子、信号传导、核酸结合和蛋白结合)相关基因异常是我们今后研究卵巢癌转移的重要基因。  相似文献   

18.
19.
以陆地棉(Gossypium hirsutum L.)品种TM-1开花后9d、21d、27d三个不同发育时期的棉花纤维为材料,利用mRNA荧光差异显示 (FDD) 技术,筛选到109个差异显示的cDNA片段。在此基础上,结合两轮反Northern杂交筛选和Northern杂交分析,获得了多个仅在棉花纤维细胞中特异表达或在纤维中优先表达基因的cDNA片段,序列测定和数据库搜索分析表明,这些cDNA片段中的多数还未有报道。本工作为克隆上述基因的全长cDNA,并进一步研究它们在棉纤维发育中的功能奠定了基础。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号