首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shelter and trap-building animals that compete for limited space and/or face costly relocations benefit from being flexible in their construction behavior. Orb spiders are good examples of this and their easily quantifiable two-dimensional webs allow us to analyze the behavioral adaptations and costs in terms of higher error levels or less precision resulting from building webs in sub-optimal conditions. Here I study behavioral flexibility in spatially constrained spiders by analyzing a wide range of web parameters including measures that indicate errors during web-building. I compare the geometry of laboratory webs of two orb spiders, Cyclosa caroli and Eustala illicita, built in differently shaped experimental frames and report two major findings. i) The two species differ in their ability to build webs in constrained spaces. ii) E. illicita adjusted a range of parameters including shape, area utilization and mesh height in response to spatial constraints, but kept other parameters constant, most notably the length of anchor threads and the shape of the auxiliary spiral. I furthermore found that constrained spiders did not make significantly more errors during web-building than when they had amble space available.  相似文献   

2.
Even for small animals such as spiders, behavioral decisions are sometimes influenced by multiple cues. Orb webs constitute exquisitely precise records of the stimuli the spider experienced and the decisions that it made while building its web. In addition, because spiders appear to sense their webs largely by touch, direct behavioral observations can determine which stimuli they probably sense. Previous studies have shown that when an orb‐weaving spider decides how far apart to space successive sticky lines during orb construction, it responds to at least five different kinds of stimuli, all of which apparently use a cue from the web, the location of the previous, inner loop of sticky spiral (IL location), as a point of reference. Here we show that two additional cues from the web, which are related to the position of the temporary spiral (TS), also influence sticky spiral spacing. A combination of direct observations of spider movements, analyses of complete and partially complete webs, and responses to experimental modifications of the web of two species in different families, Micrathena duodecimspinosa (Araneidae) and Leucauge mariana (Tetragnathidae), indicate that both the TS‐IL distance itself and the short‐term memory of the change in TS‐IL distance compared with that on other recently encountered radii correlate with sticky spiral spacing. When the TS‐IL distance was large, the spiders apparently ceased to attend to other cues. Thus, even the relatively stereotyped behavior of orb construction includes variation that stems from attention‐like mental processes.  相似文献   

3.
Recent studies demonstrated that orb‐weaving spiders may alter web architectures, the amount of silk in webs, or the protein composition of silks in response to variation in amount or type of prey. In this study, we conducted food manipulations to examine three mechanisms by which orb‐weaving spiders may adjust the performance of webs to variation in prey by altering the architectures of webs, making structural changes to the diameters of silk threads, and manipulating the material properties or amino acid composition of silk fibers. We fed Nephila pilipes two different types of prey, crickets or flies, and then compared orb structure and the chemical and physical properties of major ampullate (MA) silk between groups. Prey type did not affect orb structures in N. pilipes, except for mesh size. However, MA silk diameter and the stiffness of orbs constructed by spiders fed crickets were significantly greater than for the fly group. MA fibers forcibly silked from N. pilipes fed crickets was significantly thicker, but less stiff, than silk from spiders fed flies. Spiders in the cricket treatment also produced MA silk with slightly, but statistically significantly, more serine than silk from spiders in the fly treatment. Percentages of other major amino acids (proline, glycine, and glutamine) did not differ between treatments. This study demonstrated that orb‐weaving spiders can simultaneously alter some structural and material properties of MA silk, as well as the physical characteristics of webs, in response to different types of prey.  相似文献   

4.
Spider orb webs are dynamic, energy absorbing nets whose ability to intercept prey is dependent on both the mechnical properties of web design and the material properties of web silks. Variation in web designs reflects variation in spider web spinning behaviours and variation in web silks reflects variation in spider metabolic processes. Therefore, natural selection may affect web function (or prey capture) through two independent and alternative pathways. In this paper, I examine the ways in which architectural and material properties, singly and in concert, influence the ability of webs to absorb insect impact energy. These findings are evaluated in the context of the evolution of diverse aerial webs. Orb webs range along a continuum from high to low energy absorbing. No single feature of web architecture characterizes the amount of energy webs can absorb, but suites of characters indicate web function. In general, webs that intercept heavy and fast flying prey (high energy absorbing webs) are large, built by large spiders, suspended under high tension and characterized by a ratio of radii to spiral turns per web greater than one. In contrast, webs that intercept light and slow flying prey (low energy absorbing webs) are suspended under low tension, are small and are characterized by radial to spiral turn ratios that are less than one. The data suggest that for spiders building high energy absorbing webs, the orb architecture contributes much to web energy absorption. In contrast, for spiders that build low energy absorbing webs, orb architecture contributes little to enhance web energy absorption. Small or slow flying insects can be intercepted by web silks regardless of web design. Although there exists variation in the material properties of silk collected from high and low energy absorbing webs, only the diameter of web fibres varies predictably with silk energy absorption. Web fibre diameter and hence the amount of energy absorbed by web silks is an isometric function of spider size. The significance of these results lies in the apparent absence of selective advantage of orb architecture to low energy absorbing webs and the evolutionary trend to small spiders that build them. Where high energy absorption is not an exacting feature of web design, web architecture should not be tightly constrained to the orb. Assuming the primitive araneoid web design is the orb web, I propose that the evolution of alternative web building behaviours is a consequence of the general, phyletic trend to small size among araneoids. Araneoids that build webs of other than orb designs are able to use new habitats and resources not available to their ancestors.  相似文献   

5.
Do stabilimenta in orb webs attract prey or defend spiders?   总被引:7,自引:2,他引:5  
Orb-weaving spiders are ideal organisms for the study of conflictbetween behavioral investments in foraging and defense becausetheir webs provide physical manifestations of those investments.We examined the impact of including stabilimenta, designs ofbright-white noncapture silk, at the center of orb webs forforaging and defense in Argiope aurantia. Our findings suggestthat stabilimentum building is a defensive behavior, supportingthe "web advertisement" hypothesis that the high visibilityof stabilimenta can prevent birds from flying through webs.Yet, spiders often do not include stabilimenta in their webs,indicating that a serious cost is associated with them. We alsoshow, through comparison of paired webs with and without stabilimenta,that stabilimenta reduce the prey capture success of spidersby almost 30%. This demonstrates the potential impact that defensivebehaviors of spiders can have on their foraging success andsuggests that much of the variation in stabilimenta may be accountedfor by a cost—benefit trade-off made when including stabilimentain webs.  相似文献   

6.
Summary Web-building spiders (Araneae; Theridiidae, Linyphiidae, Araneidae) are catagorized as searchers because they devote a large amount of energy to the construction of the web which constitutes the search phase in the foraging sequence. In this study search energy is equated with the density of threads in a web and the effectiveness of a variety of webs in three broad catagories (tangle webs, sheet webs & orb webs) is tested in the light of current foraging theory. Within each web type there is a distinct thread density at which the number of approaching Drosophila (Diptera; Drosophilidae) that are captured is maximized (Figs. 1, 2, 3). That maximum results from a combination of factors that are a function of the density of threads in the web. The visibility of the web to an approaching Drosophila increases which acts to decrease the number of flies that enter the web (Tables 2, 3, 4). The ability of the web to detain a Drosophila that contacts it (capture efficiency) increases to an asymptote as a function of thread density (Fig. 4). These data support an assumption of many optimal foraging models that with increasing investment in search the predator receives a diminishing return.More Drosophila intercept orb webs than intercept sheet or tangle webs. In addition orb webs detain a greater proportion of the flies that contact them (Fig. 4). Sheet webs are intermediate between orb and tangle webs in their relative abilities to contact and detain Drosophila.  相似文献   

7.
Many spiders use silk to construct webs that must function for days at a time, whereas many other species renew their webs daily. The mechanical properties of spider silk can change after spinning under environmental stress, which could influence web function. We hypothesize that spiders spinning longer‐lasting webs produce silks composed of proteins that are more resistant to environmental stresses. The major ampullate (MA) silks of orb web spiders are principally composed of a combination of two proteins (spidroins) called MaSp1 and MaSp2. We expected spider MA silks dominated by MaSp1 to have the greatest resistance to post‐spin property change because they have high concentrations of stable crystalline β‐sheets. Some orb web spiders that spin three‐dimensional orb webs, such as Cyrtophora, have MA silks that are predominantly composed of MaSp1. Hence, we expected that the construction of three‐dimensional orb webs might also coincide with MA silk resistance to post‐spin property change. Alternatively, the degree of post‐spin mechanical property changes in different spider silks may be explained by factors within the spider's ecosystem, such as exposure to solar radiation. We exposed the MA silks of ten spider species from five genera (Nephila, Cyclosa, Leucauge, Cyrtophora, and Argiope) to ecologically high temperatures and low humidity for 4 weeks, and compared the mechanical properties of these silks with unexposed silks. Using species pairs enabled us to assess the influence of web dimensionality and MaSp composition both with and without phylogenetic influences being accounted for. We found neither the MaSp composition nor the three‐dimensionality of the orb web to be associated with the degree of post‐spin mechanical property changes in MA silk. The MA silks in Leucauge spp. are dominated by MaSp2, which we found to have the least resistance to post‐spin property change. The MA silk in Argiope spp. is also dominated by MaSp2, but has high resistance to post‐spin property change. The ancestry of Argiope is unresolved, but it is largely a tropical genus inhabiting hot, open regions that present similar stressors to silk as those of our experiment. Ecological factors thus appear to influence the vulnerability of orb web spider MA silks to post‐spin property change. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 580–588.  相似文献   

8.
Behavioural and biomaterial coevolution in spider orb webs   总被引:1,自引:0,他引:1  
Mechanical performance of biological structures, such as tendons, byssal threads, muscles, and spider webs, is determined by a complex interplay between material quality (intrinsic material properties, larger scale morphology) and proximate behaviour. Spider orb webs are a system in which fibrous biomaterials—silks—are arranged in a complex design resulting from stereotypical behavioural patterns, to produce effective energy absorbing traps for flying prey. Orb webs show an impressive range of designs, some effective at capturing tiny insects such as midges, others that can occasionally stop even small birds. Here, we test whether material quality and behaviour (web design) co‐evolve to fine‐tune web function. We quantify the intrinsic material properties of the sticky capture silk and radial support threads, as well as their architectural arrangement in webs, across diverse species of orb‐weaving spiders to estimate the maximum potential performance of orb webs as energy absorbing traps. We find a dominant pattern of material and behavioural coevolution where evolutionary shifts to larger body sizes, a common result of fecundity selection in spiders, is repeatedly accompanied by improved web performance because of changes in both silk material and web spinning behaviours. Large spiders produce silk with improved material properties, and also use more silk, to make webs with superior stopping potential. After controlling for spider size, spiders spinning higher quality silk used it more sparsely in webs. This implies that improvements in silk quality enable ‘sparser’ architectural designs, or alternatively that spiders spinning lower quality silk compensate architecturally for the inferior material quality of their silk. In summary, spider silk material properties are fine‐tuned to the architectures of webs across millions of years of diversification, a coevolutionary pattern not yet clearly demonstrated for other important biomaterials such as tendon, mollusc byssal threads, and keratin.  相似文献   

9.
We examined the webs of Linyphia triangularis (Clerck) and Microlinyphia pusilla (Sundevall) using light and scanning electronic microscopic techniques and compared them with the better known orb‐webs. The linyphiid sheet‐web consists of an unordered meshwork of fibres of different thicknesses. The sheet is connected to the scaffolding by means of attachment discs. Thin threads with globules, which appear similar to the viscid silk droplets of orb‐webs, are present in most webs examined. Webs of M. pusilla had a higher density of these globules than did webs of L. triangularis. Webs of both species possess five types of thread connections and contain no aqueous glue for prey capture. Instead, unlike orb‐webs, the sticky substances produced by the linyphiid aggregate glands cement the different layers and threads of the sheet by drying up after being produced. Due to their function, sheet webs may not require viscid silk, thereby leading to a more economic web. The assumption made in most previous studies, that the globules in linyphiid webs have the same properties and function as viscid silk in orb‐webs, is unfounded.  相似文献   

10.
The first orb web built by newly hatched spiders resembles the adult web in its overall form and structure. However, many details show ontogenetic changes. One possible explanation for these changes is that the tiny early‐instar spiders with their minute brains will make more mistakes and build less ‘perfect’ orb webs than older and larger juveniles and adults. To test this hypothesis, known as the size limitation hypothesis, I analysed orb webs from three developmental stages, spiderlings, juveniles and adult females, in two neotropical orb‐web spiders, the araneid Eustala illicita and the nephilid Nephila clavipes. Neither species showed clear signs of being behaviourally limited or more prone to committing errors as spiderlings than were older juveniles or adults. These findings therefore do not support the size limitation hypothesis in either species. Finally, I looked for evidence of the ‘biogenetic law’, which predicts that juveniles should build less derived orb webs than the adults. Evidence for this was found in E. illicita, but not in N. clavipes.  相似文献   

11.
Evolutionary convergence of phenotypic traits provides evidence for their functional success. The origin of the orb web was a critical event in the diversification of spiders that facilitated a spectacular radiation of approximately 12 000 species and promoted the evolution of novel web types. How the orb web evolved from ancestral web types, and how many times orb‐like architectures evolved in spiders, has been debated for a long time. The little known spider genus Fecenia (Psechridae) constructs a web that resembles the archetypical orb web, but morphological data suggest that Psechridae (Psechrus + Fecenia) does not belong in Orbiculariae, the ‘true orb weavers’, but to the ‘retrolateral tibial apophysis (RTA) clade’ consisting mostly of wandering spiders, but also including spiders building less regular webs. Yet, the data are sparse and no molecular phylogenetic study has estimated Fecenia's exact position in the tree of life. Adding new data to sequences pulled from GenBank, we reconstruct a phylogeny of Entelegynae and phylogenetically test the monophyly and placement of Psechridae, and in doing so, the alternative hypotheses of monophyletic origin of the orb web and the pseudo‐orb versus their independent origins, a potentially spectacular case of behavioural convergence. We also discuss the implications of our results for Entelegynae systematics. Our results firmly place a monophyletic Psechridae within the RTA clade, phylogenetically distant from true orb weavers. The architectural similarities of the orb and the pseudo‐orb are therefore clearly convergent, as also suggested by detailed comparisons of these two web types, as well as the spiders' web‐building behaviours and ontogenetic development. The convergence of Fecenia webs with true orbs provides a remarkable opportunity to investigate how these complex sets of traits may have interacted during the evolution of the orb.  相似文献   

12.
蛛网结构性能及其适应性   总被引:3,自引:1,他引:2  
卓春晖  蒋平  王昌河  郭聪 《四川动物》2006,25(4):898-902
蛛网是蜘蛛的捕食工具,蛛网的结构性能不仅影响蜘蛛的捕食效率,也关系着蜘蛛的捕食投入。在不同的内外环境条件影响下,蜘蛛会通过蛛网结构性能上的相应变化来调整捕食策略和维持网结构的稳定性。本文主要综述了蛛网的结构性能以及蜘蛛通过蛛网结构性能表现出的对环境因子的适应性。  相似文献   

13.
Re-introduction programs for endangered animals operate under the hope that protected habitats can sustain viable populations that rely little on humans. The goal of these programs is to supply animals with the resources and skills they need to succeed in the modern wild. However, predicting the set of skills necessary to respond to unpredictable selection events is difficult and efforts sometimes fail as animals respond inappropriately to environmental variation because they lack behavioral flexibility. Population resilience to environmental change may be enhanced if all members of a population do not exhibit the same response when selection pressures change. In many species individual animals express behavioral types that exhibit alternative responses to the same stimuli. Yet when animals are prepared for release to the wild, there is rarely consideration of consistent behavioral variation between individuals. Since experience influences both behavioral and physiological responses to varied stimuli and can shape the future behavioral type of captive animals, pre-release environmental enrichment may be successful in facilitating the expression of varied behavioral types in populations slated for release. This approach to environmental enrichment requires a departure from a ‘one size fits all’ strategy and may also involve exposure to increased challenge and competition. In addition, there is a need for empirical evidence to better understand the role of environmental enrichment and behavioral types on post-release success. The zoo environment provides an excellent arena for examining the development and expression of behavioral types and for taking a novel functional approach to environmental enrichment research that may prove to be very important to re-introduction efforts.  相似文献   

14.
Individuals of the orb-weaving spider Nephila clavipesbuild complex webs with a region used for prey capture, the orb, and tangle webs opposite either face, the barrier webs. Barrier webs have been hypothesized to serve a variety of functions, including predator defense, and the primary function of the barrier web should be reflected in the relative size of the barrier to the orb under varying conditions of foraging success and predation risk. To investigate the effects of predation pressure and foraging success on barrier web structure, I conducted a comparative study in three disjunct populations that differed in predation risk and foraging success. Although both the orb web and the barrier webs are silk, there was no indication of a foraging-defense trade-off. Barrier web structure did not change during seasonal shifts in orb web size related to changes in preycapture rate, and barrier web silk density and orb radius were positively correlated. The hypothesis that the construction of barrier webs is in part a response to predation pressure was supported. Barrier webs do deflect attacks by some predators, and barrier webs built by small spiders, suffering frequent predation attempts, had a higher silk density than barrier webs built by larger individuals. Additionally, barrier web complexity decreased at a later age in areas with higher predation risk.  相似文献   

15.
Are three‐dimensional spider webs defensive adaptations?   总被引:4,自引:0,他引:4  
Spider webs result from complex behaviours that have evolved under many selective pressures. Webs have been primarily considered to be foraging adaptations, neglecting the potential role of predation risk in the evolution of web architecture. The ecological success of spiders has been attributed to key innovations in how spiders use silk to capture prey, especially the invention of chemically adhesive aerial two‐dimensional orb webs. However, araneoid sheet web weavers transformed the orb architecture into three‐dimensional webs and are the dominant group of aerial web‐building spiders world‐wide, both in numbers and described species diversity. We argue that mud‐dauber wasps are major predators of orbicularian spiders, and exert a directional selective pressure to construct three‐dimensional webs such that three‐dimensional webs are partly defensive innovations. Furthermore, patterns of diversification suggest that escape from wasp predators may have facilitated diversification of three‐dimensional web‐building spiders.  相似文献   

16.
Using a virtual spider robot, we studied hypotheses about the weaving behaviour of orb spiders. Our model spiders built virtual webs that mimicked perfectly the visual architecture of real webs of the garden cross spider Araneus diadematus. The matching of capture spiral and auxiliary spiral pitch was an apparently emergent property in both types of web. This validated our interpretation of the garden spider''s web-building decision rules, which use strictly local interactions with previously placed threads to generate global architecture.  相似文献   

17.

Background

Interspecific coevolution is well described, but we know significantly less about how multiple traits coevolve within a species, particularly between behavioral traits and biomechanical properties of animals'' “extended phenotypes”. In orb weaving spiders, coevolution of spider behavior with ecological and physical traits of their webs is expected. Darwin''s bark spider (Caerostris darwini) bridges large water bodies, building the largest known orb webs utilizing the toughest known silk. Here, we examine C. darwini web building behaviors to establish how bridge lines are formed over water. We also test the prediction that this spider''s unique web ecology and architecture coevolved with new web building behaviors.

Methodology

We observed C. darwini in its natural habitat and filmed web building. We observed 90 web building events, and compared web building behaviors to other species of orb web spiders.

Conclusions

Caerostris darwini uses a unique set of behaviors, some unknown in other spiders, to construct its enormous webs. First, the spiders release unusually large amounts of bridging silk into the air, which is then carried downwind, across the water body, establishing bridge lines. Second, the spiders perform almost no web site exploration. Third, they construct the orb capture area below the initial bridge line. In contrast to all known orb-weavers, the web hub is therefore not part of the initial bridge line but is instead built de novo. Fourth, the orb contains two types of radial threads, with those in the upper half of the web doubled. These unique behaviors result in a giant, yet rather simplified web. Our results continue to build evidence for the coevolution of behavioral (web building), ecological (web microhabitat) and biomaterial (silk biomechanics) traits that combined allow C. darwini to occupy a unique niche among spiders.  相似文献   

18.
Studies on spiders in their natural habitats are necessary for determining the full range of plasticity in their web-building behaviour. Plasticity in web design is hypothesised to be important for spiders building in habitats where environmental conditions cause considerable web damage. Here we compared web characteristics of the orb spider Metellina mengei (Araneae, Tetragnathidae) in two different forest habitats differing in their wind exposure. We found a notable lack of differences in web geometry, orientation and inclination between webs built along an exposed forest edge and those built inside the forest, despite marked differences in wind speed. This suggests that M. mengei did not exhibit web-building plasticity in response to wind in the field, contrasting with the findings of laboratory studies on other species of orb spiders. Instead, differences in prey capture and wind damage trade-offs between habitats may provide an explanation for our results, indicating that different species employ different strategies to cope with environmental constraints.  相似文献   

19.
In northeastern North America, Zygiella atrica often build their orb webs near the ocean. We analyzed individual field‐built Z. atrica webs to determine if organic low‐molecular‐mass solutes (LMM) in their sticky droplets showed any unusual features not previously seen in orb webs of other species living in less salty environments. While two of the three most abundant organic LMM (putrescine (butane‐1,4‐diamine) and GABamide (4‐aminobutanamide)) are already well‐known from webs of inland spiders, the third major LMM, β‐alaninamide (3‐aminopropanamide), a homolog of GABamide, has not been detected in sticky droplets from any other araneoid spiders (27 species). It remains to be established, however, whether or not use of β‐alaninamide is related to proximity to saltwater. We observed variability in organic LMM composition in Z. atrica webs that appeared to be influenced more by an undetermined factor associated with different collecting locations and/or collection dates than by different genders or instars. Shifts in composition when adult females were transferred from the field to the laboratory were also observed. Structural similarities and inverse correlations among β‐alaninamide, GABamide, and N‐acetylputrescine suggest that they may form a series of LMM fulfilling essentially the same, as yet unknown, role in the webs of those species in which they occur.  相似文献   

20.
Orb-weaving spiders depend upon their two-dimensional silk traps to stop insects in mid flight. While the silks used to construct orb webs must be extremely tough to absorb the tremendous kinetic energy of insect prey, webs must also minimize the return of that energy to prey to prevent insects from bouncing out of oscillating webs. We therefore predict that the damping capacity of major ampullate spider silk, which forms the supporting frames and radial threads of orb webs, should be evolutionarily conserved among orb-weaving spiders. We test this prediction by comparing silk from six diverse species of orb spiders. Silk was taken directly from the radii of orb webs and a Nano Bionix test system was used either to sequentially extend the silk to 25% strain in 5% increments while relaxing it fully between each cycle, or to pull virgin silk samples to 15% strain. Damping capacity was then calculated as the percent difference in loading and unloading energies. Damping capacity increased after yield for all species and typically ranged from 40 to 50% within each cycle for sequentially pulled silk and from 50 to 70% for virgin samples. Lower damping at smaller strains may allow orb webs to withstand minor perturbations from wind and small prey while still retaining the ability to capture large insects. The similarity in damping capacity of silk from the radii spun by diverse spiders highlights the importance of energy absorption by silk for orb-weaving spiders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号