首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The European lynx (Lynx lynx) hasexperienced significant decline in populationnumbers over large parts of its formerdistribution area in central and northernEurope. In Scandinavia (Sweden and Norway), thespecies has been subject to intense hunting and inthe early 20th century the population size mayhave been as low as about 100 animals. Duringthe rest of the century there have beenalternating periods of restricted hunting andtotal protection. Future management of theScandinavian lynx population will requireinsight into what effects demographicbottlenecks may have had on genetic variabilityand structure. For this purpose, 276 lynxesfrom Sweden, Norway, Finland, Estonia andLatvia were analysed for polymorphism at 11feline microsatellite loci and at themitochondrial DNA (mtDNA) control region.Scandinavian lynxes were found to be fixed fora single mtDNA haplotype, while this and threeadditional haplotypes were seen in Finland andthe Baltic States (Estonia and Latvia); thehaplotypes were all very similar, onlydiffering at 1–4 sites within a 700 bp regionsequenced. Microsatellite variability wasmoderate (He = 0.51–0.62) with lowerheterozygosity and fewer alleles in Scandinaviathan in Finland and the Baltic States together,though significant so only for the latter.Heterozygosity data in Scandinavia wereconsistent with a recent population bottleneck.Various analyses (e.g. Fst, individual-basedtree, assignment test) revealed distinctgenetic differentiation between Scandinavianlynxes and animals from Finland and the BalticStates. Some structure was evident withinScandinavia as well, suggesting an isolation bydistance. The observed partition of geneticvariability between Scandinavia and the easterncountries thereof indicates that lynxpopulations from the two regions may need to beseparately managed. We discuss what factors canhave contributed to the population geneticstructure seen in northern European lynxpopulations of today.  相似文献   

2.
The Purple Sandpiper (Calidris maritima) is a medium‐sized shorebird that breeds in the Arctic and winters along northern Atlantic coastlines. Migration routes and affiliations between breeding grounds and wintering grounds are incompletely understood. Some populations appear to be declining, and future management policies for this species will benefit from understanding their migration patterns. This study used two mitochondrial DNA markers and 10 microsatellite loci to analyze current population structure and historical demographic trends. Samples were obtained from breeding locations in Nunavut (Canada), Iceland, and Svalbard (Norway) and from wintering locations along the coast of Maine (USA), Nova Scotia, New Brunswick, and Newfoundland (Canada), and Scotland (UK). Mitochondrial haplotypes displayed low genetic diversity, and a shallow phylogeny indicating recent divergence. With the exception of the two Canadian breeding populations from Nunavut, there was significant genetic differentiation among samples from all breeding locations; however, none of the breeding populations was a monophyletic group. We also found differentiation between both Iceland and Svalbard breeding populations and North American wintering populations. This pattern of divergence is consistent with a previously proposed migratory pathway between Canadian breeding locations and wintering grounds in the United Kingdom, but argues against migration between breeding grounds in Iceland and Svalbard and wintering grounds in North America. Breeding birds from Svalbard also showed a genetic signature intermediate between Canadian breeders and Icelandic breeders. Our results extend current knowledge of Purple Sandpiper population genetic structure and present new information regarding migration routes to wintering grounds in North America.  相似文献   

3.
The large-scale migration of birds has been studied extensively by recoveries of ringed birds. However, there is very little ringing data from the arctic breeding grounds of waders. Here, the migration pattern of the dunlin, Calidris alpina, is studied with population genetic markers, using haplotype frequencies to estimate the breeding origin of migrating and wintering populations. Polymerase chain reaction (PCR) and restriction analysis of DNA from the mitochondrial control region was used to study the breeding origins of morphologically similar winter populations in the western Palaearctic, and to describe the population structure of the dunlin during winter. Also migrating dunlin from various stopover sites in Europe, Africa and Asia, were analysed with respect to their mitochondrial DNA (mtDNA) haplotypes. The genetic markers clearly show that the dunlin has a parallel migration system, with populations breeding in the western Palaearctic wintering mainly in the western part of the wintering range, and dunlin populations breeding further east wintering further east. The results also show that the distance between breeding and wintering area increases eastwards in this region.  相似文献   

4.
5.
6.
Recent theoretical developments have led to a renewed interest in the potential role of chromosomal rearrangements in speciation. Australian morabine grasshoppers (genus Vandiemenella, viatica species group) provide an excellent study system to test this potential role of chromosomal rearrangements because they show extensive chromosomal variation and formed the basis of a classic chromosomal speciation model. There are three chromosomal races, viatica19, viatica17, and P24(XY), on Kangaroo Island, South Australia, forming five parapatric populations with four putative contact zones among them. We investigate the extent to which chromosomal variation among these populations may be associated with barriers to gene flow. Population genetic and phylogeographical analyses using 15 variable allozyme loci and the elongation factor-1alpha (EF-1alpha) gene indicate that the three races represent genetically distinct taxa. In contrast, analyses of the mitochondrial cytochrome c oxidase subunit I (COI) gene show the presence of three distinctive and geographically localized groups that do not correspond with the distribution of the chromosomal races. These discordant population genetic patterns are likely to result from introgressive hybridization between the chromosomal races and range expansions/contractions. Overall, these results suggest that reduction of nuclear gene flow may be associated with chromosomal variation, or underlying genetic variation linked with chromosomal variation, whereas mitochondrial gene flow appears to be independent of this variation in these morabine grasshoppers. The identification of an intact contact zone between P24(XY) and viatica17 offers considerable potential for further investigation of molecular mechanisms that maintain distinct nuclear genomes among the chromosomal races.  相似文献   

7.
This study used allozyme and mtDNA variation to examine genetic structure in Rhadinocentrus ornatus and Hypseleotris compressa in southern Queensland. The aim of this study was to test the hypothesis that dispersal between coastal streams was greater in R. ornatus than in H. compressa and to test whether R. ornatus would reflect a similar pattern seen in another obligate freshwater fish in the same region, that is, R. ornatus will show genetic homogeneity among streams of the Sunshine Coast but significant differentiation among all other streams. Evidence from the current study suggests that, in R. ornatus, there was significant genetic differentiation among populations within regions, which explains why this species has very restricted dispersal abilities between streams, even between those very close to one another. On the other hand, H. compressa showed very low levels of genetic differentiation suggesting some gene flow among regions by virtue of dispersal. High levels of genetic differentiation were identified between all coastal streams in the area, including those hypothesized to have been recently connected in the Sunshine Coast area in the case of R. ornatus.  相似文献   

8.
Mitochondrial DNA (mtDNA) control-region sequences and microsatellite loci length polymorphisms were used to estimate phylogeographical patterns (historical patterns underlying contemporary distribution), intraspecific population structure and gender-biased dispersal of Phocoenoides dalli dalli across its entire range. One-hundred and thirteen animals from several geographical strata were sequenced over 379 bp of mtDNA, resulting in 58 mtDNA haplotypes. Analysis using F(ST) values (based on haplotype frequencies) and phi(ST) values (based on frequencies and genetic distances between haplotypes) yielded statistically significant separation (bootstrap values P < 0.05) among most of the stocks currently used for management purposes. A minimum spanning network of haplotypes showed two very distinctive clusters, differentially occupied by western and eastern populations, with some common widespread haplotypes. This suggests some degree of phyletic radiation from west to east, superimposed on gene flow. Highly male-biased migration was detected for several population comparisons. Nuclear microsatellite DNA markers (119 individuals and six loci) provided additional support for population subdivision and gender-biased dispersal detected in the mtDNA sequences. Analysis using F(ST) values (based on allelic frequencies) yielded statistically significant separation between some, but not all, populations distinguished by mtDNA analysis. R(ST) values (based on frequencies of and genetic distance between alleles) showed no statistically significant subdivision. Again, highly male-biased dispersal was detected for all population comparisons, suggesting, together with morphological and reproductive data, the existence of sexual selection. Our molecular results argue for nine distinct dalli-type populations that should be treated as separate units for management purposes.  相似文献   

9.
The endemic Hawaiian grouper, Epinephelus quernus , is a commercially important species experiencing intense fishing pressure in part of its distributional range. We examined population genetic structure with 398 base pairs of the mitochondrial control region across a large portion of the range of E. quernus , spanning approximately 2000 km of the Hawaiian archipelago. Examination of genetic diversity shows that Gardner Island, situated midway along the island chain, harbours the most diverse haplotypes. F -statistics and Bayesian estimates of migration also reveal the mid-archipelago as genetically differentiated, where the first significant break among adjacent pairs of populations lies between the islands of Nihoa and Necker. Most island comparisons beyond Necker and Gardner to the north-west and among the lower five islands to the south-east show little to no genetic differences. Evidence of historical population expansion across the islands was also found by Maximum Likelihood analyses. The results suggest that management should be structured to reflect the genetic differentiation and diversity in the mid-archipelago, the patterns of which may be associated with oceanic current patterns.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 81 , 449–468.  相似文献   

10.
Abstract.  Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae), the New World screwworm fly, is an important agent of traumatic myiasis, which is endemic in the Neotropical region and which has great economic impact on the development of the livestock industry. International efforts have been aimed at designing programmes to control and eradicate this species from endemic areas. Thorough knowledge of the population genetics of an insect pest is a fundamental component to ensuring the success of a pest management strategy because it enables the determination of an appropriate geographic scale for carrying out effective treatments. This study undertook an analysis of mtDNA polymerase chain reaction-restricted fragment length polymorphism (PCR-RFLP) in 34 populations of C. hominivorax from 10 countries, encompassing almost all the current distribution of the species. Results showed high levels of mitochondrial DNA variability (π= 2.9%) and a complex pattern of population genetic structure for this species. Significant population structure (> st = 0.5234) and low variability were found in Caribbean populations, suggesting that, in general, islands constitute independent evolutionary entities connected by restricted gene flow. By contrast, high variability and low, but significant, differentiation was found among mainland populations (> st = 0.0483), which could not be attributed to geographic distance. Several processes may be acting to maintain the observed patterns, with different implications for establishing control programmes.  相似文献   

11.
Bearded vulture populations in the Western Palearctic have experienced a severe decline during the last two centuries that has led to the near extinction of the species in Europe. In this study we analyse the sequence variation at the mitochondrial control region throughout the species range to infer its recent evolutionary history and to evaluate the current genetic status of the species. This study became possible through the extensive use of museum specimens to study populations now extinct. Phylogenetic analysis revealed the existence of two divergent mitochondrial lineages, lineage A occurring mainly in Western European populations and lineage B in African, Eastern European and Central Asian populations. The relative frequencies of haplotypes belonging to each lineage in the different populations show a steep East-West clinal distribution with maximal mixture of the two lineages in the Alps and Greece populations. A genealogical signature for population growth was found for lineage B, but not for lineage A; futhermore the Clade B haplotypes in western populations and clade A haplo-types in eastern populations are recently derived, as revealed by their peripheral location in median-joining haplotype networks. This phylogeographical pattern suggests allopatric differentiation of the two lineages in separate Mediterranean and African or Asian glacial refugia, followed by range expansion from the latter leading to two secondary contact suture zones in Central Europe and North Africa. High levels of among-population differentiation were observed, although these were not correlated with geographical distance. Due to the marked genetic structure, extinction of Central European populations in the last century re-sulted in the loss of a major portion of the genetic diversity of the species. We also found direct evidence for the effect of drift altering the genetic composition of the remnant Pyrenean population after the demographic bottleneck of the last century. Our results argue for the management of the species as a single population, given the apparent ecological exchangeability of extant stocks, and support the ongoing reintroduction of mixed ancestry birds in the Alps and planned reintroductions in Southern Spain.  相似文献   

12.
The 360 base-pair fragment in HVS-1 of the mitochondrial genome were determined from ancient human remains excavated at Noen U-loke and Ban Lum-Khao, two Bronze and Iron Age archaeological sites in Northeastern Thailand, radio-carbon dated to circa 3,500-1,500 years BP and 3,200-2,400 years BP, respectively. These two neighboring populations were parts of early agricultural communities prevailing in northeastern Thailand from the fourth millennium BP onwards. The nucleotide sequences of these ancient samples were compared with the sequences of modern samples from various ethnic populations of East and Southeast Asia, encompassing four major linguistic affiliations (Altaic, Sino-Tibetan, Tai-Kadai, and Austroasiatic), to investigate the genetic relationships and history among them. The two ancient samples were most closely related to each other, and next most closely related to the Chao-Bon, an Austroasiatic-speaking group living near the archaeological sites, suggesting that the genetic continuum may have persisted since prehistoric times in situ among the native, perhaps Austroasiatic-speaking population. Tai-Kadai groups formed close affinities among themselves, with a tendency to be more closely related to other Southeast Asian populations than to populations from further north. The Tai-Kadai groups were relatively distant from all groups that have presumably been in Southeast Asia for longer-that is, the two ancient groups and the Austroasiatic-speaking groups, with the exception of the Khmer group. This finding is compatible with the known history of the Thais: their late arrival in Southeast Asia from southern China after the 10th-11th century AD, followed by a period of subjugation under the Khmers.  相似文献   

13.
Population structures of the delicate loach, Niwaella delicata, were inferred from morphology and restriction fragment length polymorphism (RFLP) analysis of part of the mitochondrial DNA (mtDNA) of 25 populations, representing the species range in central Honshu Island. The existence of two types of morphological variation corresponding to regional distributions, the "Pacific slope type" and "Sea of Japan slope type," has been known in N. delicata. Our morphological reexamination of the two types revealed some discrepancies in their distribution pattern. Therefore, we reclassified two new color types corresponded to their distribution areas as "gathered spots type (G type)" and "scattered spots type (S type)," respectively. The present classification of G and S types is closely related to the mtDNA divergence pattern. The current analysis also indicated that each G and S type population was further divided into two genetic groups, corresponding to geographic proximity. In spite of marked morphological differentiation, the genetic diversity between G and S type populations (1.153%) was comparable only to that reported for intraspecific levels in most freshwater fishes. Moreover, in the population of which the color patterns of all fish were characterized to the S type, mtDNA haplotypes corresponding to G and S types were sympatrically detected. This result indicates secondary contact between the two type populations and the possibility that they are not reproductively isolated. Received: June 11, 1999 / Revised: September 30, 2000 / Accepted: January 16, 2001  相似文献   

14.
Despite having winged queens, female dispersal in the monogynous ant Cataglyphis cursor is likely to be restricted because colonies reproduce by fission. We investigated the pattern of population genetic structure of this species using eight microsatellite markers and a mitochondrial DNA (mtDNA) sequence, in order to examine the extent of female and nuclear gene flow in two types of habitat. Sampling was carried out at a large spatial scale (16 sites from 2.5 to 120 km apart) as well as at a fine spatial scale (two 4.5-km transects, one in each habitat type). The strong spatial clustering of mtDNA observed at the fine spatial scale strongly supported a restricted effective female dispersal. In agreement, patterns of the mtDNA haplotypes observed at large and fine spatial scales suggested that new sites are colonized by nearby sites. Isolation by distance and significant nuclear genetic structure have been detected at all the spatial scales investigated. The level of local genetic differentiation for mitochondrial marker was 15 times higher than for the nuclear markers, suggesting differences in dispersal pattern between the two sexes. However, male gene flow was not sufficient to prevent significant nuclear genetic differentiation even at short distances (500 m). Isolation-by-distance patterns differed between the two habitat types, with a linear decrease of genetic similarities with distance observed only in the more continuous of the two habitats. Finally, despite these low dispersal capacities and the potential use of parthenogenesis to produce new queens, no signs of reduction of nuclear genetic diversity was detected in C. cursor populations.  相似文献   

15.
A combination of allozyme and mitochondrial DNA markers were used to determine the contribution of recent and ancient causes of patterns of genetic variation within and among 46 populations of the endangered golden sun moth, Synemon plana. Allozyme analysis grouped the 46 populations into 5 major genetic clusters that corresponded closely with geographic location following a classic isolation-by-distance model. Phylogenetic analysis of 14 mtDNA haplotypes revealed two reciprocally monophyletic groups. One of these groups (containing 4 geographically distant populations) was clearly identified by allozyme analysis and represents a distinct evolutionary unit. The remaining 4 allozyme groups were not distinguishable by mtDNA analysis. The evidence suggests that the populations within these groups derived from a small founding population that underwent rapid demographic expansion in ancient times. This was followed by more recent population bottlenecks resulting from habitat fragmentation associated with the widespread introduction of agriculture into the region. The generally low levels of allozyme and nucleotide diversity within these populations support this hypothesis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Burg TM  Croxall JP 《Molecular ecology》2001,10(11):2647-2660
The population structure of black-browed (Thalassarche melanophris and T. impavida) and grey-headed (T. chrysostoma) albatrosses was examined using both mitochondrial DNA (mtDNA) and microsatellite analyses. mtDNA sequences from 73 black-browed and 50 grey-headed albatrosses were obtained from five island groups in the Southern Ocean. High levels of sequence divergence were found in both taxa (0.55-7.20% in black-browed albatrosses and 2.10-3.90% in grey-headed albatrosses). Black-browed albatrosses form three distinct groups: Falklands, Diego Ramirez/South Georgia/Kerguelen, and Campbell Island (T. impavida). T. melanophris from Campbell Island contain birds from each of the three groups, indicating high levels of mixture and hybridization. In contrast, grey-headed albatrosses form one globally panmictic population. Microsatellite analyses on a larger number of samples using seven highly variable markers found similar population structure to the mtDNA analyses in both black-browed and grey-headed albatrosses. Differences in population structure between these two very similar and closely related species could be the result of differences in foraging and dispersal patterns. Breeding black-browed albatrosses forage mainly over continental shelves and migrate to similar areas when not breeding. Grey-headed albatrosses forage mainly at frontal systems, travelling widely across oceanic habitats outside the breeding season. Genetic analyses support the current classification of T. impavida as being distinct from T. melanophris, but would also suggest splitting T. melanophris into two groups: Falkland Islands, and Diego Ramirez/South Georgia/Kerguelen.  相似文献   

17.
Bottlenose dolphins (Tursiops truncatus) have a world-wide distribution, and show morphotypic variation among regions. Distinctions between coastal and pelagic populations have been documented; however, regional patterns of differentiation had not been previously investigated in a wider geographic context. We analysed up to nine different populations from seven different areas of the world by mitochondrial DNA and microsatellite DNA markers, and found differentiation among all putative regional populations. Both mtDNA and microsatellite DNA data show significant differentiation, suggesting restricted gene flow for both males and females. Dolphins in coastal habitat showed less variability and were in most cases differentiated from a pelagic lineage, which could suggest local founder events in some cases. Two coastal populations recently classified as belonging to a new species, T. aduncus, were each highly differentiated from populations of the truncatus morphotype, and from each other, suggesting a possible third species represented by the South African aduncus type.  相似文献   

18.
The taxonomic status of many dolphin populations remains uncertain in poorly studied regions of the world's ocean. Here we attempt to clarify the phylogenetic identity of two distinct forms of bottlenose dolphins (Tursiops spp.) described in the Melanesian region of the Pacific Ocean. Mitochondrial DNA control region sequences from samples collected in New Caledonia (= 88) and the Solomon Islands (= 19) were compared to previously published sequences of Tursiops spp., representing four phylogenetic units currently recognized within the genus. Phylogenetic reconstructions confirm that the smaller coastal form in Melanesia belongs to the same phylogenetic unit as T. aduncus populations in the Pacific, but differs from T. aduncus in Africa, and that the larger more oceanic form belongs to the species T. truncatus. Analyses of population diversity reveal high levels of regional population structuring among the two forms, with contrasting levels of diversity. From a conservation perspective, genetic isolation of T. aduncus in the Solomon Islands raises further concern about recent impacts of the commercial, live‐capture export industry. Furthermore, the low level of mtDNA diversity in T. aduncus of New Caledonia suggests a recent population bottleneck or founder effect and isolation. This raises concerns for the conservation status of these local populations.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号