首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
森林可燃物及其管理的研究进展与展望   总被引:14,自引:1,他引:14       下载免费PDF全文
森林可燃物是森林生态系统的基本组成部分, 是影响林火发生及火烧强度的重要因素之一, 因此, 受到国内外学者的广泛关注。该文从以下4个方面综述了国内外可燃物研究的最新进展: 森林可燃物特性, 森林可燃物类型与火行为, 森林可燃物类型、载量的调查与制图, 森林可燃物管理。同时提出了我国森林可燃物今后的研究方向: 开展多尺度可燃物研究; 可燃物类型与火行为的研究; 把以试验观测为基础的静态研究与以空间技术和生态模型为基础的动态预测相结合, 研究可燃物处理效果; 全球气候变化背景下可燃物处理与碳收支。  相似文献   

2.
丰林自然保护区森林可燃物模型的建立   总被引:3,自引:0,他引:3  
从潜在林火行为的角度出发,依据可燃物的关键参数,利用系统聚类方法在丰林自然保护区建立标准森林可燃物模型.结果表明:丰林自然保护区可建立3个标准可燃物模型,代表性植被类型分别为阔叶红松林(模型FL-Ⅰ)、云冷杉林(模型FL-Ⅱ)和杨桦林(模型FL-Ⅲ).依据可燃物的林分结构与组成、地表覆盖类型、水平与垂直连续性等,本研究建立的FL-Ⅰ、FL-Ⅱ和FL-Ⅲ模型与加拿大CFBPS可燃物分类系统中的C-5、C-2和D-1模型相似.3个标准可燃物模型的地表和垂直结构特征,可为野外工作者判定可燃物模型提供帮助.  相似文献   

3.
以地表死可燃物评估八达岭林场森林燃烧性   总被引:2,自引:0,他引:2       下载免费PDF全文
王晓丽  牛树奎  马钦彦  阚振国 《生态学报》2009,29(10):5313-5319
森林燃烧性是森林火险评估的基础,也是制定营林防火措施的依据.以北京市八达岭林场18种主要森林类型的地表死可燃物为研究对象,分别以死可燃物负荷量、含水率及综合属性为分析依据,结合国内外最新研究成果、林场实际情况和样地调查,分别讨论并对比不同森林类型的燃烧性,并划分等级.研究得出,以地表死可燃物综合属性为分析依据,研究不同森林类型的燃烧性更符合林场实际情况,并以综合属性为依据绘制林场燃烧性等级图,同时,死可燃物负荷量和含水率的分析,可以为营林防火措施的制定提供理论依据.  相似文献   

4.
下层土壤容重对玉米生育后期光合特性和产量的影响   总被引:11,自引:0,他引:11  
在耕层(0~20 cm)土壤容重不变情况下,采用池栽方法研究了下层(20~40 cm,40~60 cm)土壤容重变化对玉米生育后期光合特性和产量的影响.结果表明:当下层土壤容重不同时,玉米的光合速率(Pn)和产量都存在显著差异,随着下层土壤容重的增加,叶片Pn和产量降低,下层土壤容重越大,降幅越大.不同处理玉米叶片的Pn和细胞间隙CO2浓度(Ci)的变化趋势不同,Pn早晨和傍晚较低,中午较高,且随着下层土壤容重的增加而降低, Ci的变化趋势则相反.气孔限制值(Ls)和气孔导度(Gs)也随着下层土壤容重的增加而降低. 随着玉米生育进程,Pn、Ls和Gs不断下降,而Ci不断升高.  相似文献   

5.
    
  相似文献   

6.
森林可燃物空间分布和燃烧性对森林火灾的发生和蔓延具有决定作用。选取广州城市森林中16种主要林分;利用地基激光雷达反演林分结构特征和可燃物空间分布;通过地面实测和标准采样法测定林分地表可燃物载量;同时采集林内优势树种叶片测定其理化性质。利用单因素方差分析比较不同林分的可燃物空间分布和优势树种叶片理化性质差异;分析潜在火行为和火灾危险性;运用主成分分析计算不同林分燃烧性综合得分并通过聚类分析划分为不同火险等级。结果表明:16种林分的可燃物空间分布和优势树种叶片理化性质存在显著差异;根据燃烧性可划分为4个火险等级:马尾松纯林、杉木纯林为高火险林分;松阔混交林、杉阔混交林、米锥林、桉树林、台湾相思林为较高火险林分;木荷林为低火险林分;阔叶混交林、黧蒴锥林、大叶相思林、锥栗林、尖叶杜英林、华润楠林、鸭脚木林、枫香林为较低火险林分。针对不同林分的燃烧性和火险等级;提出对应的可燃物管理措施和营林防火对策;为广州地区森林防火资源部署和防火林带建设提供理论支撑和科学指导。  相似文献   

7.
  总被引:1,自引:0,他引:1  
Aim Patterns of fire regimes across Australia exhibit biogeographic variation in response to four processes. Variations in area burned and fire frequency result from differences in the rates of ‘switching’ of biomass growth, availability to burn, fire weather and ignition. Therefore differing processes limit fire (i.e. the lowest rate of switching) in differing ecosystems. Current and future trends in fire frequency were explored on this basis. Location Case studies of forests (cool temperate to tropical) and woodlands (temperate to arid) were examined. These represent a broad range of Australian biomes and current fire regimes. Methods Information on the four processes was applied to each case study and the potential minimum length of interfire interval was predicted and compared to current trends. The potential effects of global change on the processes were then assessed and future trends in fire regimes were predicted. Results Variations in fire regimes are primarily related to fluctuations in available moisture and dominance by either woody or herbaceous plant cover. Fire in woodland communities (dry climates) is limited by growth of herbaceous fuels (biomass), whereas in forests (wet climates) limitation is by fuel moisture (availability to burn) and fire weather. Increasing dryness in woodland communities will decrease potential fire frequency, while the opposite applies in forests. In the tropics, both forms of limitation are weak due to the annual wet/dry climate. Future change may therefore be constrained. Main conclusions Increasing dryness may diminish fire activity over much of Australia (dominance of dry woodlands), though increases may occur in temperate forests. Elevated CO2 effects may confound or reinforce these trends. The prognosis for the future fire regime in Australia is therefore uncertain.  相似文献   

8.
9.
    
Fire is a frequent disturbance in the tropical dry forests of Central America, yet very little is known about how native species respond to such events. We conducted an experimental burn in a tropical dry forest of western Nicaragua to evaluate plant responses to fire with respect to survivorship and recruitment. Measurements of woody vegetation of all size classes were carried out prior to the prescribed burn and three successive years post fire. We selected the 15 most abundant species <10 cm DBH to assess percent survivorship and sprouting responses post fire. Changes in seedling densities for these 15 most abundant species and the 15 least abundant species were analyzed using a repeated measure ANOVA. We also assessed changes in seedling densities for three species of international conservation concern. We found three major fire‐coping strategies among common dry forests plants: resisters (low fire‐induced mortality), resprouters (vigorous sprouting), and recruiters (increased seeding post‐fire). While survivorship was generally high relative to tropical moist forest species, those species with lower survivorship used either seeding or sprouting as an alternative strategy for persisting in the forest community. Seed dispersal mechanisms, particularly wind dispersal, appear to be an important factor in recruitment success post‐fire. Burn treatment led to a significant increase in the density of seedlings for two species of conservation concern: Guaiacum sanctum and Swietenia humilis. Results of this study suggest that common dry forest species in western Nicaragua are fire tolerant. Further study of individual species and their fire responses is merited.  相似文献   

10.
    
Fire is known to have dramatic consequences on forest ecosystems around the world and on the livelihoods of forest‐dependent people. While the Eastern Ghats of India have high abundances of fire‐prone dry tropical forests, little is known about how fire influences the diversity, composition, and structure of these communities. Our study aimed to fill this knowledge gap by examining the effects of the presence and the absence of recent fire on tropical dry forest communities within the Kadiri watershed, Eastern Ghats. We sampled plots with and without evidence of recent fire in the Eswaramala Reserve Forest in 2008 and 2018. Our results indicate that even though stem density increases in the recently burned areas, species richness is lower because communities become dominated by a few species with fire resistance and tolerance traits, such as thick bark and clonal sprouting. Further, in the presence of fire, the size structure of these fire‐tolerant species shifts toward smaller‐sized, resprouting individuals. Our results demonstrate that conservation actions are needed to prevent further degradation of forests in this region and the ecosystem services they provide.  相似文献   

11.
  总被引:1,自引:0,他引:1  
A method was developed to estimate carbon consumed during wildland fires in interior Alaska based on medium‐spatial scale data (60 m cell size) generated on a daily basis. Carbon consumption estimates were developed for 41 fire events in the large fire year of 2004 and 34 fire events from the small fire years of 2006–2008. Total carbon consumed during the large fire year (2.72 × 106 ha burned) was 64.7 Tg C, and the average carbon consumption during the small fire years (0.09 × 106 ha burned) was 1.3 Tg C. Uncertainties for the annual carbon emissions ranged from 13% to 21%. Carbon consumed from burning of black spruce forests represented 76% of the total during large fire years and 57% during small fire years. This was the result of the widespread distribution of black spruce forests across the landscape and the deep burning of the surface organic layers common to these ecosystems. Average carbon consumed was 3.01 kg m?2 during the large fire year and 1.69 kg m?2 during the small fire years. Most of the carbon consumption was from burning of ground layer fuels (85% in the large fire year and 78% in small fire years). Most of the difference in average carbon consumption between large and small fire years was in the consumption of ground layer fuels (2.60 vs. 1.31 kg m?2 during large and small fire years, respectively). There was great variation in average fuel consumption between individual fire events (0.56–5.06 kg m?2) controlled by variations in fuel types and topography, timing of the fires during the fire season, and variations in fuel moisture at the time of burning.  相似文献   

12.
本文用随机模拟的方法建立了北方针叶林的生长方程及其受到火灾侵害后的林木死亡率,定量地研究了火灾对这种林分变动的影响.  相似文献   

13.
秦岭西部山地针叶林凋落物持水特性   总被引:18,自引:0,他引:18  
常雅军  曹靖  马建伟  陈琦  赵琳 《应用生态学报》2008,19(11):2346-2351
采用野外实地观测与室内浸提法,对秦岭西部地区4种主要针叶林(华北落叶松、日本落叶松、粗枝云杉和欧洲云杉)林地凋落物的储量、持水量、持水率和吸水速率进行了研究.结果表明:林龄相近的4种针叶林林下凋落物储量大小依次为粗枝云杉(29.81 t·hm-2)>欧洲云杉(26.17 t·hm-2)>日本落叶松(13.30 t·hm-2)>华北落叶松(8.46 t·hm-2);不同林型不同分解程度凋落物的持水量和持水率与浸泡时间皆呈对数关系,其吸水速率与浸泡时间呈幂函数关系,而各种持水特性与森林类型和凋落物的分解程度无关;研究区4种针叶林半分解层凋落物的持水能力均强于分解层,而落叶松林的持水能力较云杉林强.  相似文献   

14.
通过大田试验,研究了不同秸秆还田和耕作方式(免耕+秸秆还田、免耕、常耕+秸秆还田、常耕)对稻田不同层次土壤肥力和主要微生物类群数量的影响.结果表明:上层土壤中,免耕+秸秆还田处理的有机质含量分别比免耕、常耕+秸秆还田和常耕处理高5.33、2.79和5.37 g·kg-1;全氮、全磷、全钾、碱解氮、速效磷和速效钾含量也均以免耕+秸秆还田处理最高,免耕和常耕+秸秆还田处理次之,常耕处理最低.下层土壤中,各肥力指标以常耕+秸秆还田处理较高.秸秆还田各处理微生物类群数量较高,上层土壤以免耕+秸秆还田处理的细菌、真菌和放线菌数量最高,成熟期其纤维分解强度分别比常耕+秸秆还田、免耕和常耕处理高26.44%、79.01%和98.15%;下层土壤以常耕+秸秆还田处理的细菌、真菌和放线菌数量最高.免耕+秸秆还田处理的土壤养分和微生物呈表层富集特征.细菌、放线菌和纤维分解强度与土壤肥力各指标呈显著或极显著正相关关系.  相似文献   

15.
胡天宇  周广胜  贾丙瑞 《生态学报》2012,32(22):6984-6990
随着森林防火预报精细化的需求,小时尺度可燃物湿度的准确模拟成为火险预报的关键。利用2010年8月连续无降雨天气条件下我国大兴安岭林区10h时滞可燃物湿度和相应气象因子的半小时动态观测资料,从可燃物的失水和吸水过程对目前广泛使用的Fosberg模型和Van Wagner模型进行评估,进而发展了准确模拟10h时滞可燃物失水和吸水过程的可燃物湿度模型。结果表明:Fosberg模型对10h时滞可燃物的失水过程模拟较好(R2=0.96,P<0.01),而Van Wagner模型对10h时滞可燃物的吸水过程模拟较好(R2=0.83,P<0.01),但均不能独立地准确模拟10h时滞可燃物的湿度变化。通过分析可燃物失水与吸水过程,考虑可燃物在静风条件下的水汽交换,优化了Van Wagner模型参数,建立了综合反映可燃物失水与吸水过程的10h时滞可燃物湿度模型。据比较,该模型可准确地模拟10h时滞可燃物的湿度变化(R2=0.88,P<0.01),可为精细化火险预报提供技术支撑。  相似文献   

16.
    
Aim   This study aims to improve the formulation and results of the Brazilian Center for Weather Forecasting and Climate Studies Potential Vegetation Model (CPTEC-PVM) by developing a new parameterization for the long-term occurrence of fire in regions of potential savannas in the tropics. Compared with the relatively slow processes of carbon uptake and growth in vegetation, fast mortality and biomass consumption by fires may favour grasses and reduce tree coverage.
Location   The tropics.
Methods   For finding large-scale relationships between fires and other environmental factors, we made two main simplifying assumptions. First, lightning is the most important source of ignition for natural fires. Second, over continental areas in the tropics, lightning is mainly related to the zonal flux of moisture transport.
Results   The parameterization of fire occurrence was built based on a simple empirical relationship, combining information on mean and intra-annual variance of the zonal wind.
Main conclusions   The implementation of this new relationship improved the formulation and the results of the CPTEC-PVM. As a result of this new parameter, the accuracy of the model in allocating the correct vegetation (seasonal forests) instead of savannas for large regions in India and Southeast Asia is now substantially higher than in previous studies.  相似文献   

17.
干旱河谷-山地森林交错带土壤水分与养分特征   总被引:2,自引:0,他引:2       下载免费PDF全文
干旱河谷-山地森林交错带(EDM)在延伸亚高山森林生态功能,抑制干旱河谷上延等发挥着重要且不可替代的作用。研究了交错带邻近生态系统干旱河谷(DV)、亚高山森林(SF)以及交错带内(EDMⅠ、EDMⅡ、EDM) 3个土层(L1、L2、L3)土壤水分及养分特征,结果表明,(1) 相比于DV,EDM具有更好的土壤水环境,并为植物生长提供更多的可吸收磷,但未表现出更好的土壤氮素环境;SF则是山地垂直带谱中土壤水环境和养分环境最好的区域。(2) 交错带内由于主要植物种类及其群落结构组成不同,土壤水、肥环境仍存显著差异。(3)海拔梯度上,L1中土壤水分与氨态氮相关性不显著,与其它养分均极显著相关(P<0.01)。L3中,速效养分均与土壤水分相关性不显著;剖面层次上,EDM和EDMⅠ不同层次的土壤养分与土壤水均未表现出显著相关性,而在EDMⅡ和SF却表现出显著相关。  相似文献   

18.
19.
  总被引:2,自引:0,他引:2  
Aim This study documents the effects of multiple fires and drought on the woody structure of a north Australian savanna never grazed by domestic stock. Location The study was conducted in a 500 ha pocket of Eucalyptus‐dominated savanna surrounded by a late Quaternary lava flow. The flow is known as the Great Basalt Wall, located c. 50 km northeast of Charters Towers in semi‐arid north‐eastern Australia. This region was exposed to the largest 5‐year rainfall deficit on record between 1992 and 1996. Methods All individual woody plants were tagged within a 1.56 ha plot. Species were segregated into their habitat affinities (rain forest, ecotone, savanna) and regeneration strategy (resprouter, seeder). The survivorship of plants within these categories was analysed in relation to fire intensity from the first fire, and to each of four fires lit between 1996 and 2001. Results Before the first fire, the plot contained thirty‐one tree species including twenty‐one typical of the surrounding dry rain forest. These rain forest species were represented by small individuals and constituted <1% of the total basal area of woody plants. The basal area of savanna trees was 7.5 m2 ha?1 at the commencement of monitoring, although 31% had recently died and others had major crown damage. Further death of the drought debilitated savanna trees was substantial during the first year of monitoring and the basal area of live savanna trees declined to 1.1 m2 ha?1 after 5 years. Most species from both rain forest and savanna were classified as resprouters and are capable of regenerating from underground organs after fire. Species without this ability (rain forest seeders and ecotone seeders) were mostly eliminated after the first two consecutive fires. Among resprouters, survivorship declined as fire intensity increased and this was more pronounced for rain forest than for savanna species. Repeated burning produced a cumulative effect of decreasing survivorship for rain forest resprouters relative to savanna resprouters. Main conclusions The study provides evidence that savanna and rain forest trees differ in fire susceptibility and that recurrent fire can explain the restricted distribution of rain forest in the seasonally arid Australian tropics. The time of death of the savanna trees is consistent with the regional pattern after severe drought, and highlights the importance of medium term climate cycles for the population dynamics of savanna tree species and structure of Australian savannas.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号